前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇可再生资源回收前景范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
随着适用性研究和开发的进展,人们可以发现许多经济上可行的方案来满足整个地球的需求。该"设想"确定了方向和相应的规划,采取措施建立利用植物系统中能源和碳源的可再生资源基础。面临的挑战是严重的,但机遇也是难以衡量的。人类可以适应变化,但必须接受所面临的挑战。序言中从两方面进一步阐明“设想”提出的背景:
1、界定植物/农作物基资源
植物/农作物基(有时用生物基bio-based)资源是指来自于一定范围的植物系统,主要是农作物、林产品和食品、饲料和纤维工业加工过程中的副产物。它们可以通过一年生的作物和树种,多年生植物和短期轮作树种等途径在一个较短的时间内再生。石油化学品原本也是以植物为基础,其基本分子为烃类。植物/农作物基可再生资源当前所用的大量基本分子是碳水化合物、木质素和植物油。也有一些量少高值的分子是来自二级植物新陈代谢。另一个主要区别是烃类及其提取系统已经开发并加工处理其所需要的原料型产品,而植物基可再生资源在某些程度上虽然也被认定,但某种植物会含有某种资源,加工后会留下什么,尚未完全搞清。
最近生物技术进展可以改变植物成分和酶提取系统,这就为现在需要的化学产品和新型中间人体及产品制造提供了新的经济机遇。据统计,美国的森林、耕地、牧场等面积约22.46亿英亩(1英亩=0.405公顷,下同),其中主要农作物的种植面积有4.24亿英亩,可以生产大量植物/农作物基资源。过去50年,这类资源的重点主要是面向食物、饲料和纤维生产。
2、烃类经济
20世纪后期,世界经济发展很快,生产增长率有很大提高,尤其是各发达国家,一些发展中国家也不断增长。成功的增长和发展过程中起主要作用的是烃类经济。自20年代以来,矿物化石燃料的采取和利用提供了人们当前所享受的经济效益和生活水准。许多国家都依靠这种资源来满足能源和原材料的需要。
在过去50年中,大量的研究开发在能源生产和基础产品制造方面创造了许多可以大量增值的工艺过程。市场经济明显地受人们提高生活水准的意愿所驱动,以创造各种产品。生物基资源的(主要是用植物基)用量很小。据统计,在能源方面少于1%,在原材料方面亦低于5%。美国1996年玉米、黄豆和小米等生产用作食品和饲料量约为6900亿磅(1磅=0.4536公斤,下同)。由此从经济角度看还不能赶上工业原料,而以烃类为基础的经济却繁荣昌盛。
烃类虽然将继续起到非常有效的经济发展平台作用,但是在其未来应用中却有若干问题有待解决。首先是对石油化学产品的应用环境问题日益受到关注,随着又产生了许多相关的问题。化石燃料是一类正在减少的原料资源。应用植物/农作物基资源作为一种补充,由于它们是可再生的,所以为经济有序地向可持续发展转变创造了机会。
通过对能源状态的审视就可看到可再生资源作为一种补充的必要性。烃类资源有限,许多专家提出世界可采和探明储量,如按现在消费水平计算只能提供50-100年,此处的一个重要假设是“现在消费水平”是保持不变,但是从全世界人口增长和生活水准变化来考虑,此假设是不合理的。当前世界上按人口平均的能源消费水平差距很大,详见表1,许多发展中国家都将增加能源消费。未来的能源供应问题是多方面的,因为发展中国家人口众多。例如,中国按人口平均能源消费相当于美国水平的1/3,其需要增加的能量数量约相当于美国现在全年能源使用总量。
表1当前按人口平均能源消费水平kwh/人美国法国日本巴西泰国中国
122007500700015001200900
一些有效利用烃类的开发将有助于需要增长问题的解决,但是对烃类找到补充资源是完全必要的,只有如此才能保持可持续发展的工业基础。
新技术开发和应用需要时间。石油化学工业本身的发展就是一个事例。1920年烃类原材料经济并不像今天这样具有吸引力,过了50年,开始适应化石燃料状况的工艺。因此,要使植物/农作物基系统达到同样现代化水平也需要时间。
