前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物力学研究范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:运动损伤;防护服装;运动生物力学;防护模型
中图分类号:TS941.2 文献标志码:A
A Study on Protective Cloths Based on Sports Biomechanics
Abstract: Based on introducing sports biomechanics as well as current study on protective equipment and protective clothes, the article draws the conclusion that it is very important to study protective clothes by using sports biomechanics and puts forward the theoretical basis, technical problems and technical route for using sports biomechanics in garment applications.
Key words: sports injury; protective clothes; sports biomechanics; protective model
近年来,我国参与体育运动或日常锻炼的人口越来越多。在对全国体育人口比例的调查中发现,1996年的体育人口在总人口中所占的比例为31.4%,2000年增加到33.9%,而到2007年又增加到37.1%,短短10多年的时间里增加了5.7个百分点。
但是在运动中,由于人们并未太多地注意保护自己,常常会引起相应的关节、肌肉、韧带的意外损伤。网球运动常常会导致肘部、肩袖部损伤,范?克拉莫(Von Kramer)对网球运动中出现的损伤进行过调查,结果表明,网球运动中肘关节损伤占全部损伤的41%,是最容易损伤的部位;肩袖损伤占其全部损伤的39%,仅次于网球肘。在跑步运动中,常常会发生小腿肌肉拉伤,有研究显示,有高达35% ~ 65%的健身者与专业运动员曾经发生过下肢损伤。老年人、小孩以及肢体残疾人在日常的行走过程中,由于自身缺乏一定的平衡能力,往往会因为磕碰、摔倒等突发状况而意外导致肌肉和骨骼损伤。有国外学者曾做过相关的研究,该研究揭示了在老年人的摔倒中,将近53%是因为行走、站立的不稳定所导致的。
运动损伤已经给运动员、业余爱好者、老年人、小孩等带来了伤害,也是人们生命安全的重要隐患之一。也有不少人缺乏自我保护意识,认为在业余的体育锻炼和比赛中,做准备活动,然后再多加注意一些,受伤的几率也就小了,其实这种想法是不正确的。因为这种损伤,比如说扭伤、摔伤、各种磕碰伤,在运动损伤里只占到了2%,它的名称叫做意外伤,而将近98%的损伤是那种运动技术性伤。所以基于运动的生物力学,研制减少骨骼与肌肉损伤的防护性服装,是一个很大的趋向。
1 运动生物力学的研究
运动生物力学是生物力学的分支学科,是研究体育运动中人体机械运动规律的科学。其主要任务是运用生物学和力学的理论和方法研究人体从事各种运动、活动以及劳动的动作技术,使复杂的人体动作技术奠基于最基本的生物学和力学规律之上,并以数学、力学、生物学以及动作技术原理的形式加以定量描述。运动生物力学的发展与研究,为提高体育运动的成绩、预防运动损伤、设计研发防护器材奠定了理论基础。
1.1 运动生物力学的实际应用
对于运动生物力学的研究,特别是在应用上,具有自己的特色,大致可归结为以下几点:
(1)在竞技体育运动动作的技术方面,根据人体的体态、素质、机能等情况,研究适合个人的最佳运动和活动技术的动作方案,并通过动作技术诊断使之逐步完善;
(2)从预防运动损伤的观点出发,对各种体育、活动以及生产劳动进行生物力学分析,找出致伤因素,并设计出相应的预防与治疗措施;
(3)运动生物力学不仅研究人体,而且也研究与运动相关的器械的运动规律,按照人体形态、结构和机能的生物力学特征,设计和改进运动器材、设施、服装与用具以及劳动机器、工具等。
1.2 运动生物力学与防护器材
从运动生物力学的角度出发,对体育运动或健身锻炼中用于防护人身安全、避免运动损伤的器材,提出设计和改进的设想及要求,是一项非常艰巨的学科任务,当前基于运动生物力学研制的防护用品主要有护具、运动鞋。
新型橄榄球头盔与传统头盔相比有着本质的区别,新型头盔的外层覆盖了一种新型树脂吸振缓冲材料,它可以有效地防止运动员以头盔作为进攻武器冲撞对手。在运动的过程中,人体的各个关节肌肉常常由于过多的运动量或瞬间的挥击、拉伸发生拉伤或震伤。戴上护具后,就可以对相应部位的肌肉、韧带加压舒服,减缓可能的过度拉伸,并协助肌肉动作,对关节部位起到支撑作用。对于关节出现不同程度劳损的老人以及正在发育期的小孩来说,进行远足郊游或体育锻炼时,很有必要选择一定的护具。
国内外一线运动品牌,其运动鞋技术的每一项进步都离不开生物力学研究,结构设计和技术创新都遵循人体运动生物力学原理。国际一线运动品牌都拥有自己的核心技术,如Nike的air气囊鞋底科技和足跟稳定技术、Adidas的HUG环抱系统和智能芯片技术、李宁新一代单弦弓减震技术等。无论核心技术如何创新变化,结构设计必须遵循运动生物力学的原理,其主要的生物力学原理是缓震减震、能量回归、足跟控制、模拟踝足和回归自然。
2 防护服装的研究
伴随着运动的普及,传统的防护服装基本上从舒适性、结构设计、功能材料等角度出发进行设计研究,通过研究改变或加强面料的性能来达到服装吸湿排汗透气、防火、防水等效果,或者从服装结构设计出发,采用多开口宽松式设计,在前胸、腋下、前后衣片采用连续开口散热功能设计,设计了一套具有散热功能的篮球比赛服装。而在运动过程中能真正地起到对人体防护作用的,往往都是要通过佩戴护具来达到目的,从拳击的头盔到篮球的护足,每一个易受伤的关节都有相对应的护具来产生防护的效果。
但是现阶段基于运动生物力学研究的运动防护仅限于护具以及运动鞋,而客户对防护服装的要求却逐渐从原来的吸湿排汗等舒适性方面提升到舒适、功能、美观、防护一体化上来,更多地希望可以通过服装本身就可以达到防护人体的目的。
所以,有必要从人体出发,通过测量人体各关节点运动的三维坐标数据的变化,将其转化为人体关节运动的生物力学参数,通过分析生物力学参数数据,建立人体防护模型,明确服装面料与防护模型相互之间的关系,并结合服装材料学、服装结构设计、人体工效学等相关知识,设计具有防护性能的服装。
3 运动生物力学在服装上的应用
在体育运动、日常活动以及生产劳动中骨骼和肌肉损伤是难以避免的问题,解决这一难题,必须以人体运动为目标,运用人体解剖学、人体生理学、力学的理论与方法来探索人体运动规律,根据骨骼和肌肉的变化,建立外部防护模型,获取防护服装所需达到的力学参数,为开发运动防护服装提供理论依据。
3.1 理论依据
在运动过程中,骨骼及肌肉功能模型的研究比较成熟,是确定肌肉长度、肌肉拉力线、肌力臂、肌力矩、肌力等关键因素,但却没有明确指出骨骼及肌肉损伤的临界值,建立外防护模型是解决该问题的关键途径。
基于人体骨骼与肌肉的动力学模型,模拟在外部约束条件下骨骼和肌肉的变化,通过逆向动力学方程式和有限元模拟获取相关参数,建立外防护机制,即防护模型;在外加反应实验的作用下,明确服装材料的性能与外防护模型之间的关系,为研制高质量的运动防护服装、减少运动过程中骨骼及肌肉的损伤提供理论依据。
3.2 技术问题
(1)建立骨骼及肌肉的模型,需要运用动态捕捉系统捕捉关键点的运动信息,测量人体在空间的位置和方向,即人体骨骼、关节的运动轨迹。动态捕捉系统通常分类为 3类:机械式、电磁式和光学式,价格不菲。
(2)结合人体运动轨迹的数据,通过人体建模仿真软件进行模拟,并推导出骨骼及肌肉的最优化的防护机制。
