首页 > 文章中心 > 医疗人工智能方案

医疗人工智能方案

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇医疗人工智能方案范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

医疗人工智能方案

医疗人工智能方案范文第1篇

人工智能到底神在哪里?

张海涛:的确,2015~2016一年多的时间里,现代医学发生了转折性的变化。大数据、精准医疗人工智能这些成为医疗领域的“爆款”词汇。智能医疗已经不是从科幻片中看到,是真实世界的真实事件。人工智能有多神,要回答这个问题,得先了解医疗的人工智能完成了哪些了不起的事。

第一是认知计算,人工智能可以24小时不间断的读取海量文献,具备最全面的基础知识和最新进展,这属于认知,很好理解。但重点在于智能要做到的不仅是录入,而是读懂,将海量外部信息转化为自身知识和结论。比如从文献中获取了他汀在某个数值下使用会减少冠心病发生,它会给出相应治疗建议,这是计算,即学习能力。人工智能能快速将患者病情的相关信息搜索一遍,通过统计运算给出最个性最优化的治疗方案。再拿现有的可穿戴设备举例,虽然它能监测人的心率运动量等,但无法给出进一步建议,未来的人工智是能根据不同患者的状况给出不同的解决方案的,告诉你食物摄入不足还是过多,运动量还需多少达标等等。

第二是深度学习,等同于人类直觉。打个比方,我们让机器人对某个物品做出鉴别,它需要根据这个物品的大小、重量及其他特定属性做出判断并得出结论。而具备深度学习的智能机器可以不需通过数据和逻辑得出结论,当它看到一位急症患者,会根据患者的痛苦面容、喘气速度、所选医院和科室等,迅速反应出他是急性左心衰。这种推测不需要输入患者信息,反应快,但不一定准确。

第三是智能数据。以前讲到的数据其实是小数据,我们对小数据进行抽样研究去寻找规律,但这种推理只能预测大概率事件,无法认识小概率事件。例如他汀输注后的横纹肌溶解是小概率事件,如果发病率为十万分之一,我们很难收据足够样本进行研究分析。相反,如果通过智能录入一千万例患者,按比例将有一百例患者,假设一百例都出现在北京,那么可认为发病与地域相关,如果其中九成是男性则可认为疾病与性别有关,如果其中又有九成是抽烟者,说明疾病与烟草有关。这对我们定位和救治小概率事件中的人群有重大意义。通过这种方式发现小概率事件的规律,可以理解为将架构师的脑袋放在大数据库中,可使我们的认识更接近真实世界。另一方面,通过大数据发现规律可以更好的预测未来。再比如,人工智能根据患者身高体重、血糖血脂以及个人生活方式进食方式等预测他在某个时间可能发生低血糖,可以在此之前提醒患者补充糖类来预防恶性事件发生。

用于心脏疾病的人工智能可以实现什么?

张海涛:现在来看至少能实现两方面的问题。我们知道心脏病患者在出院后要满足用药达标和生活方式达标,如果患者仅有高血压,用药达标是较容易实现的,如果患者在高血压基础上还合并高血脂、消化道出血,或合并前列腺问题,有阑尾手术史、脑梗史,有牙科问题等,这时需要综合各专科的知识来做决策。但人脑的知识储备是远远不足的,人工智能却可具备最全面正确的知识和诊疗标准,可以指导医生临床用药。另外,它可以连续观察患者出院后的运动状况,根据其身高体重心律血压用药状况等给予运动方式建议,并做出评估。

在6月17-19日举办的第五届中国心脏重症大会上,人工智能作为会议的亮点之一会有很多精彩的报告。可以说,心脏重症领域要正式“触电”大数据、智能医疗、精准医疗,去拥抱新思潮、新设备、新话题和新模式,非常希望届时与更多医生探讨这一话题。

人工智能可以治病,医生做什么呢?

张海涛:智能医生只能为数字人看病。什么是数字人呢?从某种意义上,人具有生物人和数字人两种基本属性,血型、身高、体重等构成数字人。人工智能可像人一样读文献,超过人的精力,24小时不间断的读录文献,具备最全面的医学基础知识和最新进展,并且具备超强的运算能力,可快速将患者信息统计运算,给出最个体优化的治疗方案,但它无法与患者进行情感交流。说到底,医学是文明的产物,医生不是修理工,我们的医疗过程会涉及到感情、文化、患者意愿等,这是机器无法复制的。未来,人工智能是医生的助手,为医生的决策提供参考,医生根据患者意愿、经济能力、依从性等综合考量并做出决定。

医生在临床决策出现冲突时怎么办?医生的权威性会受到挑战吗?