当前正是开展大量研究开发工作、利用各种可再生资源和各种新工艺、并开始在各种可供选择的途径中提出选择标准的时候。现在进行研究并不意味系统要立即改变,但是,烃类经济的经济学未来将出现问题:要支付高额环境费用,或是由于原料缺少而价格上扬。
投资适用性研究可以在未来能源和原材料间进行相关的比较,提供非常需要的选择。在中期至长期,选择植物/农作物基可再生资源可能是要兼顾环境方面容许和经济方面具有吸引力。而在近期,研究和开发可能只在一些领域内进行,使植物/农作物可再生资源能开始进入基本化学原料市场,从而扩大资源基础,延长有价值的化石燃料储备的应用寿命。
在上述背景环境下,通过研究讨论,提出了2020年开发利用植物/农作物可再生资源的设想的目标;“设想”是要通过植物/农作物基可再生资源的开发来提供经济继续发展、生活的健康标准和强大的国家安全。植物/农作物基可再生资源可以改变当前对日益减少的非再生资源的依赖。
本“设想”的内涵重点是建立新的观念,即植物基资源是越来越重要的工业原料资源。非再生资源可能因经济和环境因素逐步被植物基再生资源所取代,“设想”反对等到危机发生时现开始启动替代。
展望2020年,化石燃料可能仍将占90%,增加植物基可再生资源并不是可有可无的,它对满足未来的需求非常迫切。当然,需要有效地加工和利用这些植物衍生原料。其新途径的研究从现在就要开始,为经济发展有足够的时间,保证解决环境而进行良好的合作。
要取得有成效的进展,应当确定以下的方向性目标:
1、2020年化学基础产品中至少有10%来自植物的可再生资源原料,到2050年提高到50%。
2、建立植物基(农作物,林产,加工业)系统,用有效的转化加工工艺生产可再生原料,为2020年选中的产品提供经济合理、对环境瓜敏感的制造平台。用此生产链来示范一个综合的植物/农作物基原料系统的经济合理性和潜在效益,显示工业应用机遇的新领域,为2020年以后国内和出口的需求做出贡献。
3、在工业投资者、植物商、生产者、学术界和各级政府之间建立合作伙伴关系,开发从小范围到大规模的工业应用,重新激活农村经济,改进增值加工和制造链的集成,消除食品、饲料和纤维加工业与基础材料制造业之间的差别。
“设想”中提出,科研与开发方面要制定有详细目的和要求的相应计划,支持上述方向性目标的实现,从而也可取得投资的优势。
植物/农作物基资源利用现状和前景
一、现状
烃类提供人类能源和衣着。塑料、油料、油漆、染料、药品等基础原料,已经成为现代生活的主要依靠。1970-1990年间石油基的塑料增加了4倍,已经逐步代替了玻璃、金属甚至纸张。植物/农作物基资源目前尚未有效利用,主要是因为可用性差、质量不高、供应不稳或是价格高。要推动和提高植物/农作物可再生资源应用的兴趣,需要从以下几个方面来分析。
1、实用性
尽管消费总量不高,但是植物基原料当前在化学品方面应用面很广,如用于油漆、粘合剂及剂等。黄豆是植物袖的传统原料,随着基因工程进展,可以生产满足特殊剂市场需要的专门油。最近,可用黄豆衍生物制造油墨,在乙醇、山梨醇、纤维素、拧槽酸、天然橡胶、多数氨基酸以及各种蛋白质等化学品生产中,植物基资源是主要原料,详见表2。
表2、美国植物基资源用量万t/a类别用量用途
木材8090纸,纸板,木质素纤维复合材料
工业淀粉300粘合剂,聚合物,树脂
植物油100表面活性剂,油墨,油漆,树脂
天然橡胶100轮胎,家用品
木材提取物90油料,胶
纤维素50纺织纤维,聚合物
木质素20粘合剂,丹宁,vanillin
在多数情况下,应用的植物基材料主要是原始状态分子。如木质素纤维、植物油和橡胶等复杂分子的应用也只有有限的改性。这就与石油化学工业构成明显的反差,石油化工则是用化学方法按需要将烃类裂解成几种简单分子,如甲烷、丙烯等。用这些基础原料进行化学合成,制造所需要的复杂的分子。
在少数情况下,植物/农作物原料进行裂解成为不同的基础分子,例如高果糖的玉米生产糖浆和玉米淀粉发酵生产燃料乙醇。1996年美国用211亿磅(1磅=0.4536公斤,下同)玉米采用新型酶发酵方法生产9亿加仑(1加仑=4.546l,下同)乙醇,从而加工为90亿加仑混合汽油。从许多实例看,植物基原料有一定实用性,虽还未生产像药物那样的高度专业化的分子,但却包括了大量生产的中间体及产品。