(3)通过实验验证分析,明确防护模型与服装面料的性能特征之间的关系,为研发防护性能最优的服装提供依据。
3.3 研究方案
针对一项具体的运动,主要研究内容有以下几个方面:
(1)运用动态捕捉系统捕捉人体关键部位的空间运动轨迹;
(2)借助人体建模仿真软件,将空间运动轨迹的数据转化为生物力学参数,如各关节的位移、速度、加速度及肌肉长度、肌力臂、肌力矩等,进而计算出有关人体防护力学参数;
(3)基于骨骼及肌肉模型,运用逆向动力学的方法,建立人体外部防护机制;
(4)根据各种服装材料的性能,通过有限元的模拟,确定材料的性能与防护模型相互之间的关系,获取防护服装所需的防护参数;
(5)人体建模仿真软件对所获取的服装防护参数进行模拟,以进一步获得最优防护的服装。
技术路线如图 1 所示。
4 结语
运动损伤常常给运动员、体育爱好者、老人、小孩等带来意想不到的身体伤害,然而,传统的防护服装基本上从服装的舒适性角度进行研究,通过改变面料的特性来达到服装的防湿透气、吸湿排汗等,或从服装的结构设计出发,改变服装衣下间隙、开口特征等来提高服装的着装舒适性。国外对于运动防护服及装备的研究则比较深入,从人体的头部到脚的各个器官都配有特定的防护用具,所以基于运动生物力学研究防护服装必将是未来的研究热门。
外防护模型的建立是运动生物力学应用到服装领域的关键,也是制约防护服装研发的主要因素。防护模型的研究处于起步阶段,只有建立起防护模型,才能进一步明确服装材料与防护力学参数之间的相互转化关系,也为研制减少运动损伤的运动装备奠定技术基础。
参考文献
[1] 陆建平,李宁.我国居民参与体育锻炼的特征研究[J].体育文化导刊,2012(1):36-39.
[2] 张雷,王少华.网球运动中常见的损伤与防治[J].网球天地,1995(3):45 - 47.
[3] 王威.对跑步中下肢运动损伤的原因分析[J].运动精品,2011(7):16-17.
[4] Blake A J, et. al. Falls by elderly people at home: prevalence and associated factors[J].Age Ageing,1988(17):365-372.
[5] 侯宇.运动护具面面观[J].文体用品与科技,2009(11):41.
[6] 全国体育学院教材委员会.运动生物力学[M].北京:人民体育出版社,1990.
[7] 全国体育学院教材委员会.运动生物力学(2版)[M].北京:人民体育出版社,2005:195-198.
[8] 王向东,刘学贞,苑廷刚,等. 运动生物力学方法学研究现状及发展趋势[J]. 中国体育科技,2003,39(2):15-16.
[9] 李世明.运动生物力学理论与方法[M].北京:科学出版社,2006.
[10] 李建设,顾耀东,陆毅琛,等.运动鞋核心技术的生物力学研究[J].体育科学,2009,29(5):40-49.
[11] 郑素化,张欣,应柏安.篮球运动服装舒适性研究[J].西安工程大学学报,2008,22(1):52-54.
[12] Beumer A, van Hemert WL, Swierstra BA, et al. A biomedical evaluation of the tibiofibular and tibiotalar ligaments of the ankle[J]. Foot Ankle Int, 2003(5):426-429.
随着脊柱外科经后路内固定手术普遍开展,各种椎弓根螺钉固定系统已广泛应用于临床,但Esses等[1]通过临床应用调查这些固定器械发现没有哪一种椎弓根螺钉固定比较完善,大量病例的远期随访表明并发症多。主要是螺钉松脱、断钉、内固定不牢固、矫正度丢失、椎体间融合形成假关节、脱位术后复发、椎弓根断裂等。Wittenberg[2]认为椎弓根螺钉固定产生并发症多的原因是螺钉内固定疲劳的结果。内固定器械受周期性负荷而导致疲劳。结合国内外在椎弓根螺钉内固定疲劳生物力学方面的研究综述如下:
1 椎弓根螺钉疲劳指标
Yamgata等[3]认为要研究椎弓根螺钉内固定生物力学疲劳特性,应从下面3个方面确定:①螺钉强度——疲劳次数关系:就是测定螺钉植入后其强度与周期性负荷次数(疲劳次数)关系;②测定螺钉旋入/出力矩。这具指标能表明螺钉固定疲劳前后的力矩变化,代表期疲劳程度;③螺钉最大轴向拔出力,表示钉一骨界面紧握力牢固性。Wittenberg等也研究了强度一疲劳次数关系,并发现螺钉固定强度随疲劳次数增加而下降。Zdeblick等[3]研究螺钉旋入/出力矩与疲劳次数关系,并指出力矩随疲劳总人数增加下降。轴向拔出力也下降;钉一骨界面轴向拔出力也随疲劳次数增加而下降。
材料选择,Smith[5]认为椎弓根螺钉内固定生物力学体外试验标本材料有3个来源:①人尸体脊柱标本,最佳是人新鲜尸体脊术,但来源有限;②人工摹拟脊柱,人工按脊柱椎体骨质等特点仿造出脊柱标本,在制造过程中可人为设计安置各种电子测定元件,有利于试验记录测量,但与人体脊柱质、量等各方面相差大;③动物新鲜脊柱标本,目前常用是牛的脊柱,Eilke等[6]应用小牛的胸6至腰6脊柱段与人胸腰椎脊柱段进行体外比较生物力学试验,得出试验结果进行统计分析无差异,所以他认为在体外生物力学试验可用小牛脊柱代替人脊柱当试验材料。人活体内研究因条件及医学伦理限制,很少研究。
椎弓根螺钉内固定疲劳试验研究方法及仪器:椎弓根螺钉内固定试验是摹拟内固定器械在体内受脊柱三维六自由度周期负荷作用下生物力学疲劳变化规律。研究较复杂,仪器测试要求高。目前没有规范的标准。Goel等[7]认为一种标准体外疲劳试验一定要做到对椎弓根螺钉内固定器械进行摹拟在体测试,获得不同负荷周期性作用下测出强度-疲劳次数关系曲线。疲劳试验80年代前大都是没有内固定器下的单纯标本人工机械试验。随着电子技术发展,90年代后自动化的试验机器完全代替人工机械方法,他介绍了美国明尼苏达州制造的双轴液压伺服生物材料测试系统即MTS试验机。该机优点能摹拟人体脊柱在维六自由度运动,即能旋转、拉伸、周期性加载荷,测定过程全自动化计算机控制,减少人为误差,同时测定强度一疲劳次数曲线、拔出力和力矩,被认为是目前先进的生物力学试验系统。 smith[5]也持相同观点而且建议体外生物力学试验研究程序化:试验原理度量科学化试验目的试验仪器选择负荷加载选定(目前没有具体标准)标本固定安装测度系统准备收集试验资料统计分析、讨论。另外Yamagata等[3]介绍日本京都制造通用疲劳试验机。该机也是电子程控测试,但仅测出强度-疲劳次数关系单项指标。还有方法仅测出力矩,或仅侧刚度,或仅测拔出力等单项指标。
2 影响椎弓根螺钉内固定生物力学疲劳特性的因素
①椎体骨密度(BMD) 椎弓根及椎体骨密度对其螺钉固定疲劳生物力学是主要影响因素。Halvorson等[8]用双光子骨密度测定仪测定标本椎体骨密度,分成正常组:1.17±0.08g/cm2;骨质疏松组:0.818±0.05g/cm2。发现正常骨质密度组平均轴向挨出力为1540±361N;而骨质疏松组为206±159N。即螺钉轴向拔出力与椎体骨密度呈正相关。Okuyama等[9]认为BMD每降低10mg/ml。螺钉最在拔出力约减少60N。Kumano等[10]认为Ⅲº骨质疏松螺钉轴向拔出力100N以下,很容易松动脱出,所以建议Ⅲº骨质疏松不要直接用椎弓根螺钉固定。其它研究也证明骨密度对螺钉固定力矩、强度等有重要影响,且呈正相关[11-14]。