张海涛:这是个很关键的问题。首先,不但人与人工智能间会遇到决策不一致,人工智能本身也会遇到,它能录入巨大数据,其中必然有观点相悖的信息,但它比人更理性,会一遍遍学习从而得出最优建议,而人类在治疗中感性成分更多。从另外的角度想想,其实没有一种方式是非常完美的,任何一种方式都有利弊,所谓的决策的冲突和矛盾属于真实现象,是允许存在的。

医生的决策与人工智能发生冲突时呢?通常觉得,医生对同一种疾病应该有相同的诊断、相似治疗方案,实际不同医生在同一疾病的诊疗方案会相差很大,这受医生教育、利益、地域文化的影响。比如女性更年期后服用雌激素的比例在美国是28%,在中国不到7%。中国女性的观念倾向于不用,因为服用雌激素可能引发肿瘤,而美国人对生活质量的要求高,她会选择使用。医生与智能出现决策冲突并不奇怪,医生需要根据不同需求确定医嘱,无关对错。所以,医生仍需查文献、不断学习,需要综合判断,智能给出的只是参考,它只是医生的助手或患者的顾问,绝不会取代。

未来,手术也可以被机器取代吗?

张海涛:手术操作其实是创造“艺术”的过程,需要更多层面的知识和技能,而且机器在精细操作方面远不如人类手指灵活,它的优势是运算速度和自我学习能力。虽然现在达芬奇机器人下的手术在很多医院开展,但真正实现机器人做手术还很长远。

如果人工智能能可实现基本医疗任务,患者来院的刚需是什么?

张海涛:患者需要医生的建议以及最终的处方权。人工智能得出的结论只是一个参考,医生可信可不信,如果它提供的数据比医生知识所涵盖的要准确,医生要考虑依从。

医疗人工智能方案范文第2篇

古希腊时期,数字的演绎化有了实质性的进展。数字化的发展一直伴随着人类,但是这种颠覆在30多年前就开始改变了。

随着人工智能技术的日益成熟,数字化已经可以在公共健康,以及众多医疗领域提供服务。例如,在医学影像识别方面,它可以帮助医生更迅速、准确地读取影像;在临床诊断辅助方面,它可以应用于疾病的早期筛查、诊断和手术风险评估,包括在药物研发方面,解决药品研发周期过长等多方面的问题。

从第一部留声机的诞生开始,数字化的颠覆就一直伴随着我们人类社会的进步。人工智能的远景早在1950年就已被图灵提出。人工智慧的定义诞生则是在1956年,由Dartmouth College的一些专家共同提出。人工智慧在20世纪70年代受到打击之后,开始出现新的研究方法。分子生物学已进化到信息科学,出现了新科学――计算生物学和生物信息学。这使统计科学家在医疗健康领域有了用武之地,尤其是微阵列技术创造了新颖的统计学,激发了许多新的生物统计学研究。像是专家系统把问题限定在一个小范围的领域,结合统计、概率、信息理论等方法,直到深度学习技术,以及类神经网络有了新的发展,AI才重新受到了关注。

数字医疗产业的环境

从现状来看,由于公共医疗管理系统的不完善,医疗成本高、管道少、覆盖面窄等问题困扰着大众民生。尤其以“效率较低的医疗体系、品质欠佳的医疗服务、看病难且贵的就医现状”为代表的医疗问题成为社会关注的主要焦点。大医院人满为患,社区医院门可罗雀,病人就诊手续繁琐等问题都是由于医疗信息不畅、医疗资源两极化、医疗监督机制不全等原因导致的,这些问题已经成为影响社会和谐发展的重要因素。目前的医改目标是县域就诊率达到90%,大病不出县,但是实现起来难度也很大。因为医生的时间是有限的,通过远程医疗解决区域分布不均的期盼,也同样会在医生的时间花费上受到限制,所以核心的问题是优质的医生资源不足。

自国家陆续出台了各项医改政策,基层首诊、双向转诊、分级诊疗、资源下沉等便成为了热门话题。各地区也都积极响应,组建“医联体”。我们迫切需要建立一套智慧的医疗健康的平台体系,使患者用较短的等疗时间、支付基本的医疗费用,就可以享受安全、便利、优质的诊疗服务,从根本上解决“看病难、看病贵”的问题,真正做到“人人健康,健康人人”。

医生资源在全世界范围内都仍属于稀缺资源,这种供求关系在一定程度上决定了病患“看病难”的问题,而我国医疗长期存在“重医疗,轻预防,重城市,轻农村,重三甲,轻社区卫生”的现象。从居民自身来看,过多依赖大型医院,从医院角度来看,这种过度依赖加重了就医困难的问题,“一号难求”的现象频发。解决基层医疗资源缺乏的核心就在于给基层医疗机构“赋能”,用人工智能给基层医院“院士级看病的本事”。通俗来讲,把一个院士的看病本事,放到一个笔记本电脑里,带到基层医院,这就是人工智能追求的境界和需要解决的实际问题。

