首页 > 文章中心 > 直流稳压电路的设计

直流稳压电路的设计

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇直流稳压电路的设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

直流稳压电路的设计

直流稳压电路的设计范文第1篇

【关键词】稳压电源;设计;参数

任何电子设备的工作都离不开直流电源,晶体管、集成电路正常工作都需要直流电源供电。提供直流电的方法主要有干电池和稳压电源两种。干电池具有输出电压稳定便于携带等优点但是其容量低寿命短的缺点也十分明显。而直流稳压电源能够将220V交流电转换为源源不断的稳定的直流电.它由变压、整流、滤波、稳压四部分电路等组成。参考电路如图1所示。

1.变压

稳压电源的输出电压一般是根据仪器设备的需要而定的,有的仪器设备同时需要几种不同的电压。单独的稳压电源,其输出电压在一定的范围内可以调节,当调节范围较大时,可分几个档位。因此,需要将交流电通过电源变压器变换成适当幅值的电压,然后才能进行整流等变换,根据需要,变压器的次级线圈一般都为两组以上选用合适的变压器将220V±10%的高压交流电变成需要的低压交流电,要满足电源功率和输出电压的需要,变压器选用应遵循以下原则:

(1)在220V±15%情况下应能确保可靠稳定输出。一般工程上变压、整流和滤波后的直流电压可以按下面情况确定:

一是要考虑集成稳压电路一般是要求最小的输入输出压差;二是要考虑桥式整流电路要消耗两个二极管正向导通的压降;三是要留有一定的余量。输出电压过高会增加散热量,过低会在输出低压时不稳定,由此来确定直流电压.

(2)变压器要保留20%以上的电流余量。

2.整流

是将正弦交流电变成脉动直流电,主要利用二极管单向导电原理实现,整流电路可分为半波整流、全波整流和桥式整流。电源多数采用桥式整流电路,桥式整流由4个二极管组成,每个二极管工作时涉及两个参数:一是电流,要满足电源负载电流的需要,由于桥式整流电路中的4个二极管是每两个交替工作,所以,每个二极管的工作电流为负载电流的一半;二是反向耐压,反向电压要大于可能的最大峰值。

(1)电流负载ID>IL;

(2)反向耐压为变压器最高输出的峰值VD>V2。

3.滤波

滤波的作用是将脉动直流滤成含有一定纹波的直流电压,可使用电容、电感等器件,在实际中多使用大容量的电解电容器进行滤波。图中C2和C4为低频滤波电容,可根据实验原理中的有关公式和电网变化情况,设计、计算其电容量和耐压值,选定电容的标称值和耐压值以及电容型号(一般选取几百至几千微法)。

C1和C3为高频滤波电容,用于消除高频自激,以使输出电压更加稳定可靠。通常在0.01μF~0.33μF范围内。

(1)低频滤波电容的耐压值应大于电路中的最高电压,并要留有一定的余量;

(2)低频滤波电容C2选取应满足:C2≥(3~5);RL为负载电阻,T为输入交流电的周期。对于集成稳压后的滤波电容可以适当选用数百微法即可;

(3)工程上低频电容C2也可根据负载电流的值来确定整流后的滤波电容容量,即:C2≥(IL/50mA)×100uF。

4.稳压

经过整流和滤波后的直流电压是一个含有纹波并随着交流电源电压的波动和负载的变化而变化的不稳定的直流电压,电压的不稳定会引起仪器设备工作不稳定,有时甚至无法正常工作。为此在滤波后要加稳压电路,以保障输出电压的平稳性。稳压方式有分立元件组成的稳压电路和集成稳压电路。分立元件组成的稳压电路的稳压方式有串联稳压、并联稳压和开关型稳压等,其中较常用的是串联稳压方式。

(1)串联稳压电路

串联稳压电路工作框图如图2所示,它由采样电路、基准电压电路、比较放大电路和调整电路组成。

(2)集成稳压器

随着集成工艺技术的广泛使用,稳压电路也被集成在一块芯片上,称为三端集成稳压器,它具有使用安全、可靠、方便且价格低的优点。

三端稳压器按输出电压方式可分为四大类:

①固定输出正稳压器7800系列,如7805稳压值为+5V。

②固定输出负稳压器7900系列。

③可调输出正稳压器LM117、LM217、LM317及LM123、LM140、LM138、LM150等。

④可调输出负稳压器LM137、LM237、LM337等。

直流稳压电路的设计范文第2篇

关键词:无级;可调直流电压源;晶振测试

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2015)05-0235-02

The Design of Stepless DC Regulated Power Supply with Crystal Test

ZHENG Qi , SHANG Dong-mei , BAI Yun , AN Jing-yu , HAN Juan

(Xi'an University of Science and Technology,Engineering Training Center, Xi'an 710000, China)