②椎弓根螺钉横截面积大小和螺钉形态、长度、固定深度 Brantley等[21]研究指出椎弓根螺钉横截面积大小对椎弓根横截面积占有70%以上才有足够的固定强度;少于这个比例的螺钉则易疲劳松脱。但是当螺钉截面积增大到占椎弓根横截面积90%时,再增加螺钉直径,没有明显增加固定强度,反面易使椎弓根爆裂骨折。由于椎弓根横截面积有限,所以螺钉大小其横截面积为椎弓根横截面积的0.7-0.9之间为好。螺钉长度增加,固定深度加深也有增强固定强度、防止疲劳作用。但固定深度椎体大小和椎弓根长度的限制。他指出当固定深度为螺钉进入椎弓根穿刺点到椎弓根轴线与椎体前缘交点连线距离80%深度时(原则是螺钉尖端不要穿过椎体前缘皮质)螺钉固定强度已足够,再增加固定深度无明显增加其固定强度。所以增加固定深度亦有限。还指出螺钉大小、长度、深度对中度以上骨质疏松者没有增加固定强度。Zdeblik等[4]研究螺钉大小对扭力矩强度有正相关,即螺钉直径加大,扭力矩可相应增加。Kwok等[15]在人尸体上研究比较柱形螺钉和锥形螺钉旋入力矩和轴向拔出力。发现锥形螺钉能增强旋入力矩。柱形钉无此作用。但两者轴向拔出力无差别。
③椎弓根长、宽、高 Mckinley等用人工脊柱摹拟椎弓根长、宽、高,并研究长、宽、高对螺钉负荷弯力矩作用,结果发现螺钉负荷弯力矩与椎弓根高成负相关,与椎弓根长度正相关,宽度对螺钉负荷弯力矩无明显作用。
④螺钉孔道准备方法及固定方向 George等[17]用钻头准备孔道和用定位探子打出孔道方法,并比较2种方法准备孔道后螺钉固定轴向拔出力,结果两者无统计学差异,但指出用钻头钻法准备钉孔道定位不准,易造成椎弓根撕裂,而降低固定强度。Ronderos等[18]研究用击打和非击打2种方法准备进行螺钉固定测其钉-骨界面拔出力。还有Halrorson等[8]用比螺钉直径小1mm或相等的两种攻丝准备孔道,测螺钉轴向拔出力,结果发现用小的攻丝锥准备的孔道螺钉轴向拔出力要大于用与螺钉直径等大的攻丝锥备成的孔道螺钉向拔出力。
⑤医生手术熟练程度及技术水平 Stauber等[19]认为椎弓根定位不准确常使螺钉固定穿出椎弓根,破坏了椎弓根骨床质量,降低了固定强度,也易造成神经损伤。因此有应用光纤内窥镜来探查螺钉孔道定位情况,以提高螺钉固定定位的准确性。
⑥螺钉质量螺钉质量(包括所选用合金材料种类的好坏、刚度强度大小、生产工艺高低等)对其椎弓根固定稳定性、牢固性很重要。发现经椎弓根螺钉固定后螺钉弯曲或折断,Esses等[1]认为是与螺钉机械强度不够、刚度达不到内固定的要求、质量不合格有关。Matsuzaki等认为发生断钉是螺钉质量不过关的典型表现,他认为一定要对每一种螺钉等器械应用于临床前进行材料生物力学检测,质量合格后才能应用。
⑦负荷大小、周期性次数 Goel等[7]指出疲劳试验研究基本特征是在人为条件下,施加一定量的预负荷于标本,在一定的频率下周期性作用于内固定器械来研究其疲劳反应及其变化规律。但目前不同试验研究的预负荷、频率、周期性负荷次数都不统一。Cunningham.等[21]研究结果表明:①在400N水平VSP、LSOLA、TSRH、加压CD棒系统疲劳次数超过100万次;②在500N水平VSP、ISOLA、TSKH、加压CD棒系统疲劳次数达60万次时出现疲劳;③在600N水平,4种器械内固定系统平均20万次即出现疲劳反应。可见椎弓根螺钉内疲劳与其受力、疲劳次数、频率均有关。Myers等[13]用MTS对单根螺钉固定进行疲劳试验,测其轴向拔出力,表明疲劳次数增加,拔出力下降。在相同疲劳条件下,Wittenberg等[2]AO螺钉平均73300次出现疲劳,VSP螺钉平均20800次出现疲劳,强度-疲劳次数关系,结果发现螺钉固定强度随疲劳次数增加而下降,但不是线性相关。疲劳次数低于4000次时,各螺钉固定强度无统计学差异。
3 预防椎弓根螺钉固定疲劳的措施
预防椎弓根螺钉固定目的是要获得牢固稳定的内固定以达到临床治疗目的。因此防止预防椎弓根螺钉固定产生疲劳问题又成为人们研究的热点。提高骨密度,防止骨质疏松是经椎弓根螺钉固定稳定牢固的基础[12]。Pfeiffer等[12]对Ⅲº骨质疏松者准备螺钉孔道后,用适量PMMA骨水泥填入孔道再拧入螺钉固定,结果可以提高螺钉轴向拔出力,固定更牢靠稳定,从而防止疲劳。Chiba等[22]研究通过附加椎板钩辅助固定可能减少椎弓根螺钉负荷而减少疲劳发生。Stovall等[23]研究腰骶椎融合术时也应用附加椎板钩辅助固定,也明显增强内固定牢固性。Dick等[24]研究在椎弓根螺钉骨固定器械两侧纵行板或棍间用横杆连结装置可以提高其固定强度,有利于防止疲劳。Lim[25]又研究了横杆连结装置最佳位置,认为双横杆最佳位置是近侧端杆位于纵行板或棍1/4处作用最大;远侧横杆应位于纵杆1/8处起作用大。另外,提高外科医生手术技术水平、技巧、熟练程度,对椎弓根螺钉内固定牢固稳定、降低疲劳也是一项重要措施。
4 椎弓根螺钉疲劳研究存在问题
虽然椎弓根螺钉疲劳生物力学研究做了许多工作,但有些方面有待进一步研究,主要有:①不同年龄段疲劳指标正常参考值没有确立;②疲劳与螺钉受力方向的关系没有报道;③中国人应用椎弓根螺钉的疲劳生物力学研究。 5 参考文献
Esses,Stephen I.Barton L,et al.Complications associated with the technique of pedicle screw fixation .Spine,1993,18(15):2231
Wittenberg,Shea M,Edwards,et al.A biomechanical study of the fatigue characteristics of thoracoolumbar fixation in a calf spine model .Spine,1992,17(6):S121
Yamagata N,Mechanical stability of the pedicle screw fixation systems for the lumbar spine.Spine,1992,17(3):51
Zdebilck,David N,Kunz,et al.Pedicle screw pullout strength .Spine,1993,18(12):1673
Smith N.In vito spinal biomechanics.Spine,1991,16(10):1204
Wilke HJ,Stefan K,Lutz Claes,et al.Bicmechanical comparison fo calf and human spines.J Orthop Res,1996,14(3):500
Goel VK,Winterbottom JM,Weinstein JN,et al.A method for the fatigue testing of pedicle screw fixation devices,J Biomech,1994,27(11):1383
Halvorson,Lee A,Kelley ,et al.Effects of bone mineral density on pedicle screw fixation.Spine,1994,19(21):2415
Okuyama K,Sato K,Abe E,et al.Stability of transpedicle screwing for the osteoporosis:An in vitro strdy of the mechanical stability.Spine,1993,18:2240
Kumano,Hirabayashi,Ogawa,et al.Pedicle screws and bone mineral density .Spine,1994,(10):1157
Oxland,Thomas R,Lound,et al.The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interboby implant performance,Spine,1996,21(22):2558
Pfeiffer,Lars G,Gibertson,et al.Effect of specimen fixation method on pullout tests of pedicle screws.Spine,1996,21(9):1037