2、供应及质量
植物系统地区分布广,由于土壤和气候条件不同,导致供应和质量的差异。森林和农业系统的发展已经缩小了天然野生植物的供应差异。
生物质的总产量虽然很大,但是由于没有经济的转化技术而使其应用受限制。一些新进展如快速裂解提供了从中获得低分子量产品的机会,如果能在分离技术上进一步创新,就可以推动此应用。生物质资源可以来自快速增长木材、田边作物以及其他专门培植的植物物种。另一潜在的生物质资源是当前为食用和饲料种植的农作物,如玉米、黄豆、小麦和高梁等。一般情况下这些作物只应用其产量的一半。此4种作物估计每英亩(1英亩=0.405公顷,下同)约有2600磅(以干物质计,下同)遗留在田地中,总计约有5200亿磅。一部分留在耕地以改良土壤结构,但大部分运出去,作为原料应用。因此要求有适当的、成本低的储运系统和加工技术。
供应方面的主要问题是对原始生产的管理。当前,树木可作木材和纸浆,种植农作物只是为食品、饲料和纤维加工,没有在综合利用上进行优化。对植物/农作物投入的成本评价基础是未经优化的植物生产系统,因此经济性不佳。一些边际土地的利用可以扩大植物基可再生资源原料基地。但是从经济上比较,其很难达到经济可行目标。在估算其经济回报时,要考虑化肥、农药等化学品的使用费用。要增加可再生资源来源,除了要提高边际土地利用率外,主要应是如何对良田建立优化种植生产系统。
当前低投入、低产出的植物生产对农民难以盈利,并不利于农村发展,也不能为加工业提供低价原料。但是在产出方面,数量和质量相差甚大,从此系统得到的产品必然价格较高,严重地限制了经济上的可行性。而且,由于低产出生产就需要更多的土地,其对环境的单位影响常常大于更为强化、密集的系统。因此要优化生产系统,同时改善边际土地的利用。此外利用生产率高的土地作为植物/农作物可再生资源的原料基地,这也有利于解决数量和质量上的波动变化。
农村根据市场需求规划种植计划,如根据乙醇市场还是植物油供需情况,做出种玉米还是种黄豆的选择,其次则要进行第2轮对品种的选择,作乙醇则要种高淀粉含量的玉米品种,如要种饲料,则种含高油量玉米更佳。这些选择都对产出经济效益有很大影响。面对“设想”需要扩大食品或饲料、饲料或原料、油料或淀粉、纤维或糖、药品或聚合物等等选择范围。要根据供应或需求来决策,就需要进一步仔细研究有关课题。
3、植物/农作物基原料成本
利用植物/农作物基可再生资源主要是成本问题,它与烃类相比是不经济的。工业生产要求大量的便宜原料。植物原料价格便宜,如果能开发适当的系统将极具竞争能力。利用植物/农作物基原料生产化学品的成本比较,详见表3。
表3、植物/农作物基化学品生产成本类别生产量万吨通常方法美元/1b植物衍生美元/1b植物衍生占总产量%
糠醛300.750.7897.0
粘合剂5001.651.4040.0
脂肪酸2500.460.3340.0
表面活性剂3500.450.4535.0
醋酸2300.330.3517.5
增塑剂801.502.5015.0
炭黑1500.500.4512.0
洗涤剂12601.101.7511.0
颜料15502.005.806.0
染料45012.0021.006.0
墙涂料7800.501.203.5
油墨3502.002.503.5
专用涂料2400.801.752.0
塑料30000.502.001.8
实际上,在制造业中选用不同的化学加工工艺对其成本影响很大。
植物/农作物基可再生资源不是一种替代性资源,而是为工业原料提供的补充资源。成本问题并非只限于原料,而且与加工过程有关,因此要进一步开发新的化学和生物加工工艺,才能扩大植物基可再生资源应用范围,使之成为经济可行系统。
二、前景
由于植物/农作物基可再生资源的来源不同,每种来源的原料又可以利用不同的加工工艺,构成了一种多维的发展前景。本“设想”运用矩阵分析方法进行探讨。不同投人的植物原料,可以运用不同的加工系统,并取得各种不同的开发效果。
