前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇隧道工程支护的基本要求范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)32-0131-04
一、引言
我国是一个多山的国家,尤其是西部地区,山地面积更是占到了国土面积的一半以上。近年来,随着国家西部大开发战略的实施以及拉动内需的需要,在西部山区修建了大量的高速公路、铁路以及水电工程,相应的隧道工程数量也日益增多。隧道工程的大发展,遇到的岩土及地下工程灾害问题也越来越多。对各种复杂工程灾害问题的处置,需要工程技术人员具有一定的理论基础、实践经验和从事科研的能力,这同时也对目前高等院校隧道工程专业的教学培养模式提出更为严格的要求。
作为交通工程与土木工程专业必须具备的重要专业基础课,《隧道工程》是一门实践性、综合性和针对性很强的课程。该课程的教学目的和教学任务就是使学生掌握隧道工程的基本概念、基本构造、设计理念、施工方法以及行业规范等,初步具备从事隧道工程设计、施工和监管的行业从业能力。如果继续沿用传统的单纯课程教学,对发展技能、培养能力等方面的作用有限,不能完全适应新形势下学生全面发展的需要。有鉴于此,部分学者从教学模式[1,2]、教学方法[3-6]和教学手段[7-9]等方面对隧道工程的教学改革进行了研究,力图在提高隧道工程的课堂教学质量的同时,培养学生的专业素质以及工程实践和创新能力。这些研究大大促进隧道工程教学的改革,但是从实际教学效果来看,还有继续提升的空间。本文结合《隧道工程》实践性强的特点,继续探索更为适用的教学模式和教学方法。
二、隧道工程教学特点
1.隧道工程课程涵盖的知识面广,是工程地质、建筑材料、建筑结构和力学等诸多基础课程的综合应用。例如,在讲解隧道围岩压力计算时,就必须用到土力学中的侧向压力计算理论和弹性力学中的圆环受均布压力计算理论,而在讲解衬砌结构设计方法时,就要用到结构力学和材料力学知识。
2.课程教学内容具有实践性强的特点,但学生往往缺乏对实际工程的了解,故而在课程学习时对有些知识难以理解和消化。例如,在讲解隧道钻爆法施工时,需要对钻孔深度、钻孔间距、钻孔深度、钻孔布置、雷管类型、起爆药量等进行设计,对于从未到过施工现场的学生而言,理解起来有一定难度。
3.隧道工程涉及到的行业规范、规程或标准有很多种,不同规范之间既有区别又相互联系[10]。仅就隧道设计规范而言,既有《铁路隧道设计规范》(TB10003-2005),也有《公路隧道设计规范》(JTG D70-2004)以及《地铁设计规范》(GB50157-2003),更有水利、矿山和能源地下工程等行业相应的隧道设计规范。因此,在教学过程中既要讲解隧道工程的基本概念、基本原理,也要对不同行业规范加以对比分析,增强学生毕业后对所从事行业的适应能力。
三、教学存在问题分析
1.教材结构体系混乱、主线不明。现有的隧道工程教材有几十种之多,但其侧重点又不完全一致。对于交通土建专业学生的来说,隧道工程的教学内容不仅要有勘察、设计、施工、管理等方面的知识结构,而且还有铁路、公路、城市地铁的功能区分。面对种类繁多的教材,以及错综复杂的教学内容,容易给学生造成结构体系松散、主线不明的感觉。
2.教学学时偏少,往往难于满足教学需求。教学学时少与教学内容多是当前高等学校本科课程教学的一个突出矛盾,这就很难在规定的时间内把课程内容讲透、讲通、讲精,也使得学生对课程内容的掌握和熟练应用的难度加大。
3.教学模式单一,学生被动接受知识传播。现有的教学方式,大多采取“板书+多媒体”的形式,再配以必要的图片和说明,通过教师的灌输和学生的被动接收,实现知识的传播,这就导致学生的主观能动性差,缺乏独立思考,无法掌握课堂教学的精髓。
4.课程教学与实践脱节严重,影响对所学知识的理解与掌握。隧道工程实践性、应用性强,很多施工技术和施工工艺只有在现场亲眼所见,才能知其所以然。现实情况是很多学校由于资金限制或缺少能够实习的场地,学生只能靠课堂上的想象,难以深入理解隧道工程的设计方法与施工工艺。
四、教学改革探索与实践
1.教学模式改革。传统的教学模式是教师先根据开课内容选定教材,根据教材内容制定教学大纲和教学计划,再编写教案和进行教学活动[11]。这种单一的以教定学和因教材而施教的模式,一方面不能适应学生毕业后所从事的实际工作对其能力培养的需求,另一方面学生对这种宣教式的教学模式容易产生视觉、听觉上的疲劳,因此隧道工程教学模式急需向多元化的方向发展。
(1)研究性教学模式。研究性教学起源于20世纪欧美国家,建构主义和人本主义是研究性教学的理论基础,基本要求是师生共同参与,实现“教”与“学”的互动[12-14]。在《隧道工程》实际教学过程中,可结合教师当前正在开展的科研活动创设具有前沿科学命题的问题情境,如针对隧道衬砌结构的建养一体化自修复问题,可引导学生通过查阅文献、搜集资料、调查等方式来思考、分析并解决问题,让学生在探索过程中体验学习的乐趣。
(2)讨论式教学模式。传统教学的一个特点就是教师讲、学生记,双方缺少互动,教学过程枯燥,为更好地教学,可采取讨论式教学模式。例如,在教学过程中,可适当布置一些小任务让学生分组讨论,如针对隧道围岩塌方问题,让不同组的学生分别提供一个各自的加固方案,然后各组之间展开辩论,分析各自的优缺点。这样既掌握学生对问题的理解能力,以便更好地教学,又能最大限度地调动其学习积极性和参与意识[15]。
(3)案例式教学模式。案例式教学往往围绕某个真实工程,利用当前学习的理论知识,对其进行分析,以求学生在解决疑难问题时做出相应的决策[16]。例如,在讲解盾构隧道联络通道冻结法施工时,可结合上海地铁4号线穿越黄浦江段的施工事故案例,让学生在进行软土冻结帷幕设计计算的同时,分析事故发生的根源,并提出防控措施,加深其对基本原理和概念的理解,进而提高分析问题和解决问题能力。
(4)实践式教学模式。课堂讲授与工程实践相结合是完成隧道工程教学内容的必要环节[17]。例如,在讲解隧道围岩破坏和支护设计时,带领学生参观本校现有的试验室和仪器设备,通过观摩模拟隧道开挖和结构支护的模型试验,加深对隧道工程理论知识的理解与认识。此外,利用暑假短学期,带领学生到隧道施工单位进行认识实习,增强学生对隧道施工的感性认识。
2.教学方法改革。
(1)手写板书与多媒体相结合教学。《隧道工程》课程教学内容较多,也比较枯燥,如果单凭教师板书和图片展示,还是很难让学生对真正理解实际施工过程和施工工艺的。为解决这一问题,在教学过程中辅之以多媒体技术,通过预录现场施工视频和动画演示的方式,向学生展现隧道施工的各过程,便于其理解和掌握,使原本枯燥、平面的教学变得生动、立体起来。采用多媒体教学,不仅增强了学生的感官认识,而且还有利于让学生了解国内外先进的设计理念和施工技术,激发学生的学习兴趣,起到事半功倍的效果。