Abstract: As an important part in quality-oriented education of undergraduate education practice, our school is a compulsory training course in science and engineering, electrical and electronic design in this course, with no exception of adjustable regulated power supply is used, as well as the crystal vibration tester. In order to meet the urgent needs of the electrical and electronic training courses in our school, has been developed with the test crystals stepless adjustable dc regulated power supply. This paper mainly introduces the stepless adjustable with the test crystals is main part of dc regulated power supply, working principle and application.

Key words: stepless. adjustable dc voltage source; crystal vibration test

作为理工科类大学生锻炼动手能力的最基础的电工电子实训课程-电工电子设计实训课程是我校面向理工类本科生的必选基础实训课程,覆盖面大、学生多、工作量大。提供给学生选择及要求学生选做的多个实训套件需要的电源不同。为了能够提供实训中不同套件的电源,需要具有可调直流电源。本文所述电源分为无级可调直流稳压电源及测试晶振两个模块。基于该实训课程需要的所购的可调直流稳压电源成本较高,数量有限,故研制该仪器以解决现存问题。该带测试晶振的无级可调直流稳压电源比专门的仪器相比,体积小巧,价格低廉、使用方便。晶振测试可用于51单片机12MHZ晶振的测试,市面上测试晶振的仪器比较少、且价格较高,51单片机的晶振经测试后再焊,可避免焊上坏的导致不易拆除、更换。

1 带测试晶振的无级可调直流稳压电源的主要性能

可调直流稳压电源能够任意输出1.3-36V以内的直流电压,误差达到10%左右;实训所用晶振的测试误判率5%左右。

2 电原理图、方案及设计

2.1 无级可调直流稳压电源模块

电路主要应用了LM317。LM317是美国国家半导体公司的三端可调正稳压器集成电路。其输出电压范围是1.2V-37V,最大负载电流为1.5A。使用时只需外接两个电阻即可设置输出电压。它的线性调整率和负载调整率比标准的稳压器好。LM317过载保护、输出短路保护、安全区保护等多种保护电路。使用输出电容能改变瞬态响应。调整端使用滤波电容能得到比标准三端稳压器高得多的纹波抑制比。典型线性调整率0.01%,典型负载调整率0.1%。80dB纹波抑制比。输出短路保护,过流、过热保护,安全区保护。标准三端晶体管封装。

Vout≈1.25V*(1+R3/R2)

用LM317制作可调稳压电源,常因电位器接触不良使输出电压升高而烧毁负载。如果增加一只三极管(如下图所示),在正常情况下,T1的基极电位为0,T1截止,对电路无影响;而当W1接触不良时,T1的基极电位上升,当升至0.7V时,T1导通,将LM317T的调整端电压降低,输出电压也降低,从而对负载起到保护作用。

2.2 晶振测试模块

主要通过三极管和周边元件构成电路满足“巴克豪森准则”(即公式a),(环路增益不能太大,否则也不起振,)形成震荡,使晶振起振,如果不起振,那么晶振就是坏的,从而鉴别晶振的好坏。

|H(jω0)|R1

2.3 仪器设备硬件设计电原理图

2.3.1晶振测试模块电路原理图如图1所示。 印制板为PCB板1。

2.3.2可调直流电压源模块电原理图如图2所示。印制板为PCB板2。

3 带测试晶振的无级可调直流稳压电源的应用及使用

3.1 带测试晶振的无级可调直流稳压电源的应用

该设备可作为需要直流电压源套件的电源:收音机电源、门铃电源、报警器电源、功放电源、收音机电源、51单片机电源,另外晶振测试模块可用于51单片机晶振测试。

3.2 带测试晶振的无级可调直流稳压电源的使用

输出端正极(红鳄鱼夹)接电路正极,输出端负极(黑鳄鱼夹)接电路负极。将220V的电源线插头插在市电插座上。打开开关1,直流电压源指示灯(红)亮,调节旋钮,输出电压变化,其值显示在电压表头上;另外,打开开关K2,测试晶振,晶振电源指示灯(红)亮,如果晶振是好的,晶振质量绿指示灯亮,否则绿指示灯不亮。

3.3 带测试晶振的无级可调直流稳压电源的调试

调试过程:测试晶振的电源指示灯串联的限流电阻阻值1.8K,原先过于偏低,发光二极管发烫,经过多次试验最终选定合适值为5.1K;无级可调直流电压源原先设计的可调电位器(用于调节输出电压)为4.7K,电压输出偏低,经过调试,最终确定为6.8K,电压输出符合要求;LM317选用铁壳封装,否则温度过高容易高温损坏。

参考文献:

[1] 姜爱婷,杨毅,杨静. 高频开关直流屏的设计[J]. 山东工业技术,2013(12):41-38.