1、废料和副产物利用
从当前看,利用机会多,但需要有新的加工技术才能使其成为更重要的资源。
(1)现代化学
森林工业已经将副产物利用发展成为一个较大的行业,如纸浆副产液转化为磺酸木质素表面活性剂ch3soch3以及用树皮制丹宁。农作物的磨榨工业开发了许多应用副产物进行加工的工艺,如从燕麦制糠醒、淀粉粘合剂、专用棉籽油、从湿磨料生产拧蒙酸盐和氨基酸等。但是,许多食品加工业,如蔬菜和水果却没有开发相应的副产利用加工工艺,经常将副产淀粉和糖排放入周围环境。副产物的利用具有许多发展机遇,提取及销售其所含的有效成分是降低主产物成本的手段,而且从战略上看是扩大利用植物基资源。
(2)改进化学
木本植物和有些农作物加工中有较高的木质纤维素含量和一些碳水化合物,如烃类工业一样,可以将复杂分子转变为较小分子技术。便宜的植物衍生发酵制糖的开发已在进行。用金属有机物化学将碳水化合物转变为增值化学品是扩大利用植物基原料的又一技术途径。改进化学方法具有潜力,可以使植物衍生的废料加工利用提高经济回报率。
(3)生物加工
在比较复杂的料浆中用微生物发酵法生产某种分子,再将其分离出来成为需要的产物。生物转化是应用微生物、细胞或不含细胞的酶系统的一步法工艺,它提供了改进废物料和副产物利用机会,随着分离技术的提高,生物加工工艺可以获得更为广泛的应用。
(4)新分子
在此方面似乎不太重要,从废料中生产新分子不是一条最佳途径。
2、现有农作物
从近期看扩大应用具有最佳机会。
(1)现代化学
从化学工业整体看,并没有|认为植物衍生材料具有较高的经济价值,但是具体|问题要具体分析。石油化工利用烃类而不用碳水化合物和其他生物基分子。
(2)改进化学
如果植物衍生原料是结构型的生物质,含有木质素和纤维素等成分,其具有一定优势。一些新技术,如综合燃烧或金属有机化学等都能提供更好地利用此类资源的机会。除林产资源外,约有5200亿磅的生物质资源目前尚未加以利用。改变加工工艺路线可以提高利用现有资源的效益。新的工艺开发可以提供利用糖和淀粉的机会。植物淀粉有不同来源,如水稻、土豆、玉米和小麦,它们的性质、用途都不同,因此需要改进其化学方法,发挥其潜能。新化学工艺与生物加工及先进的分离技术综合起来可产生很大效益。
(3)生物加工工艺
植物作为生物加工原料量大而多样,从结构型生物质到一些专门的植物组分,在生物加工方面潜在优势很大:用酶转换玉米衍生的葡萄糖生产高果糖的玉米糖浆。最近从玉米葡萄糖经过发酵制琥珀酸也取得成功。琥珀酸盐可以用作制一些化学产品如丁二醇、四氢呋喃,这些中间体又可进一步加工制成许多种产品。当前,用10亿磅这种原料可得到价值13亿美元产品,现在正在中试。多种学科进行合作就可取得良好的效果,这是短期内取得成效的一种良好运行模式。
(4)新分子
植物原料的投入固定,利用基因改性所用微生物或是专用酶,可产生新分子。此工作目前只在很小的市场中进行。当市场对具有特殊性能的新产品需求增加,投入产出可能会促使其发展,技术和经济的综合研究要沿着产品开发链进行,从界定所需要的产品——需要的特性——分子结构——中间体——酶技术——蛋白质/基因工程——投入植物的最佳原料——生产优化等。
3、新鲜农作物
此项作为中期发展机遇。
(l)现代化学
因为化学工业一般不认为农作物的利用能获得较高的经济价值,因此新鲜农作物并无吸引力。过去曾认为可以降低成本,但是实际上的技术限制否定了其经济性。
(2)改进化学
从投入产出看,存在类似问题,如果改进的化学工艺需要专门的农作物,-新鲜农作物可能会有优势。另一优势是在物流方面。按照改进工艺实施和运作规模,所需原料只能就近供应新鲜农作物。因此改进工艺应当与供应系统平行进行才能互相支持共同发展。植物作为原料补充资源时,困难在于许多烃类加工装置不位于农作物和森林种植地区,而植物基原料运输费用很高。
(3)生物加工工艺
与改性化学类似,区别在于如何将原料加工成中间体和最终产品。在技术上要考虑农作物品种的适用性,一种生物工艺可以对多种品种进行加工。优化工艺是影响运作经济很重要的因素。