(2)结合工程实例讲解基本理论。隧道工程理论性和实践性都很强,仅凭文字描述或简单的几幅图片难以提高学生对问题的理解,只有结合工程案例才能讲得生动、形象,有利于提高学生的兴趣。例如,在讲解隧道围岩塌方破坏机理时,如图1所示,以作者参与过的科研项目――江西武宁至吉安段高速公路上奉隧道塌方事故为例,详细分析了围岩变形以致塌方破坏的机理,并据此介绍了相关处治措施。通过案例教学,不仅活跃了学生的思维,增强学生对相关理论知识的认识水平,而且也大大提高学生的工程实践能力。
(3)采用模型试验实现教学内容直观化。在讲解隧道围岩稳定性及其破坏模式时,仅凭教师口头描述和解释,仍难以说明地下工程失稳、破坏等相关问题。图2为作者向学生演示的围岩渐进性破坏模型试验,可以直观地再现围岩破坏过程,从而让学生对所学的基础理论知识有深刻的理解。
(4)采用仿真模拟展示隧道力学问题。隧道工程设计涉及到围岩压力计算、支护结构选型和结构内力计算,因而其中的力学问题颇为复杂。为此,教学过程中,结合数值模拟方法对地下工程变形和破坏进行数值模拟,不仅简单易懂,适用性强、经济型、可操作性和可重复性,而且能得到许多在常规实验中难以观测到的重要信息[17]。作者结合自身研究经历和积累的相关研究成果,在教学中想学生展示如何利用数值分析软件模拟不同类型的围岩变形破坏形式及不同支护方案对应的支护效果,并引导部分兴趣浓厚的学生进行实际操作训练。图3为模拟得到的跨断层隧道施工时的围岩破坏模式。
(5)采用虚拟现实技术增强学习兴趣。虚拟现实技术是运用计算机技术对现实世界进行全面仿真,能解决学习媒体的情景化及自然交互性要求,在教育领域内有着极其广阔的应用前景[18]。如图4所示,作者通过与校内其他院系教师合作,利用自行开发的软件,实现沉浸式三维环境中的体验式教学,有利于加深学生对地下工程的施工环境、施工过程和健康诊断等问题的理解,增强进一步学习兴趣。
(6)通过专题讲座拓展学生视野。为进一步调动学生学习的主动性,在教学过程中适当地引导学生参与一些专题讲座。同济大学每年会定期和不定期地邀请一些国内外专家学者和有经验的技术人员来开展学术交流,介绍隧道工程的最新发展动态和研究成果,在这些活动中,不仅能解答学生的一些疑惑,而且还拓展了学生视野和思路,并加深学生对隧道基本概念和基本原理的理解,进而提高对实际工程问题的分析与解决能力。
五、结语
《隧道工程》课程的教学内容涉及岩土与地下工程的勘查、设计、施工和养护等多方面的专业知识,是一门理论性、实践性和应用性均较强的课程。结合作者自身的教学经历,从该门课程教学特点和存在的问题出发,对课程教学模式和教学方法的改革做了初步的探索,从而适应新形势下对卓越工程师能力和技能培养的需要。
参考文献:
[1]蒋英礼,王劲松,刘伟.“地下铁道施工技术”课程教学改革实践[J].职业技术教育,2010,31(20):56-58.
[2]李晓龙,郭成超.“隧道工程”课程教学模式探讨[J].中国电力教育,2011,(29):96-98.
[3]杨春景,刘冉冉.关于隧道工程课程教学改革的探讨[J].教育改革,2012,(1):32.
[4]施成华.隧道课程互动式教学方法的探索与实践[J].长沙铁道学院学报(社会科学版),2009,10(3):87-88.
[5]杨建中.项目教学法在井巷工程课程教学中的应用[J].昆明冶金高等专科学校学报,2008,24(3):94-98.
[6]王迎超,耿凡,胀成林,等.《隧道工程》课程的研讨式教学改革[J].教育教学论坛,2014,(15):106-107.
[7]周德泉,王桂尧,刘宏利.“岩土与隧道工程”课程群建设与特色人才培养探讨[J].中国地质教育,2010,(4):119-122.
[8]李天祺.隧道工程课程教学改革思考[J].中国建设教育,2010,5(9):45-47.
[9]潘建平,汪小平,朱洪威.隧道工程课程教学改革探索[J].山西建筑,2011,37(30):240-241.
[10]王迎超,靖洪文,耿凡.“隧道工程”课程教学改革思路探讨[J].煤炭高等教育,2013,31(6):116-118.
[11]杨曙光.从课堂教学到网络视频教学――计算机辅助设计教学模式新探索[J].美与时代,2013,(8):135-136.
[12]董增文,邓晓华,张华.研究性教学在工科教育中的实践与反思[J].高等工程教育研究,2013,31(5):164-167.
[13]张典兵.现代大学研究性教学的内涵解读与实践路向[J].现代教育科学,2014,27(5):24-26.
[14]王章琼,黄敏,王亚军.“隧道工程”课程研究性教学探索与实践[J].中国地质教育,2015,24(2):28-31.
[15]徐义洪.高职《隧道工程施工与安全》课程教学模式探讨[J].黑龙江科技信息,2015,(15):135.
[16]李晓龙,郭成超.“隧道工程”课程教学模式探讨[J].中国电力教育,2011,29(3):96-98.
关键词:隧洞;塌方;防水;结构砼
Abstract: along with the increase in the tunnel construction, the tunnel collapse and leakage in the quality problems appear constantly, how to ensure the engineering quality in construction, excavation and supporting in tunnel construction, lining, etc. In the process of collapse prevention and cure, leakage and other quality problems become the focus in the study of construction team. Tunnel engineering quality problems that frequently occur are analyzed in this paper, from the tunnel construction quality control aspects of the shallow slightly measures are put forward.