直流稳压电路的设计范文第3篇

【关键词】开关型 直流稳压电源 探究 电路设计

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2016)04-0163-02

在电力电子技术的不断发展与技术革新下,开关型直流稳压电源以其自身的工作表现与其可靠性成为我国电力系统中广泛使用的一种设备。在实际应用中,开关型直流稳压电源自重轻,工作内故障低,工作效率高,且其性价比占优势,并具有功耗晓得良好表现。相比于其他开关型电源,开关型稳压电源应用范围广,竞争力强,特别是对于粒子加速器等电源应用范围来说,开关型稳压电源具有着良好的专业性与稳定性。通过对于开关型稳压电源的技术标准研读与相关的影响因素分析,目前此类技术研究区域人员都是采用移相控制桥来对DC/DC变换小信号模式进行开关型稳压电源的电路设计。

1.对于动态小信号模型的相关阐述

对于动态小信号模型来说,不同的模型选取进而得到的设计结果都会存在差异。所以,在模型的选取上,应根据其实际情况进行分析与配置。对于开关电源来说,其本质是作为一个非线性的控制对象在进行工作,如果要对其进行成功的设计与分析,那么在进行指导建模时,应以近似建立在其稳态时的小信号扰动模型为依据。这一思路一方面取决于小信号扰动模式稳态时具有与设计目标相近的工作表现;另一方面也是由于这样的模型对于大范围扰动时的拟态不够精准,会造成相应结论的误差或偏差。基于此,以小信号扰动模型来进行开关型稳压电源的电路设计是保证其最终设计结果满足设计要求的必要条件。

2.开关型稳压电源的相关性能指标

2.1性能指标之稳定性。通过相关数据与实践结果研究表明,在不同的开关型稳压电源系统设计下,会产生不同程度的鲁棒性。而在暂态特性方面,其表现也会相应提高。但对于直流新稳压电源来说,其系统下对于增益余量的要求是大于或等于40dB,对于相位余量的要求则是大于或等于30dB。

2.2性能指标之瞬间响应指标。当开关电源处于非稳定状态下,由于其所受的干扰,输出量会出现相应的抖动现象。且其抖动量会随着其干扰而变化,当干扰停止时,则其最终也会回到稳定值,基于此,在对开关型稳压电源进行这方面的性能指标确定时,是以过冲幅度与动态恢复时间的长短来衡量其系统的动态特性的。在此定义下,瞬态响应指标内容主要是表现为,如果穿越频率越高,则其系统恢复到动态平衡点的时间就越短,另一方面,系统在干扰情况下所表现的过冲幅度与其相位余量呈相关性。

2.3性能指标之电源精度。在电源精度方面,其控制要求严格,一般其最终的电源精度误差需要控制在设计目标的1‰以下,且其纹波不得在1‰以上。考虑到纹波自身的分类有高频与低频两种,而这两种纹波是基于开头频率表现的。如高频纹波就是受到开头频率的影响,必须通过滤波器进行控制。而低频纹波则是受到电网波动的影响,必须通过系统的负反馈来进行控制。

3.关于开关型稳压电源的电路设计

3.1关于系统下的补偿网络与相关相关设计应用。目前来说,对于开关型直流稳压电源系统来说,其补偿网络是通过PI或者PID的算法来设计与制作的。也就是说,PI调节器的主要作用是对抗高频纹波影响,也就是提高系统对于高频干扰能力的抵抗性,但对于PI调节器来说,动态性差的缺点是无法忽视的。目前来说,实际应用中通过引入微分算法后可以有效提高系统的响应速度。但其缺点也显而易见:一方面是由于零点的大量引入直接造成系统对于高频信号的敏感度大幅度提高,放大器在此情况下,很容易产生堵塞现象;另一方面则是当开关纹波的放大倍数得到增大时,放大器也会随之进入非线性区,这结果只会造成整个系统的不稳定。目前来说,对于这些缺陷是以超前滞后的方法来进行补偿的。