4、改性基因类植物
这是中长期发展机遇,其可提供的成效目前尚难以想像,今后是否出现碳水化合物经济,或是其他经济,这要看建立在生物工程基础上的新工业平台所能发挥的作用。
(1)现代化学
基因改性植物基原料可能成为现有的烃类加工系统原料。但是,改性植物分子在烃类系统中降解所花代价太高。因此投入技术要能跨越加工技术,或者是较复杂的分子能直接得到并进入制造链,再有是新工艺路线能高效地应用此改性原料。当然这些变革都要从经济和环境两方面来评价其效益。
(2)改性化学
对优化植物/农作物基原料投入和加工有好处,应当进行此方面研究。至于何时见效则要根据基因技术进展及其达到工业化时间来确定。
(3)生物加工工艺
微生物或酶进行基因改变达到强化工艺过程目的。生物工程具有长期潜力,在原料投入和生物技术本身之间创优,有时所需要的可作基础原料的分子可以部分在植物原料内进行合成,用生物转化或高度专门化的生物/化学工艺进行分离。为了继续应用化石燃料生产专门产品,需要进行研究开发,使有限资源能取得最大的价值。
(4)新分子
过去20年中,塑料已成为最大的工业部门,在日常生活中代替了玻璃、陶瓷、木材和金属。市场将会根据消费者的意愿和需求发生变化。材料科学将继续发展,市场销售者将继续设计新的消费品,塑料的未来变化难以预料。能作为新工业发展平台基础的新分子将会很多,物理与化学科学与生物工程材料结合将产生新的领域。植物基可再生资源将是未来的主要资源。新陈代谢工程是将丰富资源制造成所需基础原料的渠道,支持社会基础设施。开发和拓宽其可能性,需要先进的技术,这将是未来新领域。
生物技术的潜在影响及实施“设想”的工作途径
生物技术的潜在影响
对一个新的技术领域进行评价,可以从如下几个方面来分析:近来变化的速度和引入的速度、量度及其带来利益的水平及公共公司投资、评价专利活动和有关协会的活动、观察开发进程、审视所取得的成功进展。
90年代初期,许多人对生物技术将对农作物带来很大变化是持怀疑态度的。到1996年,转基因作物在产业化方面取得成功,明确地澄清了这个问题。这些早期的成效是关于新的作物保护途径,对保护植物生产免受病虫害起了重要作用,对进一步了解和掌握如何改进植物组分也很重要。
由于管理方面的需要,转基因大田试验记录由美国动物和植物健康监测服务中心保存。从记录中可以看到一些行之有效的转基因改变植物组分的工作正在进行之中,试验范围也在不断扩大,一些主要的公司如杜邦、孟山都和pioneerhi-bred等都在进行。
为了改变植物组分以提高营养价值,改善加工性能,或是为了某些工业和制药的应用,一些转基因改性品种已经进行了评价,包括碳水化合物的变革、油和脂肪酸改性、提高氨基酸水平、蛋白质形态操作(typemonipulation)、纤维特性改性、产生抗体、工业酶生产、二级化合物操作(甾醇,earotenoids等)、新型聚合物生产。
转基因技术发展非常迅速,为植物基材料扩大应用开辟了新的途径,使其可以为工业生产提供分子基础原料和更为复杂的分子原料。用植物基原料主产聚合物,制造塑料就是一个成功事例。从a1-coligenenentrophus细菌的3种基因已经能转入植物的1ipid合成中,可以得到polyhydroxybutyrate(聚羟基丁酸酯),浓度可达14%。这种生物可降解的热塑性塑料正在进一步开发,使之可以从黄豆、棉花和油菜籽制备。
在过去50年内,通常用的植物培植产率已经提高了3倍,根据农作物满足食物、饲料和纤维不同用途,选择不同的方法得到具有不同特性的产物。高级植物种植要用基因图谱和转基因技术,进一步提高食物和饲料生产需要供应的植物基原料。
生物技术对植物基原料已经产生革命性的影响。但是,用生物技术来改变植物,使之适合烃类经济需要,并不是一条最佳途径。这就需要进一步弄清什么是工业链需要的因素,而这些因素又是能在未来转基因植物基可再生资源中具有最大的优势。
实施“设想”的工作途径