Myers,Barrys,Philip J,et al.The role of imaging and in situ biomechanical testing in assessing pedicle screw pullout strength.Spine,1996,21(17):1962
Brantley,Anna G,Jack K,et al.The effects of pedicle screw fit.Spine.1996,19(15):1752
Kwok,Joel A,Finkelstein,et al.Insertional torque and pullout strengths of conical and cylindrical pedicle screws in cadaveric bone.Spine,1996,21(21):2429
Mckinley,Robert F,Malarin,et al.The effect of pedicle morphometry on pedicle screw loading.Spine,1997,22(3):246
George,Daniel C,Martin H,et al .Hole preparation techniques for transpedicle screws.Spine,1991,16(2):181
Ronderos,Juan F,Rnald,et al .Comparative pullout strength of tapped and untapped pilot hole for bicortical cervical screws.Spine,1997 22(2):167
Stauber,Martin H,George S,et al .Pedicle screw placement with intraosseous endoscopy.Spine,1994,19(1):57
Matsuzaki,Tokuhashi,Matsumeto,et al Problems and solutions of pedicle screw plate fixation of lumbar spine.Spine,1990,15(11):1159
Cuningham,John C,Shono,et al .Static and cyclical biomechanical anlysis of pedicle screw spinal constructs.Spine,1993,18(12):1677
Chiba,Robert F,Scott A,et al.Short-segment pedicle instrumentation.Spine,1996,21(3):288
Stovall,Allan,G,Lundy,et al .Sacral fixation technique in lumbosacrol fusion.Spine,1997,22(1):32
【关键词】 生物力学; 人; 交叉韧带; 移植; 同种异体; 照射; 肌腱
Abstract: [Objective]To explore the change of biomechanics about human tendon with“γ”irradiated which was universal used by domestic and foreign. [Methods]Twenty-four upper limb tendon of human with the same length were pided into two groups,group A(12):nonirradiated group, group B (12):2.5 Mrad gamma irradiated group.Material properties and structural properties were determined with WDW-3020 electron universal testing machine.[Results]The mean length of the tendon was 99.15% of control, the elongation to failure was 93.46%, the linear stiffness was 95.27%, the energy to maximum force was 93.60%, the maximum stress was 84.88%, the strain to failure was 85.82%, the linear modulus was 90.40%, the strain energy density to maximum was 66.73%. Difference was noted after compared hetween group A and B (P
Key words:biomechanics; human; cruciate ligament; transplant; allograft; irradiate; tendon
交叉韧带是膝关节稳定的主要结构,交叉韧带重建术是治疗交叉韧带损伤的主要方法[1]。自1978年Neviaser等人应用冻干保存的同种异体肩袖移植修复大范围的肩袖损伤,1981年Green等人将冷冻保存后的异体阔筋膜用于肌腱、韧带损伤的修复相继成功以来,人们开始了同种异体组织重建膝关节前交叉韧带的临床及基础研究。但同种异体组织移植仍有疾病传播、感染、松弛等诸多问题。为了防止艾滋病、肝炎等疾病的传播,国内外一些学者及组织探讨了一系列的消毒措施,目前最常用的是“γ”射线照射消毒。有研究表明,在2.0Mrad“γ”照射对同种异体组织的最大应力,最大应变等有一定负面影响[2],本文对国内外普遍采用的2.5Mrad“γ”射线照射消毒法对肌腱生物力学指标的影响进行全面探讨。
1 材料与方法
1.1 实验材料准备
由解放军总医院第一附属医院组织库提供的24条等长肌腱配对分成A、B两组,每一对来自同一供体。A组为对照组,没有经过“γ”射线照射,B组为实验组,经过2.5Mrad“γ”射线照射12 h。普通低温冷冻(-20℃)保存异体肌腱以备进行生物力学检测。
1.2 生物力学测试
将标本取出后室温下融化1 h,生理盐水纱布保湿。用WDW-3020电子万能材料试验机(清华大学航天航空学院工程力学系固体力学实验室提供)做拉伸实验。首先使用专用横截面积测试仪测量肌腱的宽度与厚度,计算出横截面积。为防止直接夹持对肌腱的损伤,特别设计了专用夹具对肌腱进行夹持。使位于两夹持端间实验部分肌腱的长度均为30 mm,将肌腱夹持好,固定于试验机上,调整拉力使其经过肌腱轴线。先行预处理,拉伸速度0.5 mm/s,拉长0.5 mm,共3次。最后加载直至试样被完全破坏,加载速度设为20 mm/min,试验机自动记录载荷-位移曲线,见图1。其中直线段斜率为刚度。
图1载荷-位移曲线
1.3 破坏部位
A、B两组所有实验材料破坏部位均不在夹具夹持肌腱处,避免了在夹持部位破坏造成结果的不准确,如果肌腱是在夹持部位破坏的可能是由于夹具夹持力所造成的。
1.4 统计学处理
采用配对t检验,P
2 结果
对载荷-位移曲线进行修正,根据此曲线计算出生物力学各指标,载荷测量精确到0.001 N,位移精确到0.01 mm。数据用均数±标准差表示。具体结果如下。
2.1 结构力学特性
研究肌腱在外载荷作用下刚度、能量、位移等的变化规律,确定肌腱承受和传递外力的能力。①B组实验组平均最大拉伸长度为A组对照组93.46%,两组之间差异有统计学意义(t=3.45,P
2.2 材料力学特性