3.2关于开关型稳压电源的电路设计原理

3.2.1理想性技术指标如下:(1)输入交流:电压220V(50―60Hz);(2)输出直流:电压5V,输出电流3A;输入交流电压在180―250V区间变化时,输出电压相对变化量应小于2%;(4)输出电阻R0

3.2.2关于开关型稳压电源的基本工作原理。当线性自流稳压电源处于低频率工作状态下时,那么调整管的工作由于其体积大,则其效率相应低,但当其调整管工作处于开关状态下时,那么其的工作表现就为体积小,效率高。

3.3开关型稳压电源的电路设计探究。从以上论述可以看出,开关型直流稳压电源系统其低功耗的特点是由于晶体管位于开关工作状态下时,对于功率调整管的功耗要求低。特别是对于理想状态下的晶体管来说,当其处于一种截止状态时,晶体管所经过的电流为0,相应的功耗也就为0;另一方面,由于开关型稳压电源系统的穿越频率较高,所以对于电路的动态响应速度得以提高,而且整个系统的响应速度不受低通滤波器的影响;另外,相对于直流470V的电压来说,并环穿越频率远未达到这一频率,输出只为48V,特别是其电压稳定性方式,经过测试,其低频纹波稳定率都在0.996以上,完全满足了设计要求。

4.结语

综上所述,在进行开关型稳压电源的电路设计时,小信号的模型选择是关键点。为了进一步提高开关型稳压电源系统的稳定性,超前滞后网络补偿原理有效地弥补了精度电源的纹波限制高的问题。通过实践也表明,开关型稳压电源的适用性非常强,必将为人们生活提供更好的服务。

参考文献:

[1]汤世俊.浅谈高性能开关型直流稳压电源[J].学术探讨,2011,(10).

[2]樊思丝.高性能开关型直流稳压电源的设计探究[J].企业技术开发,2011,(03).

[3]王滔.开关型稳压电源[J].科技风,2012,(11).

直流稳压电路的设计范文第4篇

关键词:串联稳压电源 Multisum2010 仿真

中图分类号:TP319 文献标识码:A 文章编号:1674-098X(2016)10(a)-0055-02

最为简单的直流稳压电源――稳压管直流稳压电源因为有固定大小限制的输出电流,所以,在很多场合下无法满足用电器要求,又兼电压固定不可调节,无法呈现元件的变化特性,使得应用比较单一。然而将稳压管直流稳压电源当作基础,加以有放大电流作用的晶体管,就可以增加负载电流。同时晶体管的负反馈也可以稳定电路电压,输出电压也可以通过改变反馈而来的参数来达到调节的目的,从而适合更多的条件场合。这样改进过的串联稳压直流电源,操作简单灵活,成本低廉轻便,方便使用人员学习操作,也方便针对电路进行维修检修,减少了工作量,极大地提高了工作效率,也能应用于教学举例分析,极大地扩大了适用受众。而利用Multisum2010电路仿真分析工具,可以对串联直流稳压电源的内部结构进行较为完全详尽的仿真分析。通过模拟相关测量仪器对电源内部不同部位的输入电压的示波器显示模型,输出电压的示波器显示模型,从而计算分析出相关输入电压值、输入电流值、输出电压值、输出电压值等不同参数。进而可在教学中作为验证相关定理定律的有效工具手段。

1 运用Multisum2010对串联型稳压电路的仿真分析

通常实验室运用的是较为简化的串联型直流稳压电源,基本涵盖了最主要的4个部分,即整流部分、滤波部分、串联稳压部分、保护部分。

1.1 整流电路分部

由于Multisum2010电子电路仿真工具能够较好地还原电路实况,也能很好地模拟出给定的不同场景条件,相对所需的反应时间也比较短,所以,我们假定在特定模拟电路不同位置中加入整流二极管4只,(如图1),并将信号输出端用合适的成像示波器模拟出波谱形状,来对不同情况下的假设做出鉴定。

通过仿真分析的谱图可知,无论哪个部位的整流二极管发生开路,都会破坏原有完好的全波整流,形成新的只有一半周期的不完整半波整流,输出电压的大小也会变成原有的一半,仿真模拟得到的结果与实验前的理论预测十分契合,也从侧面证明了该模拟仿真的相似度十分高,可以作为实验数据相信代入计算。

根据如上举例,还可以举一反三探究其他相关问题,比如:若是任意一个位置整流二极管发生短路,又或是两个位置同时发生短路等,均是很有研究探讨价值的问题,在此不作重复演示。