要成功实施美国可再生资源开发利用的战略设想(以下简称“设想”)中所提出的大纲,需要将研究、开发、工业过程工程以及对未来的市场了解等项工作有效地集成起来。适应“设想”的多学科计划以及各个项目的协作都要求有一共同的目标,向前沿技术迈进。应用改进的化学工艺加工现有的农作物,包括集成运用生物工艺,可以纳入短期计划之内,从当前到今后10年可以着手实施。这是研究中的一个热点。另一个热点是观念上的飞跃,超越当前的烃类化学,结合基因改性植物,运用新的工艺,这可以纳人中长期计划中,在10到20年甚至更长时期内实施并产生影响。上述两个热点都是当前在研究中进行投资,在不同期限内可以取得回报。
如果在这些领域内取得成功,在工业应用上就可以有了一个可行的坚实科学基础。新鲜作物应用开发将被看作是一个降低这些系统成本的一种机制,或是改善供应状况(数量和质量),满足工业发展需要。
当审视植物基可再生资源的前景时,可以看到供应链本身包含着许多重大课题。不同物种发展有各自的地理优势,可以形成专门原料的加工中心,包括进入国内和国外两个市场。对转基因作物的鉴别保护机制仍在变化,植物基可再生资源上的这些系统都需要进一步研究。
本“设想”并非要给各种问题以答案,而是指出未来潜在的可能,在各方面采取一定的步骤就可以使其实现。下一阶段就要进行各方的协调工作,使多方面的投资者能有一个投入的基础,针对“设想”提出的目标进行开发工作。该规划要订出各项目计划,通过研究和开发来支持“设想”中提出的方向性指标。各计划项目要符合下列一个或几个方面的要求。
优化生物质和农作物基原料生产,达到计划应用要求状况。
为植物基原料的供应链提出装置、地点、贮运和分销措施,包括加强农村经济的机制。
加速发展基于改性化学和生物工艺的新工艺,同时考虑利用植物/农作物基可再生资源原料。
对多类投资者支持的项目,对上述三个方面中一个或一个以上将产生影响的项目,或是多学科项目等将给以优先和优惠待遇。投资项目选择标准应考虑时间要求和潜在影响的大小来确定。
植物/农作物基可再生资源对工业基础原产的需求增长是一个战略性措施,也是使美国在21世纪继续保持领先地位的战略性选择。开发基础资源具有经济、环境和社会方面的好处。机遇是明确的,考虑未来的设想是需要的,要联合投资者对新途径进行投资,才能创造一个安全的未来。
“设想”文本中不止一处引用达尔文的名言“能够幸存下来的物种,不是最强的,也不是最聪明的,而是能适应变化的”。
2020年可再生资源应用将增加五倍
《植物/农作物基可再生资源2020年设想实施的技术指南》(以下简称“技术指南”),是《植物/农作物基可再生资源2020年设想》(以下简称“设想”)的补充,提出的目的是:支持“设想”方向,确定发展中的主要障碍和问题,确定优先的研究领域。
要达到上述目的需要进行协调观念开发,收集专家证明,组织多学科研讨会、听证会,优势排队试验和团队行动计划等多项工作。在“技术指南”编制过程中吸收了各方面人士的意见,参加研讨的共有66名有关部门不同行业的专家。专家们就全球性问题提出“设想”,针对“设想”结合现实状况提出存在的主要障碍与问题,再确定研究与开发领域,从而找出优先研究开发的课题。这些课题所属领域都是能为利用可再生资源实现可持续发展起最大杠杆作用的研究领域。通过参加“技术指南”研究和编制的专家的专业情况反映出在化工制造中应用生物基原料需要涉及多门学科。但是有3个产业是中心,即化学、生物和农业,每个产业都涉及几门不同的学科,如农业,林业和石油化学。
1、农业和林业
农业:是一个广泛的概念,包括谷物生产、林地和牧场等。这些土地上生产的农产品和林产品一起构成生物基材料,它们通过太阳能,大气中的co2和土壤中养分进行原始生产而成为可再生资源。美国拥有大量优良土地,丰富的自然水资源和先进的技术基础,通过资源保护和利用,每年可产生可再生资源的巨大财富。林业:在美国有超过6.5亿英亩(1英亩=4046.24平方米)的森林,从业人口140万,每年生产价值2000亿美元产品。过去10年内,纸张部门的增长比木材业快。木材和纸产品回收循环利用率高,每年有约4000万t纸再生利用。美国的林业已经制定出2020年发展设想以及相应的研究计划。该设想呼吁进行研究,用先进的生物和遥感技术以及树木生理学和土壤科学等理论。