研究肌腱在外力作用下所发生应变、应力和刚度等的变化及导致肌腱破坏的极限。①照射组的弹性模量为非照射组的87.66%,减少了12.34%,两组之间比较差异有统计学意义(t=2.53,P
3 讨论
自体BPTP(骨-髌腱-骨)曾经被认为是ACL(前叉韧带)重建的金标准,但不可避免诸多的并发症,如股四头肌、腘绳肌薄弱等,据报道手术后髌骨关节疼痛高达80%,而同种异体组织移植具有无供区症状,材料大小不受限,手术时间和费用少等优点[2]。 Poehling等[3]指出应用同种异体组织重建ACL后疼痛少并且术后1年内关节活动受限少,所以术者倾向于采用同种异体组织进行ACL重建。疾病传播是目前应用同种异体移植物存在的主要问题,为减少疾病的传播,消灭处在“窗口期”的病原微生物,一些组织库先后使用一系列灭菌消毒技术如环氧乙烯薰蒸,“γ”射线照射等。经基础实验和临床实践后,目前国内外最普遍采用的是“γ”射线照射消毒来减少疾病的传播。虽然高剂量的“γ”射线照射消毒能有效的杀灭细菌病毒等微生物,但不可忽视的是对组织具有破坏损伤和灭菌消毒双重作用,“γ”射线照射消毒必须达到两方面的要求,一是必须达到完全灭菌消毒的目的,包括HIV和肝炎病毒,二是必须保证肌腱有足够的强度。目前国内外对2.5 Mrad“γ”射线照射消毒引起肌腱生物力学变化没有很明确的了解,缺少直接对人体肌腱的研究,作者采用照射非照射的人体肌腱进行研究,进一步明确了2.5 Mrad“γ”射线照射对肌腱生物力学参数的影响。
有大量研究表明1.5 Mrad“γ”射线照射能破坏95%的细菌微生物,而使用3.0 Mrad“γ”射线照射就会引起组织较严重的破坏,并且在2.5 Mrad“γ”射线照射后的骨-腱-骨中仍能检测出HIV,建议使用3.6~4.0 Mrad照射,一些学者认为5.0Mrad“γ”射线照射才能杀灭HIV[4]。目前能被接受的剂量是1.5~2.5 Mrad,但从作者的实验数据可以看出2.5 Mrad“γ”射线照射后各生物力学参数明显降低,肌腱强度下降显著,各参数均具有统计学意义,其中参数刚度具有高度统计学意义,刚度是指生物材料对外力作用抗变形能力,肌腱刚度在ACL重建后膝关节早期蜕变有重大影响。有研究表明4.0 Mrad“γ”射线照射后肌腱的刚度和最大应力分别减少30%和21%,本实验2.5 Mrad“γ”射线照射后刚度和最大应力分别减少4.63%和15.12%,与对照组相比有统计学意义,所以肌腱强度降低的趋势基本是一致的,并且从本组实验中可进一步看出“γ”射线照射引起肌腱强度的降低具有剂量依赖性。Curran等研究指出2.0 Mrad“γ”射线照射组强度比非照射组强度减少20%[8],Filder[9]研究认为2.0 Mrad“γ”射线照射后强度降低15%。有学者指出2.0 Mrad“γ”射线照射后肌腱的弹性模量和最大应力明显下降,本研究中2.5 Mrad“γ”照射后弹性模量和最大应力分别减少9.60%和15.1%。肌腱弹性模量是衡量肌腱产生变形难易程度的指标,在ACL重建后希望肌腱有足够的弹性模量以求重建的膝关节在承受外力时有足够的稳定性,“γ”射线照射后弹性模量减小,所以必须遵循“以强代弱”的原则。本试验材料的选择不能确定供者的年龄使肌腱强度可能有所差异对试验数据会有一定的影响,作者采用同一组肌腱来自同一供体以求尽可能的减小对实验结果的影响。有些学者认为吡啶喏林的含量与肌腱生物力学存在着线性关系,也就是说照射前后生物力学的变化可能是由于照射引起同种异体组织羟基脯氨酸、铰链等生物化学成分改变引起的。
2.5 Mrad“γ”射线照射的同种异体组织强度的降低是否会增加临床失败率?在膝关节交叉韧带重建研究中发现移植物在塑型改建过程中其强度有明显下降的过程,所以必须按照“以强代弱”的原则来重建交叉韧带,移植物强度在重建术中的作用已经得到明确[6]。Suggs等[5]通过计算机模拟研究ACL重建后发现:重建后关节早期退变与移植物刚度过大有关,刚度一致时,可以有效恢复膝关节的稳定性且不增加关节面的压力。所以选择结构力学一致的移植物重建ACL可以在恢复稳定性的基础上对膝关节软骨提供良好的保护作用。本研究发现γ射线照射消毒后肌腱的刚度明显下降,所以如何确定照射后刚度一致性使移植物具有相同或接近相同的结构力学,从而达到最好的重建效果需要基础研究和临床观察的进一步探讨。Bach[7]、孙磊[9]等均已经证实了应用非照射的同种异体组织重建ACL的良好的临床效果。国外有通过临床随访发现采用2.0~2.5 Mrad“γ”射线照射后的同种异体肌腱重建ACL的失败率明显高于非照射组的报道,故不主张应用“γ”射线照射消毒的组织来重建ACL。“γ”射线照射的同种异体组织移植后超微结构的变化过程及临床失败率增加的具体机制还没有深入的了解。
目前国内外普遍采用2.5 Mrad“γ”射线照射消毒同种异体组织的方法并不能完全杀灭病原微生物如HIV等,作者直接采用人体肌腱实验后证实照射后各结构力学和材料力学参数降低明显,这种强度的降低可能导致临床失败率的增加,综上所述,是否采用“r”射线照射消毒同种异体肌腱及其生物力学改变是否会导致临床失败率的增加和具体机制有待于进一步研究。
参考文献
[1] Mariani PP, Becker R, Rihn J,et al.Surgical treatment of posterior cruciate ligament and poster lateral corner injuries. An anatomical, biomechanical and clinical review[J].Knee,2003,10:311-324.
[3] Cole DW, Ginn TA, Chen GJ,et al.Cost comparison of anterior cruciate ligament reconstruction[J].Am J Sports Med,2005,21:786-790.
[3] Poehling GG, Curl WW, Lee CA,et al.Analysis of anterior cruciate ligament repair with 5-year fellow-up: allograft versus autograft [J]. Arthroscopy,2005,21:774-785.
[4] Siebold R, Buelow JU, Bos L, et al. Primary ACL reconstruction with fresh-frozen patellar versus achilles tendon allografts[J].Arch Orthop Trauma Surg, 2003,123:180-185.
[5] Suggs J, Wang C, Li G. The effect of graft stiffness on knee joint biomechanics after ACL reconstruction: a 3D computational simulation [J]. Clin Biomech (Bristol, Avon),2002,402:135-156.
[6] Hoher J, Scheffler S, Weiler A. Graft choice and graft fixation in PLC reconstruction [J]. Knee Surg Sports Traumatic Arthrose,2003,11:297-306.
[7] Bach BR Jr, Aadalen KJ, Dennis MG,et al.Primary anterior cruciate ligament reconstruction using fresh-frozen, nonirradiated patellar tendon allograft: minimum 2-year follow-up[J].Am J Sports Med,2005,33:284-292.