Key words: tunnel; Landslides; Waterproof; The structure of concrete
中图分类号:TV554文献标识码:A文章编号:2095-2104(2013)
一、隧洞工程质量问题
隧道出现的质量问题主要有隧道渗漏水、衬砌开裂、衬砌背后空洞、渗漏水、通风照明不好等。隧道渗漏水在中国的公路隧道中较为普遍,隧道渗漏水会造成衬砌开裂,使原有裂缝发展变大,加重衬砌裂损;当地下水有侵蚀性时,会使衬砌混凝土遭受侵蚀,并且随着渗漏水的不断发展,侵蚀程度日益加重,降低路面抗滑性能,造成电路短路,危及隧道运营安全,而且易引起其他病害。渗漏水与塌方等质量问题的出现主要是由以下方面引起的:二次衬砌拱背混凝土灌注不满,导致拱顶厚度不够严重时外层钢筋、拱顶脱空;在浇筑过程中,材料供应跟不上,发生机器故障、停电、出现间隙浇筑、又没有按要求进行处理;忽视初喷作用,初期支护初喷严重滞后或不作初喷;在采用台阶或分部开挖时,下半断面护挖的纵向距离过大,接长的钢架拱脚没有支撑在稳定地基上,拱脚悬空,暴露时间过长,造成拱顶下沉量过大,甚至出现塌方。
二、隧洞施工质量控制
(一)施工方法的选择
在当前的施工实践中,采用最多的方法是台阶法,其次是全断面法。由于施工机械的开发和辅助工法的采用,施工方法上有向更多地采用全断面法,特别是全断面法与超短台阶法结合的发展趋势。也就是说施工方法有向全地质型方法转变的趋势。地质条件是选择施工方法的最基本的一个因素,还要强调的是:施工方法必须符合快速、安全、质量及环境的要求。因此,选择施工方法时,需要考虑的基本因素大体上可归结为:1)施工条件:实践证明,施工条件是决定施工方法的最基本因素,它包括施工队伍所具有的施工能力、素质以及管理水平。目前我国隧洞施工队伍的素质和施工装备水平,有高有低,因此在选择施工方法时,不能不考虑这个因素的影响。2)围岩条件:也就是地质条件,其中包括围岩级别、地下水及不良地质现象等。围岩级别是对围岩工程性质的综合判定,对施工方法的选择起着决定性的作用。3)隧洞断面积:隧洞尺寸和形状,对施工方法选择也有一定的影响。4)工期;工期决定了在均衡生产的条件下,对开挖、运输等综合生产能力的基本要求。5)环境要求:当隧洞施工对周围环境产生如爆破震动、地表下沉、噪声、烟尘、地下水条件的变化等不良影响时,环境条件也应该成为选择隧洞施工方法的重要因素之一。
(二)隧道防水板工程质量控制措施
1、正确选择防水板的基本条件是:有一定的强度,在二次衬砌模筑砼灌注前防水板能受机械作用而不受损伤,材料具有耐久性,板间接缝严密可靠,施工操作简便,经济实用。国内目前常用的有PVC、EVA、ECB、PE、EVA/ECB板等多种防水板,对其主要性能指标进行对比,发现EVA共挤防窜流防水板防水效果更佳。另外,为防止喷射混凝土刺破防水板,防水板内侧附无防布作为缓冲层并起防护、过滤和一定的排水作用。
2、铺设防水层的注意事项
铺设防水板前应检查喷射混凝土面是否有钢筋头等露出,如有露出,应用砂浆抹平。铺设防水板的基面应坚实、平整、圆顺、无漏水现象,基面阴、阳角应做成100㎜圆弧或50×50㎜钝角。焊接时应以机械热焊为主,手工焊接仅用于零星修补。防水板应环向进行,下料长度应长于洞壁周长的400㎜,铺设时不可绷得过紧,松些为宜,以免浇灌混凝土时将防水板胀破。两幅防水板的搭接宽度应为100㎜,焊缝应为双条焊缝,单条焊缝的有效宽度≮10㎜。环向铺设先拱后墙,下部防水板应压住上部防水板。相临两幅防水板接缝应错开, 错开位置距结构转角处≮600㎜应先将缓冲衬垫用暗钉圈固定在基层上,然后将防水板与暗钉圈焊接牢固。用钢钉固定,间距:拱部为500~1000㎜,边墙为1000~1500㎜。固定点距边缘≮50㎜,在凹凸处适当增加固定点。锚固点必须用200×200㎜的防水板做补钉块。防水板的衬层应环向应从拱部向两侧依次铺贴平顺,并与基面固定牢固,起长、短边搭接宽度≮50㎜。
(三)防止隧道塌方的质量控制点
1、可通过超前地质预测预报手段,探明前方岩体的地质情况,针对前方岩体的情况,制定合理的施工方法和措施。当量测信息反应的围岩变形速度或数值超过规定值,加强工作面日常观察,发现隧道初期支护变形、岩层层理、节理缝或裂隙变大、掉块、坑道内渗水和滴水突然加剧等塌方前征兆时,采取增加临时支撑的方法加强支撑,并及时消除塌方隐患。
2、控制断面尺寸及超欠挖。隧道开挖断面的尺寸要符合设计的要求,在围岩较软且围岩压力较大的情况下,围岩变形较大,应根据计算及实测施工数据预留变形量及支撑沉落量,防止出现净空不够的现象。根据围岩情况和部位确定不同的超、欠挖规定值及允许偏差。需要强调的是,隧道的开挖质量检测不是仅对某一断面进行检验评价,而是在一个长度段内连续测量若干等距的断面,对所有实测数据综合计算分析,最后得出该段的开挖质量检测结果。在实际施工中,对超、欠挖的检测除了用水准仪、断面仪测量或尺量以外,还可通过比较实际出渣量与设计出渣量、实际衬砌混凝土量与设计衬砌混凝土量的方法来测定,如发现问题,及时查找原因并予以解决。
3、富水地段防坍塌措施。加强水文观测,注意出水状况变化,必要时加密超前钻孔探测,了解前方水文地质条件,制定与地质条件相符的施工方案。在少量集中渗水、淋水地段,通过透水层时布设一定数量的排水孔或埋设排水管,将渗水、淋水集中到排水孔排出,也可在钢筋网背后铺设反滤层或隔水层,将其固定在围岩上,通过软管边排水边喷射混凝土。若遇较大涌水,支护时对主要涌水出口暂不进行封堵支护,待涌水减小或退去时,再进行支护或固结封堵,使水流改变流向。在水压较大、含水量丰富的地段,采取超前加固支护、排堵结合等措施。
4、开挖和支护施工的时间尽可能缩短以减少围岩暴露时间;在爆破时要浅眼、密眼、严格控制装药量或用微差爆破;在加强超前预支护和衬砌结构的同时,严格按短进尺、强支护、勤量测、二次衬彻及时跟进组织施工,仰拱填充、模筑混凝土衬砌安全步距及时跟进,及早封闭成环,从严控制超前预支护和衬砌质量,做好应对大变形和坍塌的准备工作。
(四)隧道结构砼工程质量控制
1、施工开挖后,逐段核实围岩级别,取样化验地下水,并加强监测,发现异样时,及时汇报,采取措施。
2、加强基底的清理工作,使混凝土座落在坚硬的基岩上;混凝土整体浇筑,不间歇施工和加强振捣;尽量减少超挖,超挖部分采用与衬砌同标号砼浇筑回填;加强起拱线和拱顶部位的混凝土振捣,做到衬砌与围岩密贴;软弱围岩地段加强支护,优先进行仰拱施工及早封闭成环;选用配合比最佳级配集料的砼,使其快硬和早强;隧道衬砌段与掌子面拉开适当的距离,防止围岩爆破时砼受到扰动造成开裂。
3、在整个砼生产过程中,要定时进行核查,包括砼拌和物的均匀性、适宜的拌和时间、自动计量设备的准确性、机器及叶片的磨损程度等。
4、砼的运输能力应适应砼的凝结速度和浇注速度需要,以保持砼均匀性和规定的坍落度,并充分发挥设备效率。
参考文献
[1]才.隧道工程[M].北京:人民交通出版社,2010.
[2]于书翰,杜谟元.隧道施工[M].北京:人民交通出版社, 2010.
[3] 徐干成,白洪才,郑颖人地下工程支护结构[M].北京:中国水利水电出版社,2002.
[4]吕康成,王大为.隧道复合式衬砌防水层损伤预防探讨[J].公路, 2011(10).
[5]杨泓全.论提高隧道施工管理水平[J].城市建设理论研究,2011(08).
