前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇资源回收市场调研范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:大数据;市场分析
“可能感兴趣的人”“猜你喜欢”“购买此商品的人还购买了……”在你刷微博、网上购物时,经常会在相应的位置上见到如上提示。这些看似简单的用户体验背后,其实正孕育着被誉为“新油田”的大数据产业。
美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便可以翻一番,而目前世界上90%以上的数据是最近几年才产生的。这些数据又并非单纯指人们在互联网上的信息,全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。
“大数据带给整个企业最大的好处是降低成本、实现创新。今天整个行业模式都因大数据时代的到来将被重新颠覆。”在当今数据大爆发的时代,无论是新增数据还是现有数据,都是企业的巨大财富,并为企业带来了前所未有的商机。但只有有效运用和管理企业数据,才能实现最大化的数据投资回报。对于大多数企业CIO来讲,借助大数据管理技术能够帮助其获得竞争优势,而且随着技术的不断进步大数据正在备受到CIO的关注。从市场层面来看,大数据时代的崛起,给许多的企业带来的机遇、挑战,同时它又给企业提供了新的市场增长空间,越来越多的企业开始布局大数据市场。
一、大数据在市场分析中遇到的问题
虽然大数据目前在国内还处于初级阶段,但是商业价值已经显现出来。首先,手中握有数据的公司站在金矿上,基于数据交易即可产生很好的效益;其次,基于数据挖掘会有很多商业模式诞生,定位角度不同,或侧重数据分析。比如帮企业做内部数据挖掘,或侧重优化,帮企业更精准找到用户,降低营销成本,提高企业销售率,增加利润。据统计,目前大数据所形成的市场规模在51亿美元左右,而到2017年,此数据预计会上涨到530亿美元。
企业或政府单位对于数据的驾驭,从最基本的获取到整合、治理、探索、分析、汲取智能、到采取精确行动,这种全能力的建立已经比以往任何时候更为重要。
传统的市场研究包括定性研究及定量研究,以座谈会为主的定性研究受制于主持人的访谈技巧,以街头拦问为主的定量研究虽然以严谨的抽样理论为基础,但同样不能完全代表总体的客观情况。而大数据时代革命性的调研方法为市场研究人员提供了以“隐形人”身份观察消费者的可能性,超大样本量的统计分析使得研究成果更接近市场的真实状态。
与此同时,大数据时代的新方法、新手段也带来新的问题,一是如何智能化检索及分析文本、图形、视频等非量化数据,二是如何防止过度采集信息,充分保护消费者隐私。虽然目前仍然有一定的技术障碍,但不可否认的是大数据市场研究有着无限广阔的应用前景。
二、大数据时代的市场研究方法
1.基于互联网进行市场调研
网络调研具有传统调研方法无可比拟的便捷性和经济性。快速消费品企业在其门户网站建立市场调研板块,再将新产品邮寄给消费者,消费者试用后只要在网站上点击即可轻松完成问卷填写,其便利性大大降低了市场调研的人力和物力投入,也使得消费者更乐于参与市场调研。同时,网络调研的互动性使得企业在新产品尚处于概念阶段即可利用3D拟真技术进行产品测试,通过与消费者互动,让消费者直接参与产品研发,从而更好地满足市场需求。
2.挖掘网络社交平台信息
脸谱、QQ、微博等社交平台已日渐成为新生代消费群体不可或缺的社交工具,快速消费品的消费者往往有着极高的从众性,因此针对社交平台的信息挖掘成为研究消费潮流趋势的新手段。例如,通过微博评论可以统计分析消费者对某种功能型产品的兴趣及偏好,这对研究消费态度及心理有非常大的帮助。更重要的是,这类信息属于消费者主动披露,与访谈形式的被动挖掘相比信息的真实性更高。
3.移动终端
随着3G网络及智能手机普及,市场研究已渗透到移动终端领域。大量的手机APP应用(例如二维码扫描等)为实时采集消费信息提供了可能性,移动终端的信息分析在购买时点、产品渗透率及回购率、奖励促销效果评估等方面将发挥不可估量的作用。