精准医疗的实现需要人与技术的结合

以精准医疗为主的智慧型医院是2015年在美国诞生的思路。智慧型医院从医疗健康产业的整体角度,提出融入更多人工智慧和传感技术等高科技,使医疗服务走向真正意义的智慧化,推动医疗事业的繁荣发展。利用人工智慧、大数据分析的融合和移动医疗等新技术,结合现代化医院的管理流程,逐步形成智能化的全面医疗解决方案。智慧医疗开始走进我们寻常百姓的生活。

从概念上来讲, 以基层医疗健康为出发点的智慧医疗包含了智慧医院系统、区域卫生系统,以及家庭健康系统这三部分。从流程管理角度,基层医疗以如何让病患可以便捷快速地预约挂号为起点。智慧医院必须经过前沿科技应用对医疗机构信息化的全面创新的过程。从狭义上来说,智慧医院可以是基于互联网科技的医院,在数字化医院建设的基A上,创新性地将现代移动终端作为切入点,将移动互联网特性充分应用到就医流程中。

AI是让人实现超越而不是制造超人

AI对医疗领域和产业的改造是具有颠覆性的,它不仅是一种技术创新,更是在生产力上为传统医疗行业带来变革。AI作为一种技术方法,大规模地用更智能的系统推动更好的决策,也是最近几年才发生的事情。直到今天,由于我们解决了以前很多未能解决的问题,才将医疗AI推向了一个新的高度。除了提高医生的工作效率外,AI还能作为辅助手段,提高诊断准确率,使精准医疗成为可能。

近年来,在医学领域开始导入人工智能数字挖掘与机器学习的技术来筛选有效的医疗信息。

其中,“AI+医学影像”就是关键性的一步。医学影像天生适合互联网+大数据+人工智能。从数量上讲,超过80%的医疗数据来自医学影像数据,优质、大量的数据积累、高性能计算环境和优化的深度学习方法,三者资源配齐,就会构建不断提高的状态模型,这正是人工智能的魅力所在。利用三者的关联,可以大大提高医学诊疗效率,并实现精准医疗。图像智能识别更可以减轻医生的工作量,这就很好地解决了基层优质医生资源不足的问题。

医学影像领域调查数据显示,无论是在国内还是在国外,放射科医师的数量增长速度远不及影像数据的增长速度,也就是说医师的数量远达不到阅片的需求量。

就美国与中国对比来看,美国的人工影像阅片误诊人数为1200万/年,而在中国则达到了5700万/年。在中国,误诊率高且主要发生在基层,这也更好地说明,人口基数巨大的中国,医学影像业务更需要人工智能技术的支持,以此来提升基层的诊断质量与效率。

数字科技推动基层医疗发展

总而言之,无论是对患者、医师还是医院而言,数字健康的运营平台需要把智能、供应链、财务运营和人才管理有机整合起来。数字健康管理平台不仅能够让患者更快速地完成健康检查,还能获得更精准的诊断建议与个性化治疗方案。对医师来说则削减了读片时间,降低了误诊概率,根据人工智能的辅助诊断还能提高诊断质量。而对医院来说,采用数字健康管理平台不仅降低了医院成本,还能够建立一个多元数据库,这是对分级诊疗和远程诊疗的一大技术性帮助,让医院更好地响应国家政策,真正有效地做到“资源下沉”。

医疗人工智能方案范文第3篇

“人工智能真的无所不能吗?”

“人工智能长得和人一样吗?”

“我能和人工智能谈恋爱吗?”

去年3月以来,借助AlphaGo 4:1战胜韩国名将李世石九段的东风,人工智能席卷了全球的注意力。

不过,时至今日,面对人工智能,公众最常见的表情依然是好奇、迷茫或讶异。我们真的知道什么是人工智能吗?我们真的准备好迎接人工智能浪潮了吗?

AI来袭!

近日,因争夺搜索引擎话语权而有过过节的两位大佬李彦宏和李开复又“杠”上了,这一次,他们争夺的焦点是人工智能的舆论话语权。

不是冤家不聚头。4月下旬,李彦宏的著作《智能革命:迎接人工智能时代的社会、经济与文化变革》正式出版。紧接着,5月初,李开复的《人工智能》一书开始签售。李彦宏到处宣讲,“互联网的下一幕就是人工智能。”李开复更加干脆,直接说,“我不是李开复,我是人工智能。”

虽然目标不同,但其实两人现阶段做的是同一件事――为人工智能时代的到来摇旗呐喊。

“人工智能来了!”