关键词:隧道工程;监测;信息系统;数据库;GIS;可视化;
作者:李元海等
中国是世界上隧道最多、发展速度最快、地质及结构形式最为复杂的国家,在建和待建的山岭隧道、地铁隧道、水底隧道、水电压力隧道等不计其数[1-2]。众所周知,隧道工程与地面工程的一个重要区别在于其处于特殊的岩土地质环境中,工程设计和施工中存在很多尚不完全清楚的问题,主要原因在于:(1)岩土地质条件千变万化,难以把握;(2)岩土结构与人工支护系统的相互作用关系尚不明确;(3)大量城市隧道工程周围环境影响十分复杂。由于岩土力学理论与技术发展和经济条件的限制,要准确预测隧道及周围环境在施工过程中的动态响应几乎是不可能的。当前一个有效的手段就是在施工中加强过程监测,以岩土层、隧道结构与周围建、构筑物的变形和受力以及地下水的变化信息为依据来优化或修改设计与施工方案,即信息化施工,它在隧道工程施工的安全和风险控制方面起着重要作用,尤其是对于繁华城市地铁或长大复杂隧道,信息化施工是必不可少的关键施工技术[3-4]。
然而,信息化施工在早期实施过程中存在的一些问题[5]现在似乎依然没有得到多少改观,特别是施工安全监测是否完全发挥了应有的作用还值得反思。在信息化施工中,施工监测存在的一些问题主要集中在2个方面:一是数据采集;二是信息管理,本文主要讨论后者。我们知道,地下工程的监测目标都具有一个共同的地理特征,它们总是位于某个空间位置,监测目标和监控测点之间都有一个相对空间位置关系,工程师对于安全问题的关心主要是发生在什么时间和什么地点,而地点与空间地理信息紧密相关,因此,在对隧道工程监测信息管理方面,融合地理信息与数据库管理的GIS技术应是一个最佳的选择[6],它以地图的形式形象直观地将工程、监测点与地面上下环境信息统一集成,能够对施工监测及其相关信息进行高效管理与快速分析,从而可提高施工监测的工作效率和信息化施工的技术水平。GIS在空间维度上包括二维和三维应用,在应用环境方面涵盖桌面、网络和移动终端,能够满足监测时空信息管理的多方面和多层次需求。基于GIS的隧道施工监测信息管理是信息化施工技术发展的必然趋势,笔者主要对其研究与应用现状、存在问题及发展方向进行综合分析与探讨。
1隧道工程监测信息分类与管理方法
现有隧道施工监测管理工作中的信息传递方式通常是在项目参与各方(如业主、设计、监理、施工和监测单位)之间进行,采用的形式有表格、单据、文件等纸质形式和电话、会议等传播形式,因此,信息收集、整理、加工、传递、检索和使用等整个周期较长,甚至出现重复和交叉工作,效率较低。这里,借鉴孙玉国[7]提出的以“数据”为中心的理念,笔者提出施工监测管理应以“信息”为中心的原则,加强信息分类与组织,借助网络技术实现信息管理平台的创建和应用,有利于提高监测信息管理的工作效率,充分发挥监测信息对设计与施工的指导作用。
1.1安全监测信息分类组织
信息的合理分类是为了高效管理,隧道施工监测及其相关信息种类繁多且来源广泛,按不同的分类标准有不同的分类方法,分类既不必过于精细,也不能过于简单,应从满足工程应用和便于信息管理的角度来适度划分。这里,建议以监测项目为中心,考虑重要影响因素,将监测信息划分为:(1)监测项目;(2)工程信息;(3)周围环境;(4)施工工况;(5)控制基准;(6)工程措施(类似知识库);(7)其他信息。根据信息随着时间是否变化,又可分为静态信息与动态信息两大类。其中,测点数据与施工工况是与时间有关的典型动态信息,而控制基准、工程地质和环境等可近似认为是基本不变的静态信息。
1)监测项目:
有的根据监测对象分为地表沉降、地层位移、地下水位、净空收敛、拱顶沉降、土压力、钢筋轴力、混凝土应变、桩柱结构沉降与受力等;有的根据监测目标的受力和变形简单划分为A项和B项两大类。
2)工程信息:
包括工程基本概况、施工方法以及工程水文地质等,这些内容有助于了解工程的基本情况。
3)周围环境:
分为地面建(构)筑物、道路、桥梁、河流、地下管线及地下硐室等,这些与施工监测的目标和环境影响分析紧密相关。
4)施工工况:
这是结合施工情况来分析监测数据变化规律及原因的必需信息,主要包括施工进度、开挖与支护情况及周围场地环境变化(如超载),通常以文字、数据、图片和影像等形式表达,是分析监测数据最重要的动态关联信息。
5)工程措施:
可以针对具体工程出现的常见事故或问题,建立一个对应的技术措施数据库,以便在为安全监测进行分析时能初步给出工程建议,供施工和设计单位参考;目前多数监测工作都会在监测报告,如日报、周报或月报表中包含这一项内容,但缺少一个全面、系统的数据库或知识库支持。
6)控制基准:
这是安全预警的重要依据,一般采用规范中的标准,但实际上,很多具体工程有一个自己的设定标准,依据工程条件的不同,或严格或宽松,所以,在控制基准设计时应充分考虑这2种情况。
7)其他信息:
上述内容之外的与监测有关的信息。
1.2监测信息的分析与预测
数据整理分析的目的是从平静中找出变化、从变化中找出规律、由规律预测未来,防患于未然是施工安全控制的核心目标,因此,基于监测信息的科学分析与有效预测至关重要。但众所周知,隧道及地下工程围岩与地质水文条件千变万化,非常复杂,即便是一个区段、一个工程获得的施工监测数据及由此得到的规律,很多情况下,也不能直接用于其他类似区段或工程。一个简单且有效的方法是采用回归分析,但回归分析目前多是获得了足够数据(即包括了稳定阶段的数据),在后期进行数据整理时经常做的一项工作,而在施工过程中,尤其是变形初期(数据量有限)似乎仍然不能解决后期变形的预测问题。除此之外,还有一些比较复杂也有着先进理论基础的预测方法,如人工神经网络、模糊数学、时间序列和粒子群优化理论等[8],这些方法似乎还主要停留在研究层面上,尽管很多文献给出的预测结果和实测结果曲线吻合得非常完美,但真正在实际复杂工程条件下的应用可靠性恐怕还存在很多疑问,应做进一步研究,此外,未来类似于联机分析处理(OLAP)等数据挖掘(DM)和知识发现(KDD)的综合智能分析技术的应用值得关注[9]。
1.3监测信息管理支撑技术
隧道施工监测工作包括信息采集与信息管理两部分。信息采集是信息系统的数据来源,当前,基于普通水准仪和收敛计等常规隧道净空位移量测虽然简单实用,但不能满足实时监测的要求,因此,一些具有实时与远程传输功能的诸如全站仪、静力水准仪在隧道监测中被作为一种新技术进行研究、应用和推广[10-11]。早期的隧道施工监测信息管理基本上停留在文字、表格和图形文档方面,这些信息往往都是分散的,查询和统计分析都要花费很多时间,管理工作的效率很低,而计算机信息技术的发展,特别是数据库、GIS、网络以及移动通信技术,使得监测信息的集成化和网络化管理日渐成为基本需求,同时基于三维空间与虚拟现实技术的形象化与可视化管理对工程师产生了很大的吸引力。可以说,计算机与信息技术是大步提升监测信息管理技术的重要支撑,其应用水平也是衡量信息化施工技术水平高低的重要标志,充分利用信息技术是未来隧道安全监测信息管理的技术发展方向。