4.零售终端信息采集系统
目前,PC-POS系统在零售终端得到了广泛的应用,只要扫描商品条形码,消费者购买的商品名称、规格、购进价、零售价、购买地点等信息就可以轻松采集。通过构建完整的零售终端信息采集系统,快速消费品企业可以掌握商业渠道的动态信息,适时调整营销From .cn策略。
三、大数据时代市场分析特点
1.超大容量的数据仓库
数据仓库具有容量大、主题明确、高度集成、相对稳定、反映历史变化等特点,可以有效地支撑快速消费品企业进行大数据研究与应用。数据仓库可以更有效地挖掘数据资源,并可以按照日、周、月、季、年等周期提供分析报表,有助于营业结算。
2.专业、高效的搜索引擎
旅游搜索、博客搜索、购物搜索、在线黄页搜索等专业搜索引擎已经得到了广泛应用,快速消费品企业可以根据自己的特点构建专业化的搜索引擎,对相关的企业信息、产品信息、消费者评价信息、商业服务信息等数据进行智能化检索、分类及搜集,形成高度专业化、综合性的商业搜索引擎。
3.基于云计算的数学分析模型
市场研究的关键是洞察消费者需求,基于云计算的数学分析模型可以将碎片化信息还原为完整的消费过程信息链条,更好地帮助营销人员研究消费行为及消费心理。这些碎片化的信息包括消费者在不同时间、不同地点、不同网络应用上的消费价值观信息、购买信息、商品评论信息等。基于云计算的智能化分析,一方面可以帮助市场研究人员对消费行为及消费心理进行综合分析,另一方云计算成本低、效率高的特点非常适合快速消费品企业数据量庞大的特性。
四、大数据所蕴含的市场价值
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
1.数据的丰富性和自主性
社会化媒体数据包含了消费者的购买习惯,用户需求,品牌偏好等,且都是消费者自愿表述的对产品满意度和质量问题的想法,充满了情感因素,我们无需费尽心思的引导消费者参与调查问卷。
2.减少研究的“未知”视角
市场问卷调查有其固有的局限性,那就是你必须明确你的问题是什么。问卷设计者本身有未知的方面,所以在设计问题时会忽略自己的“未知”,但这些“未知”很有可能就是消费者所需要的方面。
3.数据的实时化的特征
不同于以往的发放回收市场调研报告再解决消费者问题,如今可以使营销人员快速发起营销活动,第一时间测试营销新方法,同时可以第一时间确认理解和追踪消费者的反馈。
4.数据的低投入特征
传统的市场调研方式费工费时,结合社会化媒体的市场调研则是低投入高回报的产业。使用正确的调研产品和方法便可以对消费者群体的用户习惯和反馈进行透彻分析。运用社会化媒体监测软件帮助企业在线倾听消费者意见,评估获取其见解。
五、总结
大数据的前景大方向是符合趋势的,但具体产品和数据处理能力,可能是最终成败的因素。如何获得大量数据,数据的质量、相关性以及是否有好的处理能力和技术,最终应用的方向是商业化的关键。竞争的最大压力是传统的市场研究还没有适应社会化媒体大数据时代的研究体系。正如Joe Tripodi (可口可乐营销副总裁)在《哈佛商业评论》(2011年4月)上指出的,“在印象时代,通过问卷询问方式获取的知名度,使用率,认知度等衡量品牌健康的指标体系,在消费者表达的时代就未必适用。因此,从品牌建设效果衡量的角度,也需要一套适应消费者表达时代的指标体系。”同时,尽管对大数据的整合与分析才刚刚起步,但已经有了一系列令人耳目一新的发现和应用。无数的案例和论著都指出,大数据的整合和分析,其前景和应用不可限量。
参考文献:
[1]赵春雷 乔治·纳汉.“大数据”时代的计算机信息处理技术[J].世界科学.2012(02).
[2]2012年云计算与大数据挑战与机遇并存[J].硅谷.2012(04).
[3]杜玉辉 蒋姣丽:大数据背景:高速公路收费系统数据的现状、分析与展望[J].电脑知识与技术.2012(15).
[4]许翠苹:大数据驾临[J].通讯世界.2012(05).
[5]果 苹:2012年大数据市场前瞻[J].通讯世界.2012(05).