这句话对不同的人群有着完全不同的意义。计算机科学家将之誉为“第四次技术革命”;社会学家、经济学家将之视为已经或即将对人类经济结构、就业环境发起挑战的“洪荒之力”;商业巨头、创业精英、科幻作家、影视编导们则乐于肆无忌惮地展开想象,将之渲染成为人类未来的天堂或地狱。

不过,对于绝大多数不了解技术细节,或不具备丰富想象力的普通人而言,知道的人多,了解的人少。

什么是人工智能?打开百度百科,人们可以看到这样一段话:人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它是计算机科学的一个分支,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。它从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

对于普罗大众而言,百度百科的解释听起来有点过于专业,相比较而言,在人工智能领域的经典教材、出版于2013年的《人工智能:一种现代的方法(第3版)》中,著名人工智能专家罗素和诺威格给出的定义则较为通俗易懂,他们从四个方面对人工智能进行了定义,即:能够像人一样思考、像人一样行动、合理地思考、合理地行动的机器。

人工智能其实不是一个新概念,日前,首都图书馆刚刚举行了一场关于人工智能的科普讲座。据北京师范大学系统科学学院副院长韩战钢介绍,人工智能这一概念正式提出是在1956年的达特摩斯学会上,至今已有60多年的时间。

纵观这60多年,人工智能经历了两次红利期。

上世纪60年代,人工智能迎来了第一个红利期,当时的科学家们自信并且疯狂,“二十年内,机器将能完成人能做到的一切工作”成为当时科学界的主流声音。

上世纪90年代人工智能迎来第二个红利期,标志性事件是IBM的“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫,当时造成的影响丝毫不亚于今天AlphaGo的围棋大战。

当下或是人工智能的又一个红利期。一方面,图像识别、深度学习等人工核心算法日渐成熟,另一方面,人工智能研究走出实验室,科技公司开始成为人工智能的主要推动者。

更重要的是,资本开始对人工智能表现出了前所未有的青睐。据有关机构数据统计,2016年底-2017年初,国内各大机构在关于今年投资方向的98篇讨论中,人工智能的提及次数占48次,是第二位“文化娱乐”的1.8倍。市场火热程度毋庸置疑。 好奇 去年3月以来,借助AlphaGo 4:1战胜韩国名将李世石九段的东风,人工智能席卷了全球的注意力。不过,时至今日,面对人工智能,公众最常见的表情依然是好奇、迷茫或讶异。

不只是炫技

看到“人工智能”这几个字,可能有的人立马会想到围棋、神经网络、深度学习等名词,也有的人会想到大学里的人脸识别、立体视觉建模等研究项目,还有的人会想到终结者、外太空等高大上的内容。但可能98%的人都会有这样的疑问:除了下棋,这些东西研究了到底对我有什么实际用途?

事实上,“人工智能”已经从很多方面对我们的日常生活产生影响。通过梳理乌镇智库、阿里云研究中心、艾媒咨询、麦肯锡等多家机构近期的人工智能专题报告,记者发现,目前人工智能发展较为火热的主要包括以下几个领域:

首先,个人助手。这是目前最为普及的一个领域。如果要诠释这个,看一遍电影《Her》就可以了,其中的人工智能操作系统萨曼莎不仅可以帮助主人公快速处理各种邮件、文件等工作,还能像朋友一样与之互动和交流。

现实中,这样的个人助手也正在在走入我们的生活中,如苹果的Siri、微软的Cortana 以及谷歌的Google Now,国内也有科大讯飞的灵犀、图灵的虫洞语音助手等,这些语音助手现在一般是存在于PC或手机之中,近年随着服务机器人的发展,它们开始有了新的载体。而机器人除了有语音功能外,还具备自主行动的能力,因此有望在其他方面帮助人类。

其次,无人驾驶。谷歌、特斯拉、苹果甚至是宝马,它们目前都在开发自己的无人驾驶汽车,谷歌的车已经在公司附近的山景城测试了无数次,虽然交通事故也发生过十多起,不过基本上都属于小摩擦,尚未造成严重损失。关于这些无人车何时能正式大量地上路载人,业内普遍的说法是2020年,目前它们在物体识别以及交通规则上仍在学习中。

再次,健康医疗。在AlphaGo与李世石比赛前,谷歌就已宣布这个创造出AlphaGo的Google DeepMind实验室将进军医疗技术领域。他们成立了DeepMind Health团队,与英国伦敦帝国理工学院和伦敦皇家自由医院展开合作。他们还推出了一款名为 Streams的移动端应用程序,医疗人员可以利用Streams更快地观察到医疗结果。