农业和林业通过应用基因学技术和转基因植物等新手段将会出现大的跃进。在不久的将来,可生产出大数量和高质量的作物。除了饲料和食品,还可以为工业部门提供原材料。而且还可以引入某些酶标记基因,可能会在植物体内制造完全新型的聚合物,并可大量生产,成为经济的消费用品。
美国将技术进展应用于植物和农作物的调整,使其在农业、林业和制造业中保持可持续发展的领先地位起着主要作用。国家的未来明显地要依靠近期开发可再生资源基础的研究来支持。
2、石油化工业
化学、工程学、物理学和地理学等几门学科在石油化学工业中的应用,对人们生活产生的影响是50年前难以想像的。石油化学工业成功地创造了众多产品,从高性能的喷气发动机燃料到基础化学品以及许多聚合物,如聚丙烯、聚苯乙烯、聚丙烯腈、聚偏氯乙烯和聚碳酸酯等。
石油化学工业:是资本密集型工业,已经建立了可观的基础设施来处理和加工化石燃料。美国每天要用1390万桶烃类原料,多数是作为燃料型产品,用于化工及其他工业基础原料生产,每天约为260万桶油短类原料。
近年来,工业化学品和塑料生产都有巨大的增长。塑料工业从业人员120万人,有20000套生产加工装置,过去在研究开发上花费以10亿美元数计的投资,才获得了今日成就。如果塑料制品的原料没有可再生资源,迟早有一天会变得十分昂贵。一方面,是否还有上万亿桶的石油开采量,原油价格能否在每桶10美元以内。世界原油生产已经变化迅速,而且有许多不定因素。另一方面,化石燃料资源是有限的,这是无可争议的事实。重要的是考虑当供应呈峰值时未来价格的敏感度,而不是去争论何时是油将用尽的理论时间。最近由于几处新资源的发现及应用,在20年内原油产量可能会有所增加。但是,必须注意美国一直是原油进口国,50%原油靠进口。如果原油进口一旦停止,北美可采用的化石燃料资源储量按目前消费水平只能维持约14年。如果保持目前进口水平而不增加,也只能使用28年。当然,将会有新的改进的抽提技术,例如水平钻探和核磁共振钻孔等,但是要在近年取得成效,希望是不大的。
用可再生资源补充石油化学品,要从现在开始,由少量到大量逐步进行,有关研究工作要立即开始。不考虑化石原料供应衰退时间表的争论,由于人口增长以及一些新兴国家人们生活水平提高,需求将继续增长。在可再生资源取代化石燃料之前,它将作为一种补充资源。因此,无论如何在美国开发可再生资源作为工业原料都是十分重要的。
“设想”中提出的指标是“2020年基础化学品至少有10%来自植物衍生可再生资源,随着发展观念到位,2050年要提高到50%”。要注意无论是美国还是全世界总消费量的增加是很快的,因为即使2020年的10%目标是按当时的生产总量计算,也比当前消费水平要提高4—5倍,绝对的增加更大。如果2020年消费水平本身提高1倍,可再生资源的绝对指标也要翻番。
换言之,不能期望可再生资源在不变的需求环境下能完全取代烃类资源,而只有当消费产品需求增加,可再生资源可以能满足此增加需求中的一部分。在2040年时间框架中,指标可以是:可再生资源应用使化石燃料能稳定地维持现在的消费水平。按此指标可以形成以下的观念:
由于不是一个竞争替代战略,可再生资源并不与非再生资源直接竞争。
需要用可再生资源和非再生资源两种资源来满足未来20年的需要。30年以后,可能要更多依靠可再生资源,因为那时的化石燃料将会很贵而且有限。满足近期指标的支持和研究完全与长期目标保持一致,这些方向性指标,非常清楚地表明面临的挑战是巨大的,需要从现在就采取行动,应当开始建立通向扩大利用可再生资源的道路。除了建立可操作的可再生资源基础指标外,其他一些相关的指标也是很重要的,包括:
建立系统,通过加强经济可靠性的基础设施支持,将供应、制造和分销等活动集成起来。
通过功能基因学来提高对植物新陈代谢的理解,优化对专门的增值加工工艺的设计和应用,除应用现有的组分外,要开拓新型聚合物生产和应用。要保证开发的新工艺过程的效率高于95%,同时应用伴生工艺,应用所有副产物,消除废料,保证新的平台能在特殊的环境条件下坚持目标方向对确定目标与研究指标要反复交叉检验,使其能坚持可再生燃料/能源需要的目标。