【关键词】口腔正畸;微植体;生物力学
【中图分类号】R783.5【文献标识码】A【文章编号】1004-4949(2013)07-43-02
传统上治疗错颌畸形多采用口外弓、腭杠、舌弓、Nance弓等方法来增加支抗,都存在稳定性方便性等问题,效果不理想。而操作简便、效果稳定且创伤较小的微植体支抗技术近年来发展较快,受到了广泛的关注[1]。本文就是通过回顾性分析我院于2010年6月-2011年6月期间收治的64例患者的临床资料,探讨采用正微植体支抗技术进行口腔正畸的临床效果,并进行生物力学分析。
1资料与方法
1.1一般资料:
选取我院于2010年6月-2011年6月期间收治的64例接受口腔正畸的患者,按照随机的原则平均分为两组,其中实验组32例,男19例,女13例,年龄12-25岁,平均(19.8±3.2)岁;对照组32例,男18例,女14例,年龄13-26岁,平均(20.1±2.8)岁。两组患者在性别、年龄、发病类型以及临床表现方面差异无统计学意义,P>0.05,具有可比性。
1.2 治疗方法
1.2.1 对照组治疗方法:
采用传统的口外弓加强支抗,同时口内配合着使用横腭杆,口外弓牵引力量为200-200g/侧,保证患者每天戴用8-12h。
1.2.2实验组治疗方法:
实验组患者均采用微植体支抗技术治疗,在微型种植体植入时,首先通过铜丝将需要植入微植体的牙分开,然后对植入部位进行标记,并对牙根的形态、位置以及相邻的组织进行检查,拍摄全景片和根尖片;如果要植入种植体,则对要植入部位覆盖的牙槽粘膜,作纵行切口3-5mm;然后在膜龈结合部或者是偏向于牙根方向2-3mm处植入,注意其角度应该与骨面垂直,并略微倾斜一些;最后对根尖拍摄照片,从而确认微型种植体与牙根的关系。患者术后通过口服抗生素来预防感染,并交代两组患者注意保持口腔清洁。
1.3生物力学的三维有限元分析: 采用的微植体均为刃状螺纹圆柱形纯钛螺钉,规格是:外径2mm,内径1.6mm,长度为9mm,螺纹顶角60°,深度为0.2mm,而螺距为0.3mm。同时设定微植体植入牙槽骨后,仍保证骨外余留3mm。根据上述种植体的尺寸及其几何形态,使用有限元分析软件ANSYS6.01对其进行建模,并使用其中自适应网络划分功能对模型进行网格划分,其精度取默认值6,同时在处理单元时,选用三椎体十节点的建模方式以增强器精确性。
试验假设条件如下:首先,所有材料受力后变性均为小变性;其次,种植体与颊侧牙槽骨板间所成锐角,分为30°、40°、50°、60°、70°、80°、90°等7组;最后,模型中涉及的材料和组织均为连续均质且各向同性的线弹性材料。
在距离种植体顶端0.5mm处对种植体施加的水平作用力为200g。在数据采集时,要通过种植体中心进行纵剖以获得有限元模型。同时,在压力侧骨界面上,顺着种植体的长轴的方向,从其颈部开始,每隔0.3mm采集一个位移值及Von-Mises值。然后,利用采集的数据构建植入深度与位移关系以及Von-Mises的折线图。
1.4观察指标: 观察并比较两组患者的上中切牙凸距差、倾角差以及磨牙位移等指标。同时观察微植体在200g水平载荷下的应力及位移分布情况。
1.5统计学方法: 采用SPSS13.0统计软件进行统计分析,采用t检验,以P
2 结果
2.1 两组患者治疗效果比较:经过10个月的治疗,发现实验组的上中切牙倾角差(26.79±5.21)和上中切牙凸距差(4.13±1.47)显著大于对照组的(12.49±3.65)和(2.71±1.04),而实验组的的磨牙位移(3.38±0.21)显著低于对照组的(5.92±0.45),且P
2.2实验组生物力学分析:
实验组的微植体在200g水平载荷力,90°倾斜角下的应力和位移情况如图1、2所示。可见,种植体Von-Mises应力主要集中在界面的颈部,并且在皮质层内大幅度衰减;且随着倾斜角度增大,种植体的Von-Mises峰值呈现出明显的递减趋势。而种植体的位移无论植入角度如何变化,均较小,但是在颈部及根尖区有较大的位移,而且在颈部的位移大于根尖区的位移,且两者方向相反,呈现出明显的规律性。
3 讨论
3.1口腔正畸微植体支抗技术的临床效果:
近年来,随着生活和饮食方式的改变,口腔疾病发生率逐渐升高,有文献显示错颌畸形与龋齿、牙周病等口腔三大疾病的患病率已经高达50%[2]。传统上,口腔正畸采用舌弓、口外弓、口内组牙以及横腭杆等装置,但效果并不明显。患者进行口腔正畸的目的,就是讲需要矫正的错位牙按照指定需要的方向和距离进行移动,这就要求支抗牙尽量不发生任何移位[3]。近年来,微植体支抗技术以其稳定可靠性、操作简单性等优点逐渐受到了广泛的关注,成为口腔正畸的新兴研究热点。该技术与以往治疗方法最大不同就在于其种植体不依赖于与骨结合进行固位,而是依靠种植体与骨组织之间的机械嵌合力进行固位。
微植体支抗可以最大限度利用拔牙间隙内收前牙,从而改善面型及磨牙的关系,进而获得理想的支抗控制效果;同时将口外支抗转化成了口内支抗,避免牙齿出现负向移动的同时,加强了支抗,进而解决了磨牙下垂和前颌骨发育不足的正畸难题[4]。本研究显示,采用微植体支抗技术的实验组比采用传统方法的对照组,在显著提高上中切牙倾角差和上中切牙凸距差的同时,显著降低了磨牙位移,效果显著。
3.2 微植体支抗技术生物力学研究:
由于微植体提供强支抗的前提是保持稳定,因此其稳定性在临床正畸中成为医师们普遍关心的问题,虽然微植体有较高的初始稳定性,但仍有报道显示器有7%-15%的失败率。总之,微植体支抗的成功与否不仅与微植体型号选择和手术设计有关,而且与“微植体――骨界面”状态有较大密切的关系,因此有必要采用三维有限元法对微植体进行生物力学分析。
本研究显示,种植体的植入角度、正畸力的加载以及种植体的外形都可能影响微植体的支抗稳定性。
在植入角度方面,由于应力从种植体传导至骨界面时骨皮质会承受较大的应力,所以随着植入角度减小,种植体与骨皮质的接触面积势必增大,那么种植体的稳定性就得到了增强;但是,随着种植体倾斜角度减小,种植体上的水平力矩会随之增大,导致种植体――骨界面承受的应力增加。这两种立综合影响种植体的稳定性。本研究结果显示,随着倾斜角度增加,种植体的Von-Mises峰值递减,表明正畸力力矩发生了改变,这对种植体――骨界面的应力分布起重要作用。
种植体的位移不能超过一定的生理限度,否则就可能造成骨小梁微骨折,进而导致界面骨组织的吸收和坏死,最终使得植入体发生松动而失败。本研究发现,不管植入角度如何变化,200g水平力的作用下种植体的位移均较小,因此能够 保持其稳定性。同时种植体在颈部及根尖区有相对较大的位移,而且在颈部的位移大于根尖区的位移,且两者方向相反,呈现出明显的规律性。
参考文献