第四,金融投顾。“人工智能”的风潮在各行业涌动,金融领域也不例外,“智能投顾”成为金融科技的新宠儿,从华尔街投行到国内金融科技创业公司,纷纷涉足,给自己贴上“智能投顾”的时髦标签。 拥抱 虽然仍存诸多争议,但随着技术的进步,越来越多的人开始相信,人工智能就像很多大师所讲的,未来,将和水和电一样无处不在。

另外,艺术创作一直是人类精神活动的最高级形式,自古以来,人们认为只有人类的智慧才能创作出艺术作品,玄而又玄的艺术风格尤为深奥。但近些年来,人工智能的发展正对艺术创作产生了一些很微妙的影响。去年3月份,伦敦艺术家Memo Akten和谷歌人工智能共同完成的一组GCHQ(英国通信总部的缩写)画作拍出了8000美元的高价;同年9月,索尼音乐的计算机科学研究实验室了两首完全由人工智能作曲的流行歌曲《Daddy's Car》和《The Ballad of Mr Shadow》。而最新消息显示,除了画画、作曲,人工智能创作的第一部诗集《阳光失了玻璃窗》也已于近日正式面市。

虽然仍存诸多争议,但随着技术的进步,越来越多的人开始相信,人工智能就像很多大师所讲的,未来,将和水和电一样无处不在。

中国不容错失的战略机遇

在多家中国科技巨头积极研发的推动下,中国已成为全球人工智能的发展中心之一。众多的人口和完整的产业结构给中国提供了创造海量数据和广阔市场的潜力。随着老龄化的加速,中国提升生产力的要求愈l迫切,因此人工智能技术的运用对中国未来的经济发展至关重要。

据麦肯锡近期的《中国人工智能的未来之路》报告书显示,中国与美国是当今世界人工智能研发领域的领头羊。仅在2015年,两国在学术期刊上发表的相关论文合计近1万份,而英国、印度、德国和日本发表的学术研究文章总和也只相当于其一半。

并且,中国的人工智能发展多由科技企业推动引领。得益于大量的搜索数据和丰富的产品线,一些互联网企业走在了自然语言处理、图像和语音识别等技术前沿。这些技术被整合应用于新产品中,如自动化私人助理、自动驾驶汽车等。

麦肯锡表示,中国有充足的理由对其在人工智能领域的潜力感到乐观。庞大的人口基数产生的海量数据正是“训练”人工智能系统的前提条件。“范围经济”也是中国的优势所在,广泛的行业分布为人工智能的应用提供了广阔市场。

自18世纪工业革命以来,每一次技术革命都重塑着全球竞争格局。中国曾经错失了前几次科技革命的历史机遇,这一次,人工智能是中国绝不能错失的战略机遇。麦肯锡认为,完成中国制造业“从汗水驱动到创新驱动”“从齿轮驱动到智能驱动”的升级,人工智能是中国实现转型升级的战略机遇之一。

对此政府部门已经开始行动,给予了有力的政策支持。3月5日上午,国务院总理发表2017政府工作报告,指出要加快培育壮大包括人工智能在内的新兴产业,“人工智能”也首次被写入了全国政府工作报告。而在发改委印发的《“互联网+”人工智能三年行动实施方案》中,也已明确了我国人工智能的总体思路、目标与主要任务。该方案指出,到2018年,将在重点领域培育若干全球领先的人工智能骨干企业,初步建成基础坚实、创新活跃、开放协作、绿色安全的人工智能产业生态,形成千亿级的人工智能市场应用规模。

再加上之前科技部新闻,“科技创新2030―重大项目”或将新增“人工智能2.0”,中国AI人最好的时代已经到来。

然而,目前,我国发展人工智能还存在一些短板,急需补齐。麦肯锡在研究报告中将中国人工智能发展瓶颈归为了数据、算法、计算力三大问题。

数据瓶颈。正如人类通过食物得到能量,人工智能也不能在没有稳定的数据来源的情况下运行。这些系统必须要有大量的数据,以供它们“训练”,不断改进和完善产出的结果。在数据方面,存在几个问题可能阻碍中国的AI发展。首先,中国的大技术公司通过它们专有的平台收集数据,中国在创建数据友好的生态系统方面落后于美国,缺少统一的标准和跨平台的共享。第二,世界各国都发现,开放政府数据有助于私营部门的创新,但中国的公共部门开放的数据相对较少。最后,限制跨国的数据流动也使中国处于全球合作中的不利地位。

算法瓶颈。得益于全球的开源平台,中国企业能够快速复制其他地方开发的最先进的算法。目前,中国的研究者在开发用于语音识别和定向广告的算法方面已经取得突破。然而,中国在基础研究方面落后于美国和英国。一个主要原因是人才短缺,招纳人才对中国的AI发展至关重要。据悉,美国超过一半的数据科学家有10多年的工作经验,而在中国,经验不足5年的研究人员高达40%。

