首页 > 文章中心 > 直流稳定电源设计

直流稳定电源设计

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇直流稳定电源设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

直流稳定电源设计

直流稳定电源设计范文第1篇

关键词:变频器 多功能电源开关设计

中图分类号:S611文献标识码: A

前言:作为变频器的多功能电源开关,必须具有多路稳定的直流电压输出,以确保电源开关供电安全,UC3842作为变频器用多功能电源开关中应用最为广泛的芯片,其作用非常巨大,通过精确且科学的运算方法以及设计原理,使电源开关能够同时提供给主控系统、驱动系统以及通信系统多路稳定隔离直流电源,从而确保开关正常工作。

一、设计要求

多功能开关电源要求为变频器逆变器 3 个上桥臂的 IGBT 提供驱动电压, 并为其他部分提供电源,具体指标如下:输入 直流 250 V±40 %, 即 150~350 V;输出 3 路 24 V、2 A独立输出, 2 路 ±15 V、0.2 A共地输出; 1 路 5 V、1 A 输出。由于逆变器 3 个上桥臂每一时刻最多有 2 个同时导通, 所以输出总功率为 110 W。

二、芯片选择

多功能开关电源选用一种开关电源设计专用芯片 UC3842, 该芯片是美国Unitorde 公司生产的一种高性能单端输出式电流控制型脉宽调制器片,UC3842 可专门用于控制占空比适应负载变化造成的输出电压变化, 负载调整率好, 较适合该电源的应用场合。电路中开关管选择 N 沟道场效应管 K1358, 其额定参数为 900 V /9 A, 有充分的裕量保证系统的安全运行。

1、UC3842 内部结构和引脚功能

双列直插式封装, 其内部结构见图 1。

2、 UC3842 管脚功能

1 脚(COMP): 误差放大器的输出端。

2 脚(VFB): 误差放大器的反相输入端

3 脚(ISEN) : 电流检测端。流过开关管的电流被检测电阻转换为电压信号并被送

入此脚, 用来控制PWM锁存器, 调整输出电压大小。并且当该脚电

压超过 1 V 时, UC3842 即关闭输出脉冲, 从而保护开关管不致因

过流而损坏。

4 脚(RT / CT): 内接振荡电路, 外接 RC 定时元件, 定时电阻 R 接在 4 脚和

8 脚之间, 定时电容 C接在 4 脚到地, 振荡频率为 f=1.72 /

(RC) 。其振荡频率最高可达 500 kHz。

5 脚(GND): 电源电路与控制电路的接地端。

6 脚(OUT): 推挽输出放大器的输出端。为推拉式输出, 可直接驱动场效应管,

驱动电流的平均值可达 200 mA, 最大可达 1 A 峰值电流, 输出的

低电平为 1.5 V, 输出的高电平为 13.5 V。

7 脚 (Vcc): 电源输入端。外接电源电压 Vcc,UC3842 的开启电压为 16 V, 关

断电压为 10 V, 其内部有一个 34 V 的稳压管, 可以保证内部电

路工作在34 V 以下。该电源电压经内部基准电压电路的作用产生

5V 基准电压, 作为 UC3842 的内部电源使用, 并经衰减得到2.5

V 电压作为内部比较器的基准电压。

8 脚(VREF): 参考电压(+5 V) 输出端。可提供参考电压。

三、硬件电路设计

1、工作原理

根据芯片功能的介绍, 所设计的电路图如图 2 所示。当电源通电时, 输入电压通过电阻 R3对电容C4充电, 当 UC3842 的 7 脚(Vcc 端) 达到导通门槛电压(16 V) 后, UC3842 开始工作, 此后芯片由反馈线圈供电, 电压维持在 13 V 左右。

开关变压器的反馈绕组 Ns 两端电压经 VD2、R2、C3、VD3、C4整流滤波后再经过 R9、R10分压后, 从 2 脚送入 UC3842 的误差放大器反相输入端, 反馈电压与基准电压(2.5 V)经误差放大器比较放大后, 调整 PWM输出脉冲的宽度, 从而稳定输出电压。主回路电流由电阻 R5进行取样, 取样电压经 3 脚加到 UC3842 内的电流比较器的一个输入端, 与误差电压放大器的输出进行比较, 当该取样电压等于误差电压( 最大值为 1 V)时, UC3842 的输出脉冲被中断, 从而实现限流保护。

该电源用UC3842 的 PWM输出直接驱动开关管, R7的作用是限制峰值驱动电流。当直流输入电压变化时, 以变大为例, 此时反馈电压也会相应变大, 也就使得 UC3842 电压误差放大器的输出变小, 也就使得 PWM输出脉冲的占空比减小, 从而使输出电压保持稳定。