1.2 滤波电路分部

将滤波电容也加入到整流电路中,由于电容器具有储存电荷的特性与容抗特点,会阻碍电压降与电流的改变趋势,所以会使得输出电压的波动幅度减小,相对增大平均输出电压。根据计算公式可知,电阻R值越大,相同电容量的电容器放电时间会更长,放电速度也相对减缓,输出的电压变动曲线也愈发平滑缓和,平均输出电压值也就越大。当R值无穷时,平均输出电压的平方值正好是最大输出电压平方的一半,而滤波电容一定时,负载电阻R阻值越大,同理输出电压曲线也变的平缓,平均值也同比增加。

1.3 串联稳压电路分布与保护电路分部

稳压电路分部是通过晶体管的负反馈作用来削弱输入电压对输出电压波形与平均值的影响。

保护电路分部的作用主要是在电路中串联负载过了底线值时,又或者输出发生短路时,通过限流型保护分部和截流型保护分部,通过截断电路通道,来保护相关电子元件。

2 运用Multisum2010电子电路模拟软件模拟晶体管负反馈串联型直流稳压电源

以电子实验平台EWB为前身的Multisum2010电子电路模拟仿真,最为突出的改进莫过于增加了虚拟仪表读数观察的直观性,与各类电子元件、集成电路芯片库的丰富性,并且拥有较为友好的用户操作界面。使得整个软件的处理信息功能强大却便于操作,是新入门的电子操作设计,电路检修人员增加理解熟悉操作的首选工具。其拥有虚拟仪器涵盖了示波器以及显示分析装置、函数模拟发生器、万用表、波特图图示仪器、针对失真度、谱频、逻辑、网络等必要参数的分析装置等专业仪器,极大地方便了实验要求与设计。

2.1 创建模拟电路

注意:(1)要选择AC_VOLTACE_SOURSE此选项作为交流电源,并且接地。(2)在元件库中选好相应的变压器、桥堆,2只稳压二极管,2只三极管,相应阻值的6只电阻,合适的2只电容,并按照示意图连接好电路,在如图位置放置好选择2只万用表作为测量用表。

2.2 仿真分析负反馈稳压

双击交流电源按键,调整电压值为220 V,频率为50 Hz,将万用表调整到量程为15 V的电压表模式,读取电压值为12 V。另取万用表2,调整量程为15 V的压表,分别连接入电路测得电压值如表1。通过对R4阻值的调整可以发现,其阻值的改变会相应的输出电压值。

当输出电压显示值升高时,同样操作调整相关参数为240 V,50 Hz,改变万用表2位置,进行对相关阻值的测量,并且记下万用表1的电压读数。

当输出电压显示值降低时,同样操作调整相关参数为200 V,50 Hz,改变万用表2位置,进行对相关阻值的测量,并且记下万用表1的电压读数。

通过表1可以看出,当输入电压的波动范围控制在20 V以内的时候,晶体管串联得到的稳压电源能够很好地利用晶体管负反馈的特性,将输出电压维持在固定数值保持不变。

假若调整输入电压以及其他电子元件参数数值,按照同样的电路结构,就可以类似得出不同参数的晶体管,以及晶体管数量安装方式不同时改造的串联型稳恒电压的最大波动幅度和稳定性,可以作为改进串联型稳压电源的深入性探究,具有很大的教学与商业价值。

3 结语

串联型直流稳压电源因其稳恒的输出电压,简单的构造、方便的操作在精密仪器、电子元件领域扮演着不可替代的角色,对它的分析改进也一直是教学之重和企业创新卖点。然而在现阶段,高校大学物理实验室与中小型的企业电子电路实验室依然存在仪器老旧不完备等缺陷,故而不能很好地实现教学目标与设计检修等工作。通过Multisum2010电子电路的模拟分析,能较好地理解掌握相关的原理,也能相对地熟悉操作,从而将串联型稳压电源的作用发挥到更好。提高教学质量并且激发学生兴趣,也能再次促进电子电路设计维修行业的发展。

参考文献

[1] 关朴芳.基于Multisim2001的串联型稳压电源故障仿真[J].常州信息职业技术学院学报,2013(5):23-25.

[2] 黄忠堂.串联型稳压电源的设计[J].广西教育B(中教版),

直流稳压电路的设计范文第5篇

关键词:线性稳压器;开关稳压器;电源

中图分类号:TP303+.3 文献标识码:A 文章编号:1009-3044(2014)11-2656-04

Abstract: Analyzes the basic principles and characteristics of the DC-DC regulator, analyzes and compares the performance and structure of the principle of linear regulator and switching regulator, and provides a variety of important factors in the actual situation of the DC-DC design. Describes to the basic method of power chip selection, and provides a reference for the DC power circuit design.