2隧道工程施工监测信息管理系统研究与应用
2.1研究现状
隧道施工监测信息管理系统主要以程序或软件开发为核心,目前国内有众多研究人员开展了大量的研发工作,并取得了很多成果,当然也存在一些问题。
信息管理系统研发主要涉及系统运行的环境、系统功能的设计、系统的可视化功能和预测分析方法等几个方面。施工监测信息管理的发展可以分为早期替代手工计算的计算机数据计算与分析、采用数据库进行简单管理、以GIS(含WebGIS)技术应用为代表的集成多源信息的可视化管理等几个阶段;程序或软件应用从早期的DOS环境到当前的Windows(或Linux、OS),从单机到网络,从二维可视化发展到三维空间,可以说,监测信息管理技术的进步与计算机信息技术的发展和应用密不可分。
作为我国隧道信息化施工技术研究的前辈,王建宇[12]对信息化设计的原理以及监测数据的处理与分析方法较早进行了全面研究,此后,有不少研究人员相继开展了相关监测信息系统的研发工作。如邝明[13]开发的隧道施工信息监测及计算机辅助系统,基于FoxPro平台开发,在MS-DOS下运行,主要包括建立观测档案、量测数据输入、数据回归分析、超限报警及查询、输出打印等功能,同时创建有规范数据库,可作为早期系统开发特点的代表之一。张强勇等[14]采用VisualC++和SQLServer作为开发工具,考虑了网络运用,设计了基于C/S架构的网络版系统;崔健等[15]采用基于C#的面向对象方法和GIS二次开发组件MapX开发的系统,引入了GIS技术,利用Oracle进行数据库管理,考虑了数据远程传输和离线更新模式。杜年春[16]研究设计的监测信息系统也是基于网络应用环境,其中,WebGIS信息管理利用基于跨平台的Java语言进行开发的。蒋树屏等[17]研究建立的隧道现场监控量测数据管理系统能够生成围岩和支护结构的应变、应力在隧道开挖过程中的时间-空间分布曲线以及深孔量测项目在围岩内部的分布图,由此判断围岩与支护结构的稳定情况,系统包含基于扩张卡尔曼滤波器有限元耦合算法的反演分析是其主要特色。陆轶[18]、孙中伟[19]采用ArcGIS提供的二次开发组件包ArcEngine和ArcView创建了隧道监测GIS信息系统,是ArcGIS的典型应用之一。贺跃光等[20]研制开发的基于WebGIS的城市地铁施工监测信息管理系统提供以下功能:数据入库、数据处理及精度评定,报表与图形生成,回归分析与变形预报预警,网上信息及信息交流;系统分为系统应用、基础数据库、电子地图3个服务器节点;从功能结构上划分为6个子系统:地铁线路、站点基坑管理,监测数据管理,预警、预报信息管理,WebGIS信息管理,系统用户及日志管理以及信息交流平台,功能设计相对比较齐全。此外,王浩等[21]以采用全站仪进行洞室围岩表面三维收敛变形非接触监测为例,建立了一个功能相对专一的施工期监测信息管理系统。李天斌等[22]结合川-藏公路二郎山隧道围岩稳定性研究,初步建立了隧道信息化监测、预测和决策系统(TMFS),提出了围岩稳定性“综合集成分析”的理念,系统的基本功能组成体现了公路隧道新奥法信息化施工的工作流程,即施工跟踪测试与监测—评价与预测预报—信息反馈—信息化决策。国外有以意大利GeoDATA公司为代表的地下工程施工风险信息化管理平台GDMS,它包括监测数据管理系统以及文件管理系统,但该系统并不完全适合国情。
上述研究成果都考虑了隧道监测数据管理的基本功能需求,如数据计算、回归分析和图表绘制、预测预报等,主要区别在于开发方法、系统的结构、功能的多少、运行的环境、可视化的强弱以及实用性等几个方面。
笔者在隧道监测信息管理系统方面的研发历程,似乎也可作为该项技术阶段发展的一个小小缩影。在1995年采用Pascal编制了一个DOS环境下运行的简单程序[23],实现了监测数据计算与图表绘制的自动化;随后采用具有快速开发和数据库特色功能的Delphi[24-25],在1997年开发了一个Windows下运行的监测数据库管理程序,实现了菜单操作,将数据库(Foxbase)技术应用于监测数据的管理,这些系统的功能相对简单,但在日常数据计算、图表绘制和报表自动生成方面都明显提高了工作效率;在以可视化为显著特征的GIS开始盛行时,借鉴GIS思想,使用高级语言从底层(未采用GIS软件)初步开发了一个图形平台[26],具备类似AutoCAD的二维基本功能,包括点、线、面的绘制和复制、平移、镜像、捕捉等功能,实现了在监测地图上测点与监测数据的链接关系,底层开发的优点是系统独立于GIS、AutoCAD等相关平台软件,灵活性强、升级方便;缺点是研发与系统维护的工作量大,研发周期长。为解决这一问题,基于专业人员重在解决专业问题的思路,可以选择合适的通用GIS软件[6]为基础平台来进行二次开发,这样综合数据集成管理的效率高,开发出来的系统可视化功能强。近年来,笔者借助于商业GIS软件提供的SDK,基于桌面与网络环境进行了一些新的研发,并在工程现场中进行了应用,研究成果有待发表。
GIS无疑是隧道监测信息可视化的重要技术,此外,未来虚拟现实技术(VR)的应用也将是提升监测信息管理可视化的一个重要方向[27-28],引入VR和网络技术,通过对隧道现实环境的计算机再现,实现本地或远程隧道虚拟漫游、实时监测、信息管理于一体的隧道施工监测信息反馈系统,可以使用户能够运用鼠标和键盘突破物理、空间和时间的限制,直观方便地查看监测仪器与监测目标及周围环境的位置、范围和数据,在虚拟场景中监控管理监测目标,提高监测的直观性和临场感。
现在,移动通信终端设备的发展将为隧道监测信息的快速传输和高效服务提供技术支撑,尽管相关研究很少,但也有少数人员开始了一些探索,如邹进贵等[29]基于WindowsCE掌上电脑开发了一个沉降监测与管理信息系统,实现了数据移动传输和终端查询。移动通信设备上的信息系统开发也许不能理解为从PC到移动设备上的简单移植,隧道监测移动信息管理系统在开发工具、开发平台、信息系统框架设计、信息存储与传输等方面与PC系统都有所不同。目前流行于智能手机上的Android系统[30]未来在隧道监测信息移动管理方面的应用潜力很大,值得研究。
2.2现状分析
2.2.1研究开发方法