2、电路功能模块设计

a.输入滤波电容 C1: 可以滤除输入电压中的高频干扰, 得到较为稳定的输入

电压。

b. 启动电路设计: 启动电路由限流电阻 R3和电容 C4组成。在 UC3842 启

动正常工作之前, 启动电流在 1mA以内,7 端(Vcc)电压升至 16V时, 芯片

开始工作, 此时消耗电流为15 mA。所以 R3>16 V÷1 mA=16kΩ, 功率最好

在 1-2W。C4储存的能量要能满足电源开始正常工作的需要, 最好在 100 μ

F 以上。

c. 缓冲吸收电路设计: 开关管在关断的瞬间会产生很高的电压尖峰脉冲, 这不

仅很容易使开关管由于电压急剧升高而损坏, 而且使电流采样和输出电压的

波形出现很尖的脉冲, 影响系统的稳定工作。为此, VD4、R4、C5组成 RCD 缓

冲吸收电路, 同时对于反激变压器, R1、VD1、C2组成的缓冲电路, 也具有

同样的作用, 形成双重保护。

d. 反馈电路设计: 由于该电源的输出为多路, 不适合仅仅对某一路进行反馈调

节, 故采用反馈线圈Ns 来输出一个反馈电压, 对多路输出同时进行控制。

VD2、R2、C3、VD3、C4为整流滤波电路, 得到一个稳定的反馈电压, 该电压同时

也作为 UC3842 正常工作时的供电电压。

e. 电流取样和过流保护: 电流的取样由取样电阻 R5完成, 其峰值电流由误差

放大器控制, 为 Is=(Ue- 1.4) / (3Rs)( 其中 Is为主电路峰值电流, Ue

为UC3842 内部电压误差放大器输出电压, Rs为采样电阻) 。由于电流测定

比较器的反向输入端钳位电压为 1 V, 故最大电流限制在 Is=1V /Rs, 当电

流超过这个值时, UC3842 自动闭锁输出, 以保护电路。R6、C6为滤波电路,

用以滤除开关管开通电流尖峰, 防止误触发, RC 滤波器的时间常数应接近

于电流尖峰的持续时间, 通常为几百纳秒。取 R6=1 kΩ, C6=470 pF,则时间

常数τ=RC=470 (ns)。

f. 误差放大器的补偿电路: R11和 C7, 改善误差放大器闭环增益和频率特性。

g. 振荡电路: 由 R12、C9设定振荡频率, 取 R12=13 kΩ, C9=3.3 nF, 则振荡

频率为f=1.72×103/ (13×3.3) =40 (kHz)

h. 旁路瓷介电容: C8、C10, 用以滤除高频叠加信号。

i. 变压器设计: 变压器有多种工作方式, 在此采用单端反激工作方式。其基本

工作原理是当开关管受控导通时, 高频变压器将电能变为磁能储存起来;而

在开关管受控截止时, 变压器就将原先储存的磁能变为电能, 通过二极管向

输出电容充电, 再由电容向负载供电。若PWM 工作的占空比为D, n 为原副

边匝数比, 则输出电压 Uo=DUi/ [ n( 1 - D) ] 。关于变压器的设计在后面

再详细说明。

j. 输出滤波电路: 每一路电压输出都有整流二极管和电容组成的滤波电路,

如 VD5、C11组成 +5 V输出的整流滤波电路, 然后通过三端稳压器 LM7805

来滤除纹波, 得到一个较为稳定的电压, 也可以起到消除纹波的作用, 见图

2, 其他几路输出也是如此。

四、变频器开关电源的变压器设计

针对于变频器开关电源的变压器设计,要依照一定的步骤进行:

1、设计参数工作频率 fs=40 kHz, 工作周期 Ts=25 μs; 效率η=0.85; 输入直流电压 250 V±40 %, 即 150~350 V;输出功率 110 W。

2、 设计步骤

步骤 1 选择磁芯

考虑到变压器损耗和整流管损耗, 输入功率 PM=Po/ η=110 / 0.85=130(W) (Po为输出功率), 再由经验公式, 磁芯截面积为 SJ=0.15 PM=1.71 (cm2)。查表后可选择磁芯 EE42 /21 /15, 外形结构如图 3所示。

其磁芯截面积为SJ=173 mm2, a=42 mm,b =21 mm, c=15 mm, d、e、f 可查表得到。磁芯材料选择PC40 铁氧体磁芯, 其优点是电阻率高、交流涡流损耗小、价格低。