计算力瓶颈。计算力不是中国人工智能商业发展直接的瓶颈。随着微处理在全球市场得到广泛使用,计算能力已经成为可以轻松获得的东西。但中国仍然不能忽视发展自己的先进半导体、微处理器和高性能计算技术的重要性。计算能力是AI的基础之一,具有战略上的重要性。中国历来严重依赖国外的微芯片供应商。对某些类型的高价值半导体,中国几乎完全依赖进口。但是,在2015年,美国政府禁止全球三大芯片供应商Intel、Nvidia和AMD向中国政府销售高端超级计算机芯片。对核心技术供应实现更强的控制有助于提高中国在未来更广泛地部署人工智能系统的能力。

未雨绸缪“全民基本收入”争议中前行

人工智能是中国加速生产力发展的一个重要机遇,也是解决人口老龄化的一个关键。虽然人工智能的崛起非常有可能会创造出新的产品和服务,进而催生出新的职业和生意。正如几十年前,没人可以想象,现在竟然有大量的工作与互联网经济有关一样,人工智能也有类似的变革效应。但是,目前,可预见的现实问题更多的还是就业替代问题。

据李开复估算,10-15年后,全球将有50%的就业被人工智能所取代,包括翻译、记者、助理、保安、司机、销售、客服、交易员、会计、保姆等工作。而中国这一问题将更加严峻。

对此,李开复也提出了自己的一套“解决方案”。首先,他建议所有大学生努力在所学领域垂直纵深发展,深到人工智能无法取代;其次,他认为跨领域发展将成为一种趋势,因为目前人工智能在单领域、大数据方面具有天然优势,但对于需要跨领域的、高深的、需要深度思考的内容,未来十年人工智能也无法完成;再次,由于计算机在艺术、幽默、电影和创造等“感性”领域的“无能”,文科涉及的领域或许会迎来新的发展机会;最后,也是最重要的是,我们需要做好未来走向服务业的准备。

“所谓的服务业,指的是涉及人与人之间的交流,人与人之间的同理心,以及如何自己更有爱、更受欢迎的行业……”李开复强调,“这其实是确保人类对人工智能保有竞争力的一种方法。”

这一问题也引起了经济学界、社会学界的高度关注,多位专家学者呼吁,政策制定者需要充分考虑人工智能可能带来的对劳动力市场的潜在破坏,并为此做好准备。

5月7日,在“中国经济真问题――‘中国的坎’研讨会”上,在谈论中国中等收入陷阱问题时,国务院发展研究中心研究员魏加宁特别强调,“科技创新本身也是拉大收入差距的一个重要因素。尤其是现在人工智能技术、机器人快速发展以后,很多人将会面临失业的问题。”

针对这一问题,目前一些国家已经开始未雨绸缪,其中芬兰的“全民基本收入”方案尤其值得关注。

近年来,“全民基本收入”方案在全球尤其是欧洲进入一些国家的政治议程,一个重要背景就是生产自动化的快速发展,以及失业率在全球金融危机时期居高不下。人工智能近年来的突破性发展,及其在可见未来对生产自动化的强有力推动,使得人们越来越忧虑未来失业率继续攀升的前景。众多研究人工智能及其社会影响的专家,都将“全民基本收入”视为应对人工智能时代就业状况的主要策略之一。

“全民基本收入”方案的关键是,在一国或一个地区之内,所有公民无论贫富,无差别地获得数量相同的基本收入。2016年6月底,芬兰政府宣布就“全民基本收入计划”进行试验。2017年1月,芬兰正式给2000名随机抽选的民众发放每月560欧元的“基本收入”。芬兰政府的试验计划是目前欧洲国家在这一领域走得最远的。

医疗人工智能方案范文第4篇

英特尔公司数据中心事业部副总裁、数据中心解决方案部总经理Jason Waxman在近日举行的英特尔人工智能论坛上表示:“英特尔希望推动中国融入人工智能时代,在加速人工智能融合发展的道路上,注重自动驾驶、精准医疗、智能工厂等技术创新和应用进程,使人工智能更快惠及大众。”

近日,英特尔宣布将推出业内全面领先的人工智能产品组合――英特尔Nervana平台。该产品组合旨在提高人工智能应用的速度和易用性,是构建高度优化的人工智能解决方案的绝佳基础,可帮助更多的数据专家在基于行业标准的技术上解决挑战。