[1]邓洪春.微型种植体支抗在空腔正畸治疗中的应用探讨[J].北方药学,2012,9(2):98-99;
[2]宋元玲,张惠芳,任辉等.微型种植体支抗稳定性的临床研究[J].临床口腔医学杂志,2010(7),26(7):423-425;
关键词:优势侧;非优势侧;生物力学;偏侧性;损伤;跑步支撑期
中图分类号:G 804.6 文章编号:1009-783X(2017)01-0091-06 文I标志码:A
学者们对跑步损伤的机制研究了近30年,但是其损伤的病因一直是专家和临床医生研究的难点,且近年来损伤的概率一直在增加。流行病学研究报告指出,每年有高达70%的跑步者忍受着因跑步损伤带来的痛苦。有研究对1583名老年人进行调查,结果表明膝骨性关节炎发生在右侧(优势侧)的概率高于左侧。如果损伤经常出现在一侧肢体,这可能与下肢不对称性相关,也就是说下肢偏侧性或不对称性可能是造成一侧持续损伤的重要原因之一。此外,下肢不对称性或偏侧性已被证明是影响损伤发生率的因素。为此,了解跑步时下肢优势侧和非优势侧的生物力学的偏侧性对预防和治疗下肢损伤具有重要的作用。
偏侧性是Broca首次提出的,并指出人体在左右两侧的运动组织和大脑功能不同。研究表明偏侧性10%~20%取决于遗传,80%~90%取决于后天的环境因素,性别、工作的复杂性及发育特征也扮演着重要的角色。相对于步态分析,偏侧性在其他科学领域如神经生理学和运动控制研究已久,但是偏侧效应或不对称性与跑步相关的损伤并未引起学者们的广泛关注。一些研究者只选择优势侧进行研究来代表下肢整体感觉,或是将损伤者与无损伤者进行对比_,也有的学者甚至将左右两侧的数据进行平均来比较。上述研究者并没有考虑受试者优势侧与非优势侧是否存在差异性,这在一定程度上就默认了优势侧与非优势侧肢体生物力学特征的对称性。关于无损伤者跑步过程中优势侧与非优势侧是否存在差异性,学者们对他们的优势侧与非优势侧跑步时所穿跑鞋的舒适性、受试者生物力学特征等方面的对称性或差异性进行了研究;但是上述研究得出两侧的对称性程度存在不同程度的差异性,并未达成共识。考虑到不同的性别对下肢力学影响机制的不同及无损伤男性受试者跑步支撑期下肢两侧生物力学的偏侧性鲜见研究者探讨。
鉴于此,本研究采用Vieon红外高速运动捕捉系统和Kis-tier三维测力台无损伤男性受试者跑步支撑阶段优势侧与非优势侧的运动学、动力学特征进一步对比分析,并结合与损伤相关的载荷率指标等探究两侧下肢在跑步支撑期是否存在一定的偏侧性,以期为指导运动员训练及预防运动损伤提供重要的借鉴价值。
1研究对象与方法
1.1研究对象
本研究选取普通健康无损伤者男性受试者12名,年龄(23.0±1.1)岁,身高(173.5±2.1)cm,体质量(63.9±4.7)kg。受试者在实验前进行问卷调查,并确认其在实验前24 h之内没有进行过大强度运动,在过去的1年里没有下肢损伤,没有进行过手术,身体各方面机能良好。
1.2实验仪器
本研究采用英国生产的Vicon红外高速运动捕捉系统(包括8台型号为MX13的红外摄像头、PC主机和标准配件等)采集下肢髋、膝、踝关节运动学数据,采集频率为200 Hz;根据Vi-con系统中的下肢模型(PlugInGait),将16个Marker球精确地贴在人体下肢各环节的标志点上,如图1所示。
支撑期的力学指标使用瑞士生产的Kistler三维测力台采集,如图2所示,采样频率为1000 Hz,经转换模块将Kistler力台与Vicon进行同步。
1.3实验流程
1.3.1测试方法
实验前利用跑步机进行5 min左右的热身活动,利用踢球法来判定受试者的优势侧与非优势侧,踢球时左右两侧均采用原地踢球。实验之前,首先让受试者熟悉此动作,正式测试时,每侧各进行3次踢球动作,记录每一次的成绩,分别选取两侧最远的成绩进行评定,踢球距离最远的一侧评定为优势侧。这是国内外常用的一种判定下肢优势侧与非优势侧较为简便有效的方法。
要求受试者统一身着实验室的紧身短裤,赤脚站立,与肩同宽,此时对受试者的身高、体重、腿长、膝宽、踝宽等形态学指标进行测量。正式测试前,要求受试者赤足在长约8 m的木质地板上(力台安放于之间)试跑几次,调整起始步位置使测试足完全踏在力台上面,使受试者足底适应接触的力台,减少测试仪器对受试者跑步动作的影响,直至受试者感觉自己可以正常测试为止。要求受试者在此跑步过程中“无视”力台的存在,避免出现跨步、踮脚、忽快忽慢等现象,要求受试者的跑速控制在(3.5±5%)m/s。跑速的测试仪器采用苏大自主研发的光电感应计时系统,主要包括起点触发设备、终点采集设备、电脑控制端。将起点触发设备放于8 m距离的起点,终点采集设备放于8 m距离的终点。受试者从2采集器中间穿过,仪器结束采集并自动计算受试者穿越起点和终点设备的时间,计算跑速。正式测试时,每个受试者的两侧各按要求做3次动作,每次动作间隔2 min,以避免疲劳对研究结果的影响。
1.3.2指标选取
1)运动学指标包括髋、膝、踝关节在矢状面和额状面内的角度。矢状面包括:足跟着地时刻、足趾离地时刻的髓、膝、踝关节角度;踝关节最大背伸角度;膝关节最大屈曲角度;髋关节最大屈角度和最大伸角度。额状面包括:足跟着地时刻、足趾离地时刻的髋、膝、踝关节角度;踝关节最大外翻角度;膝关节最大内翻角度;髓关节最大内收和外展角度,单位是(°)。
2)动力学指标主要是经体重标准化处理后的三维地面反作用力峰值。包括:垂直方向的第1和第2地面反作用力峰值(FGRF and SGRF);内外方向上的地面反作用力峰值(MGRFand LGRF);前后方向的加速力峰值和制动力峰值(peak accel-eration GRF and peak braking GRF,AGRF.and BGRF)。如图3所示。
3)经支撑期总时间标准化处理后的着地时刻至地面反作用力峰值的时间Δt。
4)载荷率(LR),单位是kg/s,公式为:垂直方向的第1载荷率=第1地面反作用力峰值除以到达第1峰值的时间;垂直方向的第2载荷率=垂直第2峰值减去波谷值再除以两力值之间的时刻差。
5)对称指数(SI),本研究主要计算垂直地面反作用力和载荷率对称性,公式如下:
SI是由Robinson等首次提出的,用来量化左右两侧的差异,当SI=0时表示两侧完全对称,SI≤10%时,表示两侧比较对称,SI越大说明两侧对称性越低。其中XD(Dominant)代表优势侧,XN(Non-dominant)代表非优势侧。本研究未对内外和前后方向的地面反作用力对称指数进行计算,主要是因为SI不适合较小数值的运算。
1.3.3数据处理
本研究采用SPSS 17.0统计学软件包对实验数据进行处理,数据以均数±标准差表示。优势侧与非优势侧的各指标差异进行配对t检验,检验水准选α=0.05。
2研究结果
2.1优势侧与非优势侧跑步支撑期的运动学特征