步骤 2 计算 ton和最低输入直流电压 Us,min

由于 UC3842 属于峰值电流控制芯片, 在没有斜坡补偿的情况下, 其稳定工作的占空比范围是 D

步骤 3 选择工作时的磁通密度

对于 PC40 材料的磁芯, 其 100 ℃ 时的最大磁感应强度 Bmax= 390 mT, 振幅取其一半, 交变磁通密度 ΔBac=0.5 Bmax=195 mT=0.195 T。

步骤 4 计算原边线圈匝数

步骤 5 对于+5V,匝数计算

对于+5V, 考虑到整流管压降,U2=5+0.6=5.6(V),而原边绕组每匝伏数 =Us,min/N1=150 /50=3 (V/匝),故而可算得 N2=5.6 /3≈1.867, 取 N2=2 匝。则新的每匝反激电压=5.6 /2=2.8 (V /匝), 原边匝数 N1=150 /2.8≈53.57, 取 N1=54 匝。

对±12 V 的直流输出电压 U3=12+1=13(V), N3=13 /2.8=4.64, 取 N3=5 匝。对+24 V 的直流输出电压 U4=24+1=25(V), N4=25 /2.8=8.93, 取 N4=9 匝。

由于电源输出接负载时会发生一定的电压跌落,所以在变压器设计时每一路输出多设计一匝, 得到一个稍高的输出电压, 然后通过三端稳压器 LM7805,LM7812, LM7824 分别得到+5 V+12 V、+24 V 电压, - 12 V 由 LM7912 得到, 如图 3 所示。所以在此对+5 V 取 3 匝, ±12 V 取 6 匝, +24 V 取 10 匝。对于反馈线圈, U=13+0.6×2=14.2 V, Ns=14.2÷2.8=5.07, 取 Ns=5 匝。

步骤 6 确定气隙的大小

设变压器工作在电流连续工作方式, 原边线圈电流 Ip如图 4 所示。原边电感 Lp=UsΔt /Δi, Ip2=3 Ip1,则 ton时间内流过电流的平均值 Iav=Ip2- Ip1=2 Ip1。在周期 Ts内的平均输入电流 Is=P /Us,min=1对±12 V 的直流输出电压 U3=12+1=13(V), N3=13 /2.8=4.64, 取 N3=5 匝。对+24 V 的直流输出电压 U4=24+1=25(V), N4=25 /2.8=8.93, 取 N4=9 匝。

由于电源输出接负载时会发生一定的电压跌落,所以在变压器设计时每一路输出多设计一匝, 得到一个稍高的输出电压, 然后通过三端稳压器 LM7805,LM7812, LM7824 分别得到+5 V、+12 V、+24 V 电压, - 12 V 由 LM7912 得到, 如图 3 所示。所以在此对+5 V 取 3 匝, ±12 V 取 6 匝, +24 V 取 10 匝。对于反馈线圈, U=13+0.6×2=14.2 V, Ns=14.2÷2.8=5.07, 取 Ns=5 匝。

步骤 7 校验

0N1Ip1/g=4π×10- 7×54×1.745 /(0.72×10- 3) =903×10- 4(T) =90.3 (mT) (Bdc为直流作用的磁感应强度) ; Bmax=0.5 ΔBac+Bdc=190.3 (mT)

五、计算结果分析

根据精确地运算制作出实物,需进行相应调试,并测算结构。图 5 是 UC3842 自身振荡器的波形, 图 6 是 PWM驱动输出的波形, 图 7 是电流取样电阻上的波形, 也就是 UC3842 的 3 脚的波形, 从波形上看, 虽然采取了滤波电路,仍然存在着尖峰脉冲, 这说明缓冲电路还有改进的空间。

结语:综上所述,基于对变频器用多功能开关电源的设计原理、计算方法以及设计步骤等的详细阐述,精确的计算以及科学的设计方法能够从根本上保障变频器多功能开关电源的正常稳定工作,为人们的生产生活提供安全的供电保障,并且随着我国电力事业的不断发展,对于变频器多功能开关电源的研发还将越来越科学,越来越先进。

参考文献:

[1] 王水平, 史俊杰, 田庆安. 开关稳压电源―――原理、设计与实用电路[M].

西安: 西安电子科技大学出版社, 2005.

[2] 李定宣. 开关稳定电源设计与应用[M]. 北京: 中国电力出版社, 2006.

[3] 张占松, 蔡宣三. 开关电源的原理与设计[M]. 北京: 电子工业出版社,

2005.

[4] 曲学基, 王增福, 曲敬铠. 新编高频开关稳定电源[M]. 北京: 电子工业出

版社, 2005.