据悉,英特尔Nervana平台产品组合包括英特尔至强处理器、英特尔至强融核处理器、为工作负载优化的加速器如FPGA以及从Nervana收购的技术创新。相较于前一代处理器,下一代英特尔至强融核处理器(代为Knights Mill)的深度学习性能可提高4倍,计划于2017年上市。此外,英特尔宣布现已向特定云服务提供商合作伙伴提供下一代英特尔至强处理器(代号为Skylake)的初期版本,该处理器采用了英特尔高级矢量指令集AVX-512集成加速技术,将极大增强机器学习工作负载的推理性能。

英特尔还公布了如何将Nervana的突破性技术集成至现有产品路线图的更多细节。英特尔将于2017年上半年测试第一款芯片(代号为Lake Crest),并在下半年向主要客户发售。此外,英特尔还在路线图中增加了一款新产品(代号为Knights Crest),它将Nervana创新技术与业界领先的英特尔至强处理器紧密集成。此外,Lake Crest处理器专门针对神经网络进行了优化,可为深度学习提供极高性能,并可通过高速互联网络提供前所未有的计算密度。

医疗人工智能方案范文第5篇

[关键词]区块链;大数据;医疗保健;人工智能

区块链是一个分布式数据库系统,充当存储和管理事务的“开放式分类账”。它可以创建数字化的交易块,而无须集中控制。区块链有三个关键部分:计算机网络、网络协议和共识机制。网络中的每台计算机都会记录分类账的副本,并且所做的任何更改都必须通过算法检查以确保建议的更改显示有效。通过网络节点授权批准后,新交易块将添加到数据链中。区块链技术相对现有的市场商业体系,具有巨大的应用优势。首先,区块链消除了对第三方交易清算的需求,节省了时间和金钱。其次,增加了网络的责任性和安全性,因为所有参与者都是已知和可信的。区块链不仅仅是技术和金融行业的宠儿,现在已经深入到经济生活的方方面面。医疗保健系统需要处理有关个人的私密数据,区块链可帮助确保患者数据的安全性、实时性和准确性。

1区块链技术的广泛安全性

2019年是区块链诞生10周年,以物联网(IoT)、第五代移动通信技术(5G)、人工智能(AI)、区块链(Block-chain)等为代表的智能科技将极大地拓展智能商业的边界,成为工业互联网时代的推动力。区块链带来的最大价值则是在万物互联的时代,用技术重构信任机制。这将对未来的金融和商业产生深刻影响。由于区块链上文件系统中固有的加密技术,区块链上的数据本质上是高度安全的。这意味着区块链非常适合存储高度敏感的个人数据,这些数据经过精心处理后,可以为生活带来许多的价值和便利。日常生活中,如果使用淘宝或亚马逊网站搜索引擎,它们会推荐我们想要购买的东西。当然,输入这些系统的数据是私密的。通常处理这些私人数据的企业必须投入大量资金来满足数据安全方面的标准。即便如此,大规模的个人数据泄露事件越来越常见。区块链数据库以加密状态保存,这意味着只要私钥安全,链上的所有数据就安全。AI在安全方面也有很多可以与区块链技术融合的领域。众所周知,数据处理过程中的任何一部分暴露了未加密数据,就意味着安全风险的存在。AI的发展使其网络算法能够在数据仍处于加密状态时进行处理或操作。

2医疗健康大数据与人工智能

当前大数据和人工智能的技术与医疗领域的结合日益紧密,使得各个国家的整体医疗技术水平在不断提高。我国已经开始制定相关政策,鼓励健康医疗健康大数据和AI发展。组织专家认证数据融合安全计算的技术可行性。各地政府明确机制,支持地方医院促进医疗AI发展。这些都为医疗AI数据创新提供了发展机遇。在互联网后时代,互联网价值的显著体现就是区块链技术。有了区块链技术,人们可以定义所有的资产,并且创建各式各样的去中心化应用,其中涉及物联网、云计算、大数据、互联网、医疗、保险以及银行等。由于区块链具有每个单个事务的数据库记录,因此它为机构提供了一种数据实时挖掘模式的方法。从另一个角度来看,区块链极大地提高了数据分析的透明度。与以前的算法不同,区块链的设计拒绝任何无法验证且被认为可疑的输入。因此,建立在区块链技术上的大数据分析算法只需处理完全透明的数据。这样意味着数据质量的优化,提高了AI分析计算的效率。

3区块链技术与人工智能大数据处理技术

自互联网技术出现以来,医疗行业一直在大量涌入数据。随着临床数据量的不断增加,医疗健康领域的区块链商业智能已成为巨大的需求。人工智能大数据处理技术是指利用互联网平台,通过AI技术简化某些过程,而无须人为干预来实现预期的数据处理方法。在医疗保健领域,AI技术可以融入广泛的治疗保健流程中,从而减少管理工作量,消除资金浪费,增强信息交换,并能提供实时数据分析以及患者监控。医疗健康数据AI技术,除了能减少医疗保健组织必须处理的大量数据处理工作外,还有助于提高运营效率和降低人员成本。区块链技术与AI大数据处理技术的结合将会使医疗健康机构获得巨大的效益。具体分析如下。