软件系统设计应遵循以下原则:功能实用性、可扩展性、灵活性、可重用性、可靠性和安全性。系统开发要解决的关键问题是数据信息的组织与管理,以及为用户提供一个友好的人机界面和满足网络化和可视化的需求。当前,数据管理平台或引擎通常采用MicrosoftAccess、SQLServer或Oracle等数据库,在Windows操作系统环境下,采用开放数据库互连(ODBC)方法,利用开发工具提供的应用数据接口ADO技术实现对数据库的创建、访问、编辑和查询等功能。具体选择何种数据库支撑软件,与数据量的大小和应用成本考虑有关。数据量小、应用简单可用Access,反之,可选用SQLServer等大型数据库。软件系统的人机交互界面一般采用通用高级开发语言(如Delphi、C#、VB和Java)进行设计开发,具体选择根据个人喜好或对软件的熟悉掌握情况。因为,一些开发工具在功能和软件界面设计效率方面区别不大,软件界面设计难度不在于工具本身的复杂性,而在于开发者一个良好的用户界面框架结构设计,良好的用户界面体现出对系统功能合理的层次组织,是便于系统应用推广的关键。网络化主要是满足监测信息的共享与远程监测两个需求,可以通过建立网站借助于Internet来实现监测信息的远程传输与查询;可视化除了简单的数据图形、影像与视频外,更重要的是GIS技术的广泛应用,通常借助于GIS基础软件的二次开发功能,如国外的ArcGIS[18-19]和国内的SuperMapGIS软件[31]都提供了相应的SDK(二次开发工具包),供开发人员采用通用开发工具来创建一个反应测点空间位置与周围环境的类似电子地图的图形平台[31],在此平台上集成多源信息,可以提高复杂信息的管理工作效率。
2.2.2系统功能结构
根据隧道工程监测信息管理的功能需求和综合现有研究成果,加上个人的认识与理解,笔者认为一个功能相对完整齐全的信息管理系统框架结构如图1所示。系统应以“信息”为中心,通过研发与应用,使得任何一位相关技术人员或主管领导(Anybody)在任何时间(Anytime)、任意地点(Anywhere),只要能够接入互联网即可访问本系统,完成系统中涵盖的所有管理工作(Anything),从而实现基于WebGIS的隧道工程施工监测的4A服务[32]。
需要说明的是,一个具体的监测信息管理系统不一定要包括图1所示的所有功能,可以针对工程应用的具体要求进行开发。当前很多相关系统大多也只是实现其中的部分功能,要建立图1所示的隧道施工监测信息管理的完整技术体系,还有很多工作需要做,其中,未来在移动终端、实时监测和虚拟现实仿真应用以及监测数据的可靠性预测分析方面都需要进一步研究。
2.2.3可视化技术
可视化是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕上显示出来并进行交互处理的方法,它已成为研究数据表示、数据处理、决策分析等一系列问题的综合技术。对于施工监测信息来说,根据文本数据绘制出监测历时曲线是最早实现的简单可视化,当然,简单并不意味着没有继续研究的必要,实际上在可视化灵活操作方面,还可以做些细致的工作,例如在监测曲线图上,移动鼠标就能即时显示监测相关数据信息的丰富变化,就是一个非常实用的功能。当前GIS已经成为信息可视化的重要手段,可以采用GIS创建一个集成管理多源监测信息的图形平台,将具有空间属性的监测点与周围环境集成到一张电子地图上,实现测点信息与周围监控对象管理的可视化。目前GIS应用可以分为二维、二维半及三维,三维应用主要强调地上、地面以及地层的三维集成可视化,其中地面以上主要包括房屋、桥梁等建构筑物,地面主要包括道路、河流、绿地等,地下则包括地层以及地下管线等。地下部分的可视化能够直观地反映工程所在区域的地质情况,而施工监测信息的变化则与地质条件紧密相关,三维地层建模技术为此提供了技术支撑[33]。地面及地上三维可视化,可以应用目前广泛应用的三维地图技术。除此之外,VR也可作为隧道施工监测信息管理的三维虚拟现实平台,以更加直观、形象地显示监测信息与周围工程环境的空间立体关系,增强对于监测信息与安全风险控制的深入理解。VR与三维电子地图的一个重要区别是其具有临场真实感,例如,在隧道施工中如果地面房屋建筑结构的沉降监测超限,可以采用房屋出现开裂、倾斜,甚至倒塌再配合声音来模拟可能出现的风险,并发出预警,感同身受。VR应用系统也可以独立于GIS技术,这样做的好处是系统研发与维护都相对简单,也便于应用推广。但目前虚拟现实在隧道监测信息管理方面的应用研究还不多见。
这里值得说明的是,对于技术的先进性与实用性问题的平衡考虑和认识,二维GIS的技术发展最为成熟,功能最实用,成本最经济;真、假三维GIS(2.5维通常也称为假三维)立体感强,更形象、更逼真,在技术方面代表进步和提升,因此,来自现场的应用需求比较强烈,但并不能完全取代二维GIS技术的成熟性、稳定性、简便性和经济性。三维GIS代表隧道监测信息管理图形平台可视化的发展方向,但二维GIS现在和将来也都值得进一步研究与应用,不能也不应厚此薄彼,理想的可视化集成平台模式是二、三维GIS的一体化应用。
2.2.4系统运行环境
按系统运行环境的不同,可以把基于GIS的隧道施工监测信息管理系统分为两大类:一类是桌面系统(单机版);另一类是基于Internet的网络系统(网络版)。这两类系统各有优缺点,网络系统显然能够最大限度地实现监测信息共享,同时方便远程查询与管理,但是系统运行环境的构建比较复杂,比如要进行专门的网站创建和网页系统设计,需要服务器支持,此外,基于网络的数据实时分析能力要比桌面系统低很多;相反,桌面系统可以充分利用本地计算机进行强度较大的计算,数据处理与分析能力强,同时,对于工程现场应用,例如,现在很多城市地铁工程项目现场都设有监控室,安装这样一套系统作为安全监控系统的一部分,很简单也很实用。因此,在施工监测信息系统网络版开发越来越多的情况下,单机版的系统在日常监测数据的处理、分析与管理方面,仍然起着不可替代的作用。实际上,单机版和网络版可以联合并用,如单机版作为网络版的数据信息加工处理工厂,而网络版作为单机版处理后的信息集散地,当然,它们也可以针对不同的需求独立应用。
2.2.5系统的实用性
如果单从研究的角度来说,系统研发更注重技术的先进性和创新性,然而,系统研究的目的最终是为了应用,系统的实用性对工程应用更为重要。在隧道施工监测信息系统研发方面,虽然有不少成果公开发表,但是从一般的文献中,很难了解和判别相关系统的实用性到底如何。监测信息管理系统的核心是软件,如果以软件商业化作为系统成熟和实用标志的话,遗憾的是,当前还没有看到相关通用商业软件系统,换句话说,迄今为止,实用性很强的系统可能很少。原因可能很多,其中一个方面应该和系统研发应用的持续性有关,不少系统由高校和科研院所研制开发,以一些政府部门或企业委托的科研项目作为支撑。如果把系统类型按发展阶段分为研究型、试用型和实用型,往往在项目结束之际,很多系统研发最多还处于试用型阶段,有的甚至还在研究阶段,随着项目的结题、验收或鉴定,完成相关科研成果报奖等使命,其改进、完善和推广由于得不到进一步的后续研发支持而中断。原因有两方面:一是对于研发人员来说,初步取得的成果不尽理想未能引起委托单位进一步投入的兴趣;二是委托单位可能对于系统持续研发投入的必要性认识不足,从而导致在系统从研究到应用的发展过程中,半途而废,实际上这是对前期人、财、物等投入的一个很大浪费。软件系统从研发到实用是一个持续不断投入和长期不断升级的过程。
3存在问题及发展趋势
3.1存在问题
综合现有研究现状分析可以看出,当前隧道施工监测信息管理主要存在以下几个问题:
1)监测信息以及与其相关信息种类繁多,信息的特性与处理方法不尽相同,基础数据库信息的有效分类、组织需要加强,这是整个信息系统研发和运转是否高效的重要基础。
2)科学预测旨在防患于未然,当前无论是简单或复杂的预测方法在真正应用于实际工程的有效性方面还存在一些问题,尽管相关文献展示的预测与实测符合完美,但工程应用的真实性和可靠性还存在疑问。
3)施工监测信息在快速反馈与及时指导施工方面,存在不足,依赖信息管理系统不能完全解决这一问题,但应通过集成实时监测功能、快速数据分析和科学预测、及时预警来提供足够的辅助决策技术支持。
4)从技术的先进性来说,隧道施工监测信息管理三维可视化平台目前并不多见,尤其是三维GIS和虚拟现实技术的应用开发,还处在初步研究阶段。
5)从技术的实用性来看,隧道监测信息系统在软件功能的完备性、易用性、健壮性和安全性等实用性方面距离成熟商业软件标准还存在明显差距。
针对上述问题,需要紧密结合隧道工程信息化施工的技术需求,按照软件系统的基本要求和研发规律,充分利用现代计算机信息技术,进行持续不断地研究、开发和应用。
3.2发展趋势
未来的发展趋势笔者认为有以下几个方面:
1)在数据库合理组织和科学预测分析前提下,借助于可视化技术,创建运行稳定、易用和安全可靠的实用性系统,至关重要。
2)结合不同的应用需求,系统在单机版、网络版、二维GIS可视化和三维GIS可视化等研发方面,齐头并进,不应厚此薄彼。
3)隧道施工监测信息系统如丰富监测信息的管理功能,可考虑对于实时监测设备和元器件采集数据的实时接收、显示与分析,以及对于相关施工工况(如施工进度)的辅助显示,通过适度扩大相关应用功能,增强其工程实用价值。
4)利用虚拟现实技术,开发出隧道施工监测信息管理的虚拟现实平台,能够提升隧道监测信息管理可视化水平和管理工作效率。
5)未来基于手机、PDA等移动通信终端和类似Android、iOS等移动操作系统的移动监测信息管理技术值得研究开发,有望真正实现施工监测信息的随时、随地一切尽在“掌握”之中,有助于对隧道工程施工安全风险的管理与控制。
4结论
1)隧道工程施工监测信息管理技术发展经历了从纸质文本与图形文档管理、计算机简单数据处理、数据库管理、GIS与网络应用到虚拟现实技术应用等几个重要阶段,系统应用已从单机逐步扩展到网络,信息管理的可视化从简单的图形图像发展到二维和三维GIS空间。
2)当前隧道工程施工监测信息管理系统存在的主要问题包括多源相关信息的有效分类组织、数据预测与预警方法的可靠性、对工程的实际指导作用和应用软件系统的实用性,都有待于进一步提高。
关键词:公路;隧道;防排水;施工技术
中图分类号:TB
文献标识码:A
文章编号:1672―3198(2014)10―0183―01
1公路隧道施工防排水技术的基本要求
1.1做好施工防排水
(1)应在隧道两端洞口及辅助坑道洞(井)口将排水系统依据设计标准进行施工;遇到地层有着覆盖较薄和渗透性强的特点,就必须处理好其地表积水,同时结合下列标准:①对于洞顶附近存在井、泉、池沼、水田等情况,必须在确保水源不给截断或堵塞的前提下,妥善处理好;②认真清理好洞周围的树丛与杂草,同时开沟疏导那些封闭积水洼地,确保不积水;③将排水系统来由洞顶排水沟和路基边沟进行顺接来构成;④若洞外路堑以为下坡向隧道内,就需要进行路基边沟的反坡设计,排水于路堑外,并且应于洞口3~5m位置做好横向截水设施的设计,从而阻止地表水向洞内流入;⑤应借助于管路和不透水的沟槽向隧道范围外排除掉施工废水。
(2)排水要于洞内顺坡进行,保持与线路坡度存在一致性,需要将这些要求满足好。①为了不影响施工,则水沟位置应与结构排水工程结合,在隧道两侧或中心设立;②经常性清理排水设施并确保畅通的一条水路。③可采取这样一些措施做好洞内的反坡排水施工,其措施有:①应依据距离、坡度、水量和设备等具体标准来进行排水水沟或管路的选用,水排到洞外分段接力或一次性均可;②开挖反坡排水沟可视线路坡度分段进行。集水坑要先开挖每段的下坡终点将水能流入坑中,再通过水泵把水抽到下段水沟使其流进下一个集水坑,通过逐段行进,排水到洞外。要求按照大于0.5%的坡度来设计反坡水沟;③对于较短的隧道就要从开挖面周围开挖行集水井,装好水泵把水一次性地送出洞外;④要针对实际排水量进行沟管断面、集水坑(井)容积的设计。
1.2做好结构防排水施工
(1)依照下列要求做好洞内永久性防排水结构物相关的施工工作,必须符合:①整齐平顺的水沟坡面,井盖板必须平稳不存在翘曲的现象;②盲沟设置在衬砌背后或隧底,就需要于沟内进行填充,选择尺寸大于15cm的石质坚硬、不易风化的片石作为材料,要求设置大于1%的盲沟纵坡;③要设置在软弱围岩区段的盲沟和存在管渗沟的部位,要以砂砾石反滤层或无纺布包裹加在周侧,确保水路畅通;④要在盲沟内将墙背泄水孔伸入进去,要采用同级混凝土或不透水材料来回填密实泄水孔进口标高以下的超挖部分;⑤要把排水管的接头密封牢固,避免松动。(2)衬砌要配合好隧道的排水设施的建设,按照下列标准进行:①要求侧沟进水孔的孔口端应要比该处路面标高要低一些,路面铺筑别将孔口堵塞住;②集水井在隧道内侧沟旁施工时,要与侧沟、路面同步进行;③组织以先拱后墙法进行拱脚混凝土灌筑期间,要把预埋水管或预留过水通道设置于拱墙连接部。
2公路隧道施工防排水的基本技术措施
要提高隧道防排水工程的施工质量,就必须把设计图纸尽量熟悉,以便搞清楚防排水设计的主要目的是什么,对此有着充分了解和认识,就按照排为主,有效结合堵、截、引的一个具体的设计思路,有效吸取以前的施工方面的经验和教训,这不仅要进行排水设施的按设计布置,而且要在那些地下水比较丰富的地方做好排水设施的建设,同时,进行三道防水屏障的有效设计,以便让水排到洞外能顺利。要做大量工作克服职工传统上的不重视防水的传统观念,开展好定期的职工质量意识培养,有效提升全员的自量意识,岗位责任制等一级级落实到位,并落实好“三检”的相关制度。强化过程控制,切实能使质量隐患消除。可采取如下的基本施工技术:
2.1安装横向排水管施工技术
应于在衬砌基础及路面的下方设置横向排水管,要使其与隧道的轴线垂直的方向布设一致,其为在纵向排水盲管与中央排水管之间发挥连接作用的水力通道之一。硬质塑料管一般在横向排水管普遍采用,这里强调的是,在施工期间,必须把接头提前留好,从而能够当地面施工过程中与中央排水管能够方面连接。不仅如此,还要注意检查横向盲管,如,对接头的密实和牢靠性查看并看看接头的位置是否有断裂的现象存在,还要最大限度地保证中央排水管及纵向盲管间的水路能够通畅。
2.2安装纵向排水管施工技术
这一技术就是把纵向排水管依照隧道的纵向,来进行设计。而弹簧排水盲管和10厘米带孔软式的透水管为目前采用比较多的纵向盲管,其所发挥的作用就是使防水板的垫层下和环形排水管排出的水统一向横向排水管汇集,并一起最后排出。这里需要强调的是,当于安装之前,必须使安装基面的平整性有保证,而且当安装过程中,要对排水坡度保持好,扭曲和凹陷的现象不能在中间存在,如此就可以使泥沙的再沉淀而导致的堵塞现象得到有效避免。