直流稳定电源设计范文第2篇

关键词:PWM;逆变;整流;供电

1 深三线辅助供电系统概况

深圳地铁三号线(以下简称深三线)采用B1型轨道电客车,直流1500V供电受流方式,牵引主电路从牵引电网接收直流1500V电压,通过逆变主电路的逆变和整流,为列车提供稳定的交流380V和直流110V,供给列车负载如空调、控制电源、照明设备、空气压缩机和播音装置等使用,每列车安装2套辅助电源装置和蓄电池组同时工作,采用扩展供电方式组网,其输出能力可满足6辆编组电客车各种负载工况的用电要求。深三线轨道电客车辅助供电系统采用高性能微机控制,PWM(脉冲宽度调制)控制方式,控制运算采用数字信号处理器DSP,动态响应性能好,逆变输出良好稳定,为电客车负载提供稳定电源,充分发挥列车的性能。

2 车载PWM脉冲宽度调制过程

PWM脉冲宽度调制是对模拟信号进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全打开,要么完全关闭。斩波电压是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上;通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。通过调整周期和占空比,达到控制逆变电流输出的目的。

深三线辅助供电系统的逆变器使用的是12步逆变模块,由两个6步逆变模块并联而成的,其中6步逆变模块是典型的三相逆变电路,如图1所示。

图1 三相逆变电路

逆变器的输出由IGBT门极开关确定,此开关由IGBT门极驱动单元(IDU)控制。例如:当IGBT的U1、V2或W2打开,电压基本PWM波形是单脉冲矩形波,U相输出波形如图2示。

图2单脉冲方矩形波PWM波形

整个逆变过程从处理器到门极信号通断采用DSP数字控制技术,没有数模转换过程,噪声影响较小。在接收端,通过适当的RCL滤波电路可以滤除调制输出的冲击方波并将信号还原为模拟形式。结合先进的微机控制技术,使得整个逆变过程变得稳定可靠,响应快速,输出精确。

3 辅助供电输出种类及性能

辅助电源装置的功率组件采用大功率电力电子器件IGBT,采用自然风冷的冷却方式。逆变器输入电压为额定电压DC1500V。当150%(DC2250V)额定输出时,辅助逆变器将维持运行10秒后关断;200%额定输出时,辅助逆变器会立即关断。输出种类及性能如表1所示。

表1 辅助供电输出种类及性能

辅助供电系统有足够的瞬时过载能力,在短时间内能承受最大负载启动时的电流冲击,并在输入电源及负载突变条件下,使瞬间输出电压波动小,不影响所有负载电机电器的正常工作。瞬间电压变化范围: ±20%(负载突变从额定值70%到100%,输入电压突变DC±150V/20ms),瞬间电压变化调整时间:

列车在非再生制动工况下,第三轨供电电压高于DC1800V时,辅助逆变器即停止运行,直至第三轨供电电压低于DC1750V并维持至少3秒后,辅助逆变器才回复正常工作;再生制动工况下,第三轨接触网电压高于DC2000V并维持至少3秒时,辅助逆变器立即断电。

4 辅助供电系统的现状

深三线辅助供电系统采用韩国乐铁公司的技术,香港地铁在2000年采购在电客车中也批量使用过,该系统有可靠性高、故障率低特点。但深三线在列车运营初期和列车动态调试过程中,发生过一些功能性的问题,如:蓄电池充电故障,直流输出电压偏高,充放电短路事故等。

5 结束语

辅助逆变器的保护功能齐全可靠,包括过电压、欠电压、过载、短路、接地、过热、超频/低频等保护项目,在正常情况下,每列车的2套辅助逆变器向全列车辅助系统的负载提供电源,当其中1套辅助逆变器(SIV)故障时,余下的1套将承担6辆车的基本负载并保证列车的正常运行,此时列车负载实行减载工作,被减掉的机组保持通风。本文通过电客车辅助供电设备安装调试过程遇到的问题总结分析,PWM脉冲宽度调制技术已广泛应用于现代城市地铁轨道电客车的辅助供电系统当中,通过介绍PWM脉冲宽度调制技术在深圳地铁三号线B1型电客车辅助电源系统上的运用,两路12步IGBT逆变器并联和变压器组成的,为电客车提供稳定的AC380V电源和DC110V电源,列车两台辅助电源系统的冗余设计提高列车的可靠性。随着我国科技水平的发展,我国在该领域也有了一定的基础。2002年,株洲时代集团与国际知名集团的公开竞标中,一举拿下香港地铁469台辅助变流器的改造项目,为实施城市轨道交通设备国产化打下了坚实的基础。

参考文献

[1] 深圳地铁三号线投资有限公司运营分公司《电客车检修手册》.