Key words: linear regulator; switching regulator; power supply

电源的应用无处不在,所有的电子系统都需要恒压电源或者恒流电源的支持。输出直流称为直流电源,由前端直流转后端直流的称为DC-DC变换器,而直流转交流的变换器称为逆变器。所以,DC-DC变换器是用于提供DC电源的电路或模块。

1 DC-DC变换器的主要分类

1.1 线性型(Linear)

线性型变换器:可以从电源向负载连续输送功率的DC-DC变换器。线性型变换器通过在线性区域内运行的晶体管或场效应晶体管(Field Effect Transistor或FET),电路的输入电压中减去超额电压,调节从电源至负载的电流流动,从而产生经过调节的输出电压。

1.2 开关电源型(Switcher)

开关电源型变换器:以脉宽方波的形式从电源向负载输送功率。其特点是开关器件的周期性开通和关断(定频型、变频型、定变混合型)。将原直流电通过脉冲宽度调制PWM(Pulse Width Modulation)或脉冲频率调制PFM(Pulse Frequency Modulation)来控制有效的直流输出。PWM调制稳定电压的方式是,在开关频率不变化的前提下,依靠脉冲宽度的增大或缩小改变占空比例,进而调节电压达到稳定,它核心部件是脉宽调制器。在PFM调制方式运作的时候,脉冲宽度是固定的,开关频率的增加或减少控制了占空比,使得电压保持稳定,脉频调制器是它的核心部件[1]。

2 线性稳压器(Linear Regulator)

线性稳压器如78XX系列三端稳压器等,是一种无需使用开关元件而能提供恒定电压恒定电流输出的DC-DC转换器。

2.1 线性稳压器的工作原理

线性稳压器和输出阻抗形成了一个分压网络。线性稳压器等效于受控的可变电阻器,可根据输出负载自行调解以保持一个稳定的输出。输出电压通过连接到误差放大器反相输入端的分压电阻采样,误差放大器的同相输入端连接到一个参考电压Vref。误差放大器试图使其两端输入相等2.2 线性稳压器的类型

线性稳压器中的元件是双极型晶体管或场效应管MOSFET。双极型线性稳压器具有较高的压降电压,并能支持较高的输入电压并拥有更好的瞬态响应。MOSFET低压差线性稳压器LDO(Low Dropout Regulator)能支持非常低的压降,低静态电流,改善噪声性能和低电源抑制。为使线性稳压器处在正常工作状态之下,Vin和Vout之间最小压差称为压降电压(Drop-out Voltage),不同的稳压器结构会产生不同的压降电压,这也是几种线性稳压器的最大区别。如LM340和LM317这些稳压器使用NPN达林顿管,称其为NPN 稳压器(NPN Regulator)。然而低压差(Low-dropout)稳压器(LDO)和准LDO稳压器(Quasi-LDO)为新型电源设计提供了更高性能[2]。

2.3 LDO的应用选择

开关稳压器是一种采用开关组件与能量存贮部件(电容器和感应器)一起输送功率的DC-DC转换器,它提高了电源转换效率和设计灵活性。开关稳压器主要分为以下两类:电感储能开关稳压器和无电感型开关稳压器(充电泵)。

3.1 电感储能开关稳压器的工作原理

电感用于储存能量及向负载释放储能,电感在开关管开通状态下从Vg获得能量。

4 DC-DC变换器的应用选择

5 结论

通过分析比较最常见的两类三种直流稳压电源,了解了直流稳压电源的结构及构成原理,提出了电源电路环路控制的设计方案,为直流稳压电路正确合理的设计提供了参考方案。根据不同的实际设计需要和参数选用不同类型直流稳压电源,有利于整个系统平稳安全的工作。

参考文献:

[1] 杨建伟.谈开关电源的原理和发展趋势[J].科技与企业,2012(22):359.

[2] Tulte D.Low-V in buck regulator toggles fast-switching/very low-dropout modes[J]. Electronic Design,2005,53(21):27.

[3] Oliver N. Charge pump versus boost converter the great battle between white LED driver solutions[J].Global Electronics China.2005(9):49-50.

[4] 王学智.开关电源的原理和发展趋势[J].黑龙江科技信息,2007(11):21.

[5] 严惠琼,都思丹.新型National系列半导体电源芯片分析综述[J].南京大学学报,2007(43):35-46.