3.1改善医疗机构治疗水平

医疗保健组织依靠数字工具和技术来支持他们的日常运营,最终目标是改善医疗水平。建立在互联网上的区块链技术,提供完善的区块链商业智能服务,与医疗保健数据AI相结合。通过使用AI工具引入预测分析元素,确定患者生命安全、检查等待时间、满意度评估、疾病和复发风险、潜在治疗成本、再入院可能性等参数,从而系统自动给出患者护理方案,计算平均住院时间,帮助医疗保健专业人员对患者诊断做出明智的决定。

3.2更好分配资源

目前医疗机构以电子方式存储患者记录几乎已成为常态。医疗工作者可以从集中存储的患者数据库中精准挑选出相关的信息,以促进更好地预测和可操作的诊断方案。将医疗保健数据AI与区块链商业智能相结合的另一个关键优势是,通过跨部门分配基于需求的精确数据来更好地管理资源,从而减少浪费。例如,由于预测分析可以帮助确定患者何时准备好出院,因此它还有助于更好地分配病床、药品和员工等资源,以帮助减少浪费。区块链商业智能工具能够从健康应用程序以及可穿戴设备(如计步器和健身带)访问可下载数据。这使医疗保健专家能够利用互联网准确跟踪健康指标和信息。这些数据对于医疗保健从业者了解患者的生活方式和病史非常有用。

3.3促进数据挖掘技术广泛使用

大数据技术工具变得越来越便宜,不断增长的吸引力促使各种医疗健康机构有足够的驱动力去购买相应的技术。区块链商业智能非常适合这种模式,它提供经济而全面的解决方案,提高医疗机构的服务质量和运营质量。通过与AI技术的融合,区块链技术能够分析实验室结果和测试报告等临床数据,它可以协助护理人员,帮助他们制定更有效的患者护理计划,更多地关注需要额外关注和护理的患者。区块链商业智能工具的数据挖掘能力可以帮助医疗保健从业者更精确地评估治疗计划,确定选择的治疗方案。这些工具还可用于预测任何给定治疗程序的确切结果,通过帮助组织了解医疗方案的缺陷并采取纠正措施,有助于提高医疗质量。

4区块链技术在医疗健康机构的应用

互联网之所以发展迅速,同互联网一开始就有比较好的场景有关,无论是E-mail还是Web都是互联网信息交流非常自然的应用场景。区块链技术发展至今,存在一个较大的问题是应用场景的缺失,缺少能具体承载区块链技术的舞台和场景。目前,利用区块链商业智能和数据分析的最大障碍是:缺乏有效利用数据分析的资源,无法对分析性能进行基准测试,以及难以将分析结果引入可操作的决策中。随着互联网的蓬勃发展,世界各地的医疗保健机构正在快速转变为分布式数据存储库,这为区块链技术提供了广阔的应用场景。安全和隐私在医疗保健中至关重要。黑客对医疗健康数据的任何攻击都可能对医疗机构造成极大的破坏,因为它们不仅受到经济损失,而且自身声誉也会受到极大影响。最重要的是,在任何违反数据安全的情况下,最大的受害者是患者个人的私人信息,从付款的信用卡详细信息到医疗诊断的结果,隐私没有得到足够保护。医疗机构产生的数据由于需要长期保留而难以管理,这意味着医疗保健机构需要一种有远见的方法来确定数据的存储、访问和使用方式。此外,医学领域的数据管理软件通常具有建立定期访问权限的范围,该权限根据需要为来自不同部门的不同工作人员提供临时查看功能。这些因素使医疗机构更加迫切需要定期审查其数据,以便删除、修改或匿名化信息。同样,输入任何医疗健康机构记录的数据也需要格式化,描述特征和检查结果数据必须准确,然后才能为机构内的不同用户访问,以用于医疗、管理和计费目的。这种要求进一步加剧了在医疗保健领域管理数据的难度。为了应对这些挑战,医疗保健部门正在寻求在四个关键领域:临床、运营、管理和财务领域,使用区块链技术增强商业智能和数据分析工具。区块链技术将协助医疗组织设置中的最高领导者建立正确的部署策略,通过引入数据可视化和智能化,促进医疗技术人员技能升级,建立大数据AI分析技术等新概念,使员工熟悉使用区块链商业智能工具,从机构数据库中获取更多有效的资源。区块链技术针对医疗保健系统大数据进行精心设计,全面规划,通过最少的处理算法,精简数据输入和输出过程,从而形成一个去中心化、智能高效、面向未来的大数据系统。