直流稳定电源设计范文第3篇

【关键词】激光毛化;工控机;电气自动化;控制系统

1 概述

轧辊激光毛化是利用YAG脉冲激光束作用于轧辊表面,在辊面上产生无数一定形貌的毛化点,以提高轧辊表面粗糙度。冷轧生产线现有YAG激光毛化机床一台,主要负责为平整机提供粗糙度Ra在3.2以上的平整机工作辊。

2 系统结构及功能

YAG激光毛化机床系统可分为六个独立子系统,每个子系统实现各自的功能,相互之间又是密切相连的,共同实现激光毛化加工目的和要求。各个子系统分别为激光器系统、机械系统、控制系统、外光路系统、变频制冷系统和气路系统。图1是系统结构框图。

下面介绍各子系统的功能。

2.1机械系统

机械系统主要有床头箱、床身和导轨、尾架部件、轧辊托辊、大溜板纵向移动部件聚焦头横向移动部件等部分构成,主要功能是承载轧辊和激光聚焦头,实现轧辊的旋转和聚焦头的纵向、横向移动。

2.2激光器系统

激光器主要有氪灯、Q声光开关、全反镜、全透镜等构成,声光电源和激光器电源分别为Q开关盒氪灯提供稳定电源。主要功能是提供毛化所需的高能量、高重频脉冲激光束。

2.3外光路系统

外光路系统由扩束镜、45。全反镜A、45。全反镜B和聚焦头组成。主要作用是将激光器输出的高能量激光束传输并聚焦,使激光束照射到轧辊的表面。

2.4变频制冷系统

系统的主要作用是冷却激光器和声光盒,保证激光毛化功率的稳定性和可靠性。

2.5气路系统

提供保护用的氮气,对激光毛化时产生的飞溅物进行吹扫,利用熔坑的形成,对聚焦头起保护作用。

3 电气自动化控制系统

3.1控制系统的硬件

3.1.1主轴和纵向移动控制系统

机床设计转速范围为:50~400转/分,传动比为1:5,进行恒扭矩加工。主轴电机为1PH7133 2NG02 OCA伺服电机,功率20kW,转速2000r/min。在主轴电机上安装增量编码器,用于检测轧辊的位置。纵向交流伺服电机为1FK7083 5AF71 1AA0,功率3.55kW,转速3000rpm。机械用滚珠丝杠(螺距5ram)传动,传动比1:1。

主轴控制和纵向控制采用SIEMENS 611U交流数字式伺服驱动系统,该系统采用模块化安装方式,伺服驱动模块有单轴与双轴两种结构型式,带有PROFIBUS I)P总线接口,主轴与纵向伺服驱动单元共用直流母线与控制总线。根据机床设计,使用西门子公司的SimoCom u软件对主轴驱动器和纵向伺服驱动器进行初始化设置。具体参数见图2和图3。在完成驱动器的设定后,用SimoCom u软件对驱动器的速度环动态特性进行自动调试。

3.1.2聚焦头横向自动控制系统

聚焦头自动跟踪系统由装在聚焦头上的位移传感器、位置调节器、横向伺服驱动器和横向伺服电机构成,它是一个闭环控制系统,位置调节器连接位移传感器,位移传感器检测轧辊的实际位置,从而实现聚焦头自动跟踪。横向控制选择松下A4系列MDDT3530伺服系统,200V供电,交流伺服机:MDMA082P1G。功率O.75kW,转速2000rpm。机械用滚珠丝杠(螺距5ram)传动,传动比1:1。

3.1.3工控机

图4是YAG激光毛化机床控制系统框图。工控机的AT总线上装有一块可控分布接口卡、一块电隔离D/A接口卡。可控分布控制卡接收增量编码器发出的脉冲信号。工控机通过隔离D/A卡控制变频器,变频器驱动主轴电机;通过可控分布控制卡发出控制信号控制声光电源,声光电源发出射频信号控制激光器内的声光盒;通过可控分布控制卡发出一路控制信号控制纵向交流伺服驱动器和纵向伺服电机;通过D/A接口卡控制位置调节器,位置调节器控制横向伺服驱动器,伺服驱动器控制伺服电机。

3.2控制系统的软件

控制系统采用可控无规则分布软件,主要完成人机图形界面的显示、毛化参数的读入、存储、插入、删除、修改等任务以及对运行时的参数进行显示等任务。

直流稳定电源设计范文第4篇

绝缘栅双极晶体管(IGBT, Insulated-Gate Bipolar Transistor)需要充分的保护以避免短路、过载和过电压等错误情况所造成的损坏和故障,这些保护是确保如电机驱动以及太阳能和风能发电系统等应用安全稳定电源转换运作的重要关键。要检测过电流和过载情况,具有快速响应或快速错误反馈的隔离放大器可以应用于输出相位和直流母线电压检测上,本篇文章将讨论如何使用这类器件来保护IGBT避免受到电流过高和过电压等情况的影响。