从跑步支撑期优势侧与非优势侧关节角度(见表1和表2)可以看出:优势侧与非优势侧跑步支撑期额状面内的髓、膝、踝关节角度两侧比较差异无统计学意义(P>0.05);在矢状面,非优势侧膝关节最大屈曲角度大于优势侧(P
2.2优势侧与非优势侧跑步支撑期的动力学特征
2.2.1优势侧与非优势侧跑步支撑期的地面反作用力峰值特征和对称指数
优势侧与非优势侧支撑期地面反作用力峰值见表3,垂直地面反作用力峰值及到达峰值的时刻两侧差异比较无统计学意义(P>0.05),前后地面反作用力峰值及到达峰值的时刻两侧差异比较无统计学意义(P>0.05)。内侧地面反作用力峰值优势侧大于非优势侧,而到达峰值的时间晚于非优势侧(P
地面反作用力峰值对称指数如图4所示,其中FGRF(21.62+11.37)均值大于10%,SGRF(6.47±4.56)均值小
2.2.2优势侧与非优势侧跑步支撑期的载荷率特征和对称指数
跑步支撑期载荷率特征如图5所示,跑步支撑期优势侧与非优势侧载荷率特征两侧差异无统计学意义(P>0.05)。第1载荷率(34.92±28.48)和第2载荷率(20.95+17.44)对称指数均值大于10%,如图6所示。
3分析与讨论
本研究发现在跑步支撑期,非优势侧与优势侧相比仅在矢状面内的膝关节最大屈曲角度和髓关节最大伸角度表现出差异性(P0.05)。关于无损伤者跑步支撑期优势侧与非优势侧下肢关节角度的研究较少,Brown等对研究指出无损伤女性受试者跑步时优势侧与非优势侧运动学参数未表现出差异性,性别和所选指标的不同可能是导致上述结果不同的原因。此外,有学者对优势侧和非优势侧单腿下落着地的生物力学偏侧性进行研究,指出非优势腿落地时膝关节和髋关节在矢状面活动范围较小增加了非优势腿在单侧动态运动时的损伤风险;而有研究对两侧连续纵跳的生物力学进行了分析,指出非优势侧可能在屈伸与外旋方向进行了较大的运动限制,减小了其下落损伤的风险。上述研究说明了不同的运动形式表现出不同的下肢对称性,其易损伤的机制可能就有所不同;因此,在不同运动形式中所呈现出的下肢不对称性及损伤的机制有待学者们进一步探索,对下肢损伤与康复具有重要的作用。本研究所呈现出的运动学差异性,提示了在跑鞋、矫形仪器以及临床康复治疗时,不能只选择一侧来代表整个下肢的感受或康复效果,需要考虑其存在的差异性。
优势侧和非优势侧在跑步支撑期所表现出的运动学差异可能与下肢僵硬程度有关。Brauner等对单腿跳跃时优势侧与非优势侧腿部僵硬程度进行了研究,并指出优势侧较大的肌肉力量可能会导致其腿部僵硬程度较高;但研究结果却表明两侧的腿部僵硬程度相似。De等指出赤足跑与穿鞋跑相比,在支撑期腿部更加僵硬。本研究受试者赤足跑步支撑期优势腿与非优势腿是否存在不同的僵硬程度,有待进一步研究。此外,下肢屈伸肌肉力量也可能是造成上述\动学差异性的原因之一,Lanshammar等对159名健康女性(非运动员)下肢优势侧和非优势侧屈伸肌力量进行了对比,指出优势腿的屈肌弱于非优势腿,伸肌力量强于优势腿。Rahnama等也指出足球运动员优势腿膝关节屈肌较弱。优势腿较弱的膝关节屈肌可能是造成膝关节最大屈曲角度较小的原因。由表1和表2可知,髋、膝、踝关节无论是在矢状面还是额状面,在足跟着地时刻和足趾离地时刻两侧角度的差异比较均无统计学意义(P>0.05),在跑步支撑期相似的着地和离地角度。说明无论是优势侧还是非优势侧在着地和离地时刻分别采用了相同的控制策略,间接反映了两侧在此时刻的控制机制的相似性。此前已有研究指出跑速会影响跑步时运动学参数的变化,由于本研究对受试者的跑速进行了控制,那么随着跑速的增加,在着地和离地时刻或者说在整个支撑期的关节角度是否会因跑速的增加表现出不同的差异性,今后的实验研究中可以考虑跑速的变化对两侧下肢运动学参数偏侧性的研究。此外,从研究结果还可以看出:矢状面内的髋关节最大伸角度和膝关节最大屈曲角度两侧差异具有统计学意义(P0.05),从足跟着地时刻过渡到支撑中期再到足趾离地时刻,神经机制是如何在控制下肢运动,使得矢状面两侧髋膝角度在支撑期经历了相似、差异、相似的过程,未知而复杂的神经控制机理可能是学者和临床医生对跑步损伤的原因研究多年,还一直有所困惑的重要原因之一。
在跑步支撑期,优势侧与非优势侧主要在内外地面反作用力峰值存在差异性,内侧地面反作用力峰值优势侧大于非优势侧,外侧地面反作用力峰值非优势侧大于优势侧(P
由图3可以看出:垂直方向的地面反作用力呈现出“两峰一谷”的特征,其中的第1峰值(A)出现在足着地期为冲击力峰值,而第2峰值(C)出现在蹬地时刻为推动力峰值,也有学者将第2峰值称之为活跃峰值。本研究中的第1峰值和第2峰值两侧相比差异没有统计学意义(PI>0.05),但是优势侧和非优势侧的第1峰值(冲击力峰值)对称性指数SI(21.62±11.37)大于10%,说明两侧在脚着地后所受的冲击力值出现了偏侧性。脚着地初期所受到的较高的、较快的冲击力一直被认为是造成下肢损伤的重要原因之一。相比非优势侧,优势侧在跑步支撑期较小的膝关节屈曲角度和髓关节伸角度,却承受与非优势侧相似的冲击力,较小的膝关节屈曲角度,使得膝关节内部承受的压力增大,瞬间表现出ACL张力增加,以及两侧在脚着地后所受的冲击力值的偏侧性,都说明了优势侧膝关节更容易损伤。有研究指出,在支撑相前50%的时间内较小的膝关节屈曲角度,此时主要股四头肌的长头腱在维持膝关节的稳定,膝关节易损伤就预示着前交叉韧带(ACL)损伤的概率大幅提高,甚至会出现ACL断裂的现象,提示了优势侧膝关节ACL容易损伤。冲击力峰值出现在脚着地之后,此时冲击力主要是通过足跟垫、跟骨、距骨然后转移到腿部,将冲击力转移到骨也是一种缓冲震荡的机制,也可能代表了骨的载荷。Lieberman等指出冲击力转移出现在足跟着地后的前50 ms,而冲击力转移和垂直载荷率及胫骨冲击相关,可能造成骨和软组织损伤(应力性骨折和足底筋膜炎)。本研究中的第1载荷率和第2载荷率两侧相比差异无统计学意义(P>0.05),如图5所示。结合图6有关计算的载荷率对称性指数可知,其对称性指数均大于10%,说明两侧在跑步支撑期的载荷率并不对称。有学者指出载荷率反映了垂直地面反作用力需要多长r间可以达到第1峰值,也可以称为冲击载荷,其主要指身体在单位时间内吸收地面反作用力的快慢,单位时间内吸收的能量越多,其损伤的风险就越高。长期劳损积累,可能会造成优势侧胫骨应力性骨折和足底筋膜炎。从图5所得到的数据可以看出优势侧第1载荷率均值高于非优势侧,其对称性指数(34.92±28.4)大于10%。说明第1载荷率偏向于优势侧,不对称的载荷率,再一次说明了在跑步支撑期优势侧较易损伤。目前,关于跑步载荷率的研究主要集中于冲击载荷(第1载荷率),主要是因为冲击载荷与跑步常见损伤相关。
4结论