2.3安装环向排水管施工技术
环向排水盲管的设置,可以把过水通道在岩面与初期支护喷射砼两者之间,以及初期支护喷射砼与防水板之间架设起来,这样能让水下渗汇集到纵向排水管中。
总之,公路隧道施工建设期间,水对其施工质量起到决定性的影响,因此,就应把防排结合与综合治理作为施工隧道工程的基本原则对待,隧道防排水工程质量有保障的前提就是必须防水可靠和排水畅通,由此才能使隧道病害根本消除,并使隧道寿命增加,同时要对每道工序加强施工质量控制,使施工设计预期效果有保证,才能确保隧道防排水工程的质量。
参考文献
关键词:高速公路;施工;技术
中图分类号:U412.36+6
公路工程施工管理是一项综合的过程,牵涉到方方面面。工程管理人员不仅要了解相关的专业知识,还要懂施工、懂经济、懂设计,并且能够在实际工作中熟练运用,正确处理工程质量与项目成本间的关系,只有这样,才能合理控制工程成本,保证公路工程的顺利完工。
高速公路在建设之初就要做好探讨和规划,否则必然会引发一系列包括水土流失在内的环境问题,严重的将引发环境灾害,给当地造成巨大的人员伤亡和财产损失。要预防和防治这些问题的发生必须根据工程的特点在建设之初预见到工程建设可能引发的环境问题,在工程设计施工中采取有效措施加以预防,把高速公路真正建成绿色之路、环保之路、福民之路。
1 高速公路建设前的准备
1.1 施工图设计阶段--详查工点地质条件。
通过初步设计阶段的各种地质工作,已经基本查明路沿线的地质条件,但是工作深度和广度还不够。本阶段应详查工点地质(桥位、隧道、深路堑、高填路堤、陡坡路堤、支挡构造物),进行重要工点 1:2000 地质测绘。采用调查、测绘、槽探、坑探、钻探、物探等综合勘察手段。查明场地岩土体组成、性质、分布以及风化层、不良地质、特殊性岩土等工程地质条件在路线纵横方向的变化。
1.2 施工阶段--遵循信息化施工、补充勘察、动态设计原则。
由于地质条件的复杂性和勘察周期的制约,有些复杂场地(岩溶、破碎带、岩性纵横向差异大的地区)或地形困难场地(陡坡、鱼塘等)在设计阶段难以布置充分的勘察工作量,无法查清场地详细工程地质条件。在施工期间,可以进行补充勘察,如对岩溶发育区或岩性差异大的场地逐桩钻探,对原进场困难场地通过施工便道进场钻探。施工中发现新的地质问题也要补充勘察。应该把施工期间的勘察工作视作设计期间勘察工作的重要补充。
2 高速公路施工的技术措施
2.1 路基施工。
2.1.1 认真清除地表土不良土质,加强地基压实处理,地表植被、树根、垃圾、不良土质(盐渍土,膨胀土等)必须予以清除,同时应加大地表的压实密度,采用大吨位振动压路机处置。
2.1.2 填筑路基前,首先,必须疏通路基两侧纵横向排水系统,避免路基受水浸泡。特别是地基土为黄土、粘土等细粒土,在干燥状态下(最佳含水量)结构比较强,有较强承载能力,一旦受水浸泡,将易形成翻浆或路基沉降,因此做好路基施工前排水畅通尤为重要,工程监理和施工质量自检人员应认真监督;其次,要严格选取路基填料用土。路基填料确定前,需进行土质分析、CBR 值、标准击实等试验,对于种植土、腐殖土、淤泥、强膨胀土等劣质土和 CBR 值、最大粒径不能满足规范要求的材料,不能用于路基填筑;再则,路基填筑前还要根据设计进行施工放样,建立半永久性的临时水准点和坐标点并做好记录。路基坡脚放样一定要准确,确保路基宽度满足设计要求,路基坡角范围内,要求清除杂草、树根、淤泥等,并进行整形碾压,压实度须达到规范要求。旧路加宽、半填半挖段做好宽度不小6m
的向内倾斜的台阶。
2.1.3 路基施工必须分层填筑,分层碾压,严禁路改工程中滚填,一般路段压实度不得大于 30cm,构造物两侧(桥涵头处理)松铺厚度不得大于20cm,不同性质的土不能混填,同一种土填筑厚度不能小于50cm(两层)。路基填筑须全幅填筑,一次到位,严禁帮宽。碾压过程中,要控制好含水量,压实度达到规范要求后,方可进行后续施工,压实度检测每层1000m
2(不足1000m2按1000m2计)不少于2点。根据不同填土类型和压实厚度,选择好压实设备,对于砂砾土振动压路机具有滚压和振动双重作用,效果较好。
2.1.4 路堑施工要保证排水畅通,对上坡施工时,应注意确保坡体的稳定性,避免欠挖或超挖现象发生。石方爆破尽量采用中小炮,光面爆破的方法,避免大规模爆破形成松散面积过大,坡体失稳,机械开挖时,边坡应配以平地机或人工修整。路床顶面如有超挖,应清除松
方并采用透水性材料进行回填,并认真碾压,压实度按路床项目标准进行控制。
2.2 桥梁施工的质量控制。除了传统的质量控制外,对桥梁特别是大型桥梁采取施工控制措施。桥梁施工控制是确保桥梁施工宏观质量的关键措施之一,也是桥梁建设的安全保证。大型桥梁施工控制是一个施工量测判别修正预报施工的循环过程,施工控制的最基本要求是确保施工中结构物的安全,其次必须保证结构物的外形和内力状态符合设计要求。影响桥梁施工控制的因素主要有结构参数、施工工艺、施工监测、结构分析计算模型、温度变化、材料收缩与徐变、施工管理等,所以,必须建立完善、有效的控制系统才能达到预期的控制目标。
2.3 公路隧道的质量控制。根据公路隧道建设的实践,应将隧道开挖及初期支护质量、隧道防排水施工质量、隧道施工监控测量作为主要质量控制目标,公路隧道的质量控制必须重视以下几个关键问题:
2.3.1 严格实施信息化施工。公路长大隧道主要按新奥法设计与施工,新奥法是一种现代先进设计与施工一体化方法,基本特征是采用现场监控、量测信息来确认和修正预设计的依据,并对隧道施工方法、断面开挖步骤及顺序、初期支护参数等进行合理调整。
2.3.2 加强隧道地质勘察,超前预报水文地质情况。为减少隧道施工的盲目性和事故发生率,保证隧道工程施工的顺利进行,应对开挖工作面前方一定距离工程、水文地质条件进行验证,及时超前预报,有的放矢地采取应对措施。预报内容是尽可能采取各种手段探明前方可能出现的坍塌、冒顶、涌水、溶洞、断层、瓦斯等地质灾害,并分析其对工程施工的影响程度。
2.3.3 安全生产,制定险情预案。隧道是具有一定危险性的地下工程,必须建立健全一系列安全生产管理制度和组织管理体系,层层检查落实,每个生产环节都要严格遵守国家和行业有关的安全生产法律、法规、标准和规范,确保人员和工程安全。
2.3.4 综合治水。隧道病害大多与水有关,隧道施工中防水、治水直接关系到工程质量和隧道的运营安全。公路隧道防排水是一项系统工程,总体上应遵循“以排为主,防、排、截、堵相结合”的综合治理原则,对地表水、地下水妥善防治。
3 结束语
关系公路施工质量的好与坏,不外乎两个方面:一个是设计阶段的设计质量,而另一个,则是能将设计上的预想方案变成实体的施工阶段,如果只靠一套完整周密的设计方案,而在施工过程对一些质量指标不加以控制,不按图索骥,那么,确保路基质量到头来也只能是一句空话。因此,只有做好设计与施工这两个主要环节的技术把关,再加上施工管理人员的精心组织、合理施工,公路质量才能得到充分保障。
参考文献