介绍

图1a显示了交流电机驱动电路中电源转换的典型框图,其中包含把直流母线电压转换为以不同频率交流电源驱动电机的变频器。IGBT为形成变频器核心的昂贵功率开关,这些功率器件必须以高频率运行并且能够承受高电压。

隔离放大器,如图1b中的ACPLC79A可以和分流电阻一起工作,提供即使存在高开关噪声情况下的电源转换器精确电流测量,和电阻分压器一起使用时,隔离放大器可以作为检测直流母线电压的精密电压传感器,由隔离放大器提供的电流和电压信息通过微控制器搜集,并使用这些数据计算出反馈值以及有效控制和错误管理电源转换器所需的输出信号。

错误保护要求

变频器中IGBT是最昂贵的器件,因此必须尽可能提供保护,Avago公司的隔离放大器产品提供有错误情况的快速感应以及可以避免错误情况造成IGBT故障的微控制器算法,另外,隔离放大器中的光学隔离也可以避免错误情况造成微控制器过载而引发故障。

不过IGBT的保护必须以高成本效益方式进行,市场持续寻求不会大幅度影响电机驱动系统总体成本,但能够提供充分IGBT错误保护的产品。为了满足这个需求,IGBT栅极驱动器,如ACPL-332J和带有保护功能的电流传感器产品已经陆续出现在市场上,除驱动和感应功能外加入了基本的错误检测功能。这些产品提供实现IGBT保护的高成本效益方案,免去独立检测和反馈部件需求,请参考ACPL-332J产品数据手册及相关文章中有关集成到Avago栅极驱动器产品的保护功能以及如何把这些功能应用于IGBT保护。本文的其他部分将聚焦于可由表1中所列出电流和电压传感器实现的部分错误保护功能。

IGBT的过电流情况可能因相位问短路、接地短路或直通所引起,输出相位和直流母线上的分流电阻加上隔离放大器电流感应器件提供了电流测量外的错误检测功能,请参考图1。典型的IGBT短路承受时间可以达到10μs,为了确保有效的保护,绝对不能超出这个限制。在有限时间内错误必须被检出,然后反馈给微控制器,并于时限内完成关断程序,要达到这个要求,隔离放大器可以使用不同的方法。

例如ACPL C79A拥有单阶跃输入1.6μs的快速响应时间,允许隔离放大器在短路和过载情况下获取瞬变信息,请参考图2。中点的输入到输出信号传递延迟只有2μs,输出信号跟上输入的反应时间仅2.6μs即可达到最终水平的90%。

除了快速响应时间外,ACPLC79A提供有±1%增益精确度,0.05%的卓越非线性和60dB的信噪比(SNR, Signal-to-Noise Ratio)。ACPLC79B则提供±0.5%的更高增益精确度,ACPL-C790的增益精确度为±3%。所有ACPL-C79A系列器件都通过1230Vpeak最高工作绝缘电压认证,并具备高达15kV/“s的共模瞬变噪声抑制能力,这些功能通过尺寸比标准DIP-8封装小30%的延展型SO-8封装提供。

另一个例子为Avago的HCPL788J,使用了不同的方式达到过电流检测的快速响应,请参考图3。除了信号数输出引脚外,它还提供了一个会在错误情况发生时快速由高电平变为低电平的Fault引脚指出过电流情况,这款隔离放大器提供±3%的测量精确度。

在错误反馈设计上,一个必须注意处理的问题是意外触发,意外触发为无明显错误情况下产生的错误检测触发动作,可能会损坏IGBT。为了避免错误触发,HCPL-788J采用脉冲鉴别电路来有效屏蔽电流(di/dt)和电压(dv/dt)变化浪涌的影响。这个方法的好处是抑制能力不会受到振幅大小的影响,这代表了错误阀值可以设定在低上许多的水平而不会提高意外触发的风险。

要实现达成快速错误检测的电路,错误检测方块中使用两个比较器来检测正向和负向阂值,开关切换阂值等于256mV的Sigma-Delta调制器参考,这些比较器的输出连接到消隐期为2μs的消隐滤波器,接着再送到编码器方块。

为了确保错误状态可以快速通过隔离屏障传递,使用两个独特的数字编码序列代表错误情况,一个代表正向,一个代表负向。当检出错误情况时,光通道上正常的数据传输会被中断,并以错误编码序列位元流取代,这两个错误码在设计上和普通编码方式显着不同,因此检测器端可以在错误发生时立即检出。

解码器检测并把错误情况通过隔离屏障传送需要的时间大约在1μs,加上400ns的抗混叠滤波器延迟带来约1.4μs的传播延迟。由错误情况发生到错误信号输出总延迟时间为传播延迟和消隐时间2μs的总合,带来共3.4μs的总体错误检测时间,请参考图4。

Fault错误输出脚位允许多个器件的错误信号连接在一起,使得多个器件可以通过线与(wire-ORed)方式产生单一错误信号输出,请参考图5右上部分,之后这个信号可以通过控制器直接禁用PWM输入。

过载检测

过载情况为电机电流超过驱动额定电流大小,但未达到使变频器或电机立即损坏危险的情况,例如因轴承损坏造成的电机机械过载或电机堵转。

变频器通常会在正常规格外加入过载规格,可允许的过载时间依温度过热真正造成影响的时间决定,典型的过载规格大约为处于正常负载的1.5倍达1分钟时间长度。

Avago的ACPL-C79A可以接受±300mV全幅输入,产品数据手册中的数据以±200mV正常输入范围为基准,设计工程师拥有选择两个数据或之间过载阂值的灵活度。如果和正常工作电流比较,过载电流的测量精确度较不严格,而这正是普遍情况,那么把阂值设定在接近300mV为能够使用完整隔离放大器动态范围的良好选择,然而把阂值设定在200mV则可以确保过载电流测量的精确度。决定电压大小后,设计工程师必须依相对电流大小选择合适的感应电阻值。

Avago的HCPL-788J还包含一个额外功能,也就是ABSVAL输出,可以用来简化过载检测电路。ABSVAL电路可以对输出信号进行整型,并依下列公式提供正比于输入信号绝对值的输出信号:

ABSVAL=|VIN|xVREFEXT/252mV

输出当然也可以使用线与方式连接,当结合3个正弦电机相位时,经整流的输出ABsVAL基本上是一个代表电机RMS电流的直流信号,这个直流信号和阂值比较器可以在电机或驱动电路受到伤害前指出过载情况,请参考图5右下部分。

过电压检测

直流母线电压必须持续受到控制,在某些工作情况下,电机作为发电机把高电压通过变频器的功率器件和回复二极管送回到直流母线,这个高电压会加到直流母线电压上形成IGBT上的超高电压浪涌,这个浪涌可能会超出IGBT的最大集电极到发射极电压而造成损坏。

微型化隔离放大器ACPL-C79A经常被使用在直流母线监测应用上作为电压传感器,如图6所示。设计工程师必须通过依适当比例选择的R1和R2电阻值调整直流母线电压以适应隔离放大器的输入电压范围。

直流稳定电源设计范文第5篇

关键字: 工作模式; 同一拓扑; 循环使用; 电源箱

中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2013)22?0147?03

0 引 言

多功能电源系统共用一个主电路拓扑结构,通过外部参数设定,控制电源系统工作在不同的状态,满足不同场合的需求。本文设计的电源箱系统,通过三波段开关切换,能够满足舰船远洋和陆路两种场合的应用。

由于电源箱系统最大输出功率为400 W,功率变换器选择正激电路拓扑是比较合适的[1]。但单管正激电路在主功率管关断的时候,承受的反压比较高,电压越高功率管的价格也越高,而且极易造成击穿,电路的可靠性也就下降。如果用双管正激电路,两个晶体管平均分担关断时的电压,在降低电路成本的同时,也提高了电路的可靠性。

1 电源箱系统的设计方案

电源箱系统工作在三种模式,分别是有市电的情况下,DC 28 V恒压输出。无市电的情况下,电池电压输出;有市电输入,不需对外供给能量时,给电池充电,以备下次使用。系统的总体框图如图1所示。在图1中,“1”为切换开关的默认状态,表示开关切换至市电AC 220 V输入,DC 28 V输出的工作方式;“2”表示开关切换至电池提供能量,输出电压为电池电压的工作状态,“3”表示有市电AC 220 V输入,功率变换器给电池恒流充电的工作方式。图中,表示控制信号的流向,表示主功率的流向。

2 电源箱系统的电路设计

2.1 电池选择及其参数计算

综合电源箱对电池体积、重量和电量的要求,本文选择材质为磷酸铁锂电池,每节电池满电压为3.3 V,容量为9 A·h,9节串联,充电率为0.3 C,重量为2.5 kg,体积为275 mm×210 mm×75 mm。根据电池生产厂家提供的参数,可以算出电池满电压为[9×3.3=29.7 V],功率变换器设置充电电压不低于此电压,考虑到电池本身的“虚电”特性,本文设计电池充满电压为30.3 V。电池的充电电流为[9×0.3=2.7 A],为了保证电池的使用安全,设计充电电流为2 A,电池最低放电电压不低于26 V。

2.2 功率变换器的拓扑结构及主功率管驱动电路

双管正激电路拓扑如图2所示,由于两个嵌位二极管VD1和VD2的作用,限制了在VF1和VF2关断时所受的最大反压均为直流输入电压VDC与二极管压降VD之和。电路的工作原理如下:

主功率管VF1和VF2同时导通或同时关断。副边绕组由于主功率管的导通有了感应电动势。副边绕组、二极管VD3很快建立电流,其速度受制于变压器和副边电路的漏电感。因为在导通瞬间L1上流过的电流IL在导通时保持不变。所以,由于VD3的电流建立,二极管VD4的电流比随之同等的快速减小。当VD3中的正向电流增加到原先流过VD4的电流时,VD4转为关断。与此同时开始了正激电路能量传递的状态。

图2中的两个主功率管VF1和VF2同时开通或关断,但不共地,本文采用常用的UC2845系列驱动芯片,VF1和驱动芯片共地,可以直接由此芯片驱动,VF2的驱动信号由VF1的驱动信号变换得到,电路如图3所示。图中T2为驱动变压器,VD5和VD6为18 V的稳压二极管,C7为隔直电容。

2.3 电源箱系统工作方式的实现

电源箱系统的第“1”和第“3”工作方式共用一套主功率变换器,通过外部的三波段开关切换工作模式。图4为模式切换的控制电路。在图4中,充电控制开关在默认状态下为低电平,三极管VT4和VT5不导通。电阻R19和R20是主功率回路的采样电阻,当主回路的电流小于120%的额定电流时,输出的Iout信号小于2.5 V,低于电流控制的给定电压(运算放大器N2B的负向输入端)2.5 V,N2B输出低电平,二极管VD10不导通。电压环的给定电压也为2.5 V,电压反馈取自R43,R44和R49的分压,合理分配它们之间的比值,主功率变换器输出恒定的DC 28 V电压。如果主回路的电流超过120%的额定电流, N2B输出高电平,二极管VD10导通,R44分压得到的电压升高,从而使输出电压降低,电路转入恒流控制,输出功率不再增加,电路保护。

当波段开关切换到模式“3”,充电控制开关信号为高电平,三极管VT4和VT5导通。此时的电流控制给定电压为0.5 V,如果主回路的电流超过2 A时,VD10就能够导通,从而拉低了输出电压,使充电电流一直维持在2 A,一直到电池充满。VT4导通后,R44和R37并联后的等效电阻比R44小,而电压环的给定电压信号不变,致使电路输出电压高于模式“1”的输出电压,克服了电池的“虚电”特性。当波段开关切换到模式“2”,电池对外提供能量,此时输出电压即为电池的电压。由于无市电AC 220 V输入,正激电路不工作。

3 电源箱系统试验数据

电池试验参数如下:

在做电源箱试验时,应首先使波段开关切换至模式“3”,对电池进行充电。充满后,才能切换至模式“2”的工作方式,进行电池放电性能的测试。根据任务书要求,先对电池进行大电流放电,后进行小电流放电。充电试验数据如表1所示。

在30 min的时间内,电池电压达到30.1 V,电池充满,此模式的纹波电压均小于100 mV。充满后进行放电试验,试验数据如表2所示。在空载时,电池电压为29.9 V,加入大负载后,分别在第1,11,21 min测试输出电压,由于切换开关消耗的电压,此时输出电压略低于电池本身的电压,但高于26 V,满足设计要求。表3是工作在模式“1”,在额定负载的条件下测试的输出电压及其纹波电压,在1 h之内,功率变换器达到稳定状态,纹波也小于100 mV,满足设计需要。

4 结 语

本文设计的电源箱系统能够实现三种功能:即为市电输入,DC 28 V输出;市电输入,电池充电;无市电输入,电池输出。三种工作方式通过手动开关切换。电路拓扑选择采用双管正激电路,控制方式既能实现恒压,也能实现电池恒流充电。试验指标合格,能够满足舰船陆地和岸基供电系统的要求。

表2 放电试验和纹波参数记录表格

表3 市电输入时,功率变换器的实验数据

参考文献

[1] 张占松 蔡宣三.开关电源的原理与设计(修订版)[M].北京:电子工业出版社,2004.

[2] 李定宣.开关稳定电源设计与应用[M].北京:中国电力出版社,2006.

[3] 王金保.新编电子变压器手册[M].沈阳:辽宁科学技术出版社,2007.

[4] 李建林.电池储能技术控制方法研究[J].电网与清洁能源,2012(12):61?65.

[5] 赵锦成,解璞,刘金宁,等.混合能源互补供电在武器装备中应用研究[J].电网与清洁能源,2011(3):53?59.