在生产和分销中要开发保持稳定供应的途径,在年生产一定范围基础上控制一些因素,如价格、数量、性能、地区分布、质量等。同时要制定提出这些因素的标准。
建立进一步合作伙伴关系,改进综合集成,通过加强农村发展来支持取得成功。
“设想”的目标要实现,主要要使本“技术指南”中所列出的目的大纲都能达到。基因改性植物生产专门的代谢产品和开发补充性的化学改性产品取得成效就可以达到2020年可再生资源应用增加5倍的目标。这些进展也将为2020年以后的进一步发展奠定基础。
可再生资源应用技术和市场的障碍及问题
将可再生资源制成消费产品的整个系统中有许多障碍和问题,其中关键和问题是:
植物科学方面:基因学、酶、新陈代谢和组分。
生产方面:单位成本、收率、持续性、基础设计、植物设计。
加工方面:经济学、分离、转化、生物催化、基础设施。
应用方面(由技术和材料驱动的问题):经济学、功能性、性能、新用途。
应用方面(由市场和需求驱动的问题):价格性能比、性能、知觉、市场开发。
现将上述关键和问题择要分别介绍于下。
一、关于应用方面(材料驱动问题)
1、经济学
单位成本是当前植物衍生材料使用的主要障碍,也是经常引起争论的一个问题,问题的核心是竞争性成本状态。在多数情况下,应用植物基原料的成本都比较高,难以与以烃类原料为基础的加工工艺竞争。但是,成本竞争情况有几个非常复杂的因素互相影响,诸如产品价值、材料成本、产量、需要加工程度以及所用基础原料的性能等。因此如果未来的战略只考虑降低本是不会成功的。最重要的经济推动因素不是成本本身,而是制得的产品和制造费用的差价(即增值)。
产品价格是诸多因素的函数,诸如产品利用、性能、消费者喜好和需求等,而制造成本则受原材料价格、供应的持续性、加工、废料处理费用和投资等诸因素影响,要符合当前的具有竞争性的通用化学品工业的低成本需要。但是,从长远考虑,只进行成本比较是有问题的,因为未来的化石燃料的成本是难以预测的。
在当前情况下,用烃类原料生产消费型产品的加工效率是很高的。但这并非是化石原料本身具备的特点。因为石油化工已经研究了100年,有了3代科学家,政府投入了大量资源才使之达到今日的水平。与之相比,植物基材料应用尚处于较低的水平,开拓植物基原料应用来适应已臻成熟的烃类加工需要并不是一条唯一的道路,目前应用数量还是很少的。另一条路线是通过弄清植物衍生材料性能进行技术开发,用基因改性植物,使之能提供含有需要功能的组分。
2、功能性
改变植物中的不同组分含量的目的是提高其功能性。在石油化工中先进行原料裂解降级成为简单的分子,随后用它们再行合成为较复杂的分子和聚合物。植物中已经含有不同形态的聚合物,可以在许多产品中应用。但是,在现在加工系统中尚无大量应用。用量有限的原因有几个方面,其中主要的是由于缺乏对其功能性的理解,而只注意其成本。最近,已经由植物衍生的蛋白质聚合物研制出塑料薄膜的试验产品,显示出其应用的潜力。而且,植物拥有立体化学结构,可以得到一些有价值的手性分子,如糖类、维生素、氨基酸等。从总体看,目前对植物基础原料的反应性和功能性尚不够了解,因此限制了新应用思路的产生。
二、关于应用方面(需求驱动问题)
1、市场开发的费用
植物衍生材料应用的一个关键是市场开发费用高。正如许多新产品市场一样,新产品的研究往往是由小公司开始的,它们投资不足,缺乏继续发展的资源,常常只停留在试验阶段。工业化的成功率低,由于没有一定的供应量而常使产品衰落。因此,需要大力改进产品开发和支持机制,而且要进行与产品相关的市场开发,这是扩大利用可再生资源的主要工作。目前市场上应用的标准都是基于石化产品,没有适应生物基产品的标准,这也是要成功地与石化产品竞争的另一障碍。
2、认识问题
植物衍生材料常给人以较低级的印象,这可能是由于当前处于“石化时代”之故。对某些制造厂商来说,它的性能较差,主要是因为未得优化。虽然公众环境意识增强,但是对植物基产品需求尚不足以创造市场来拉动技术开发。因此,当前可再生资源的进展主要是基于技术推动的结果,只有增加市场拉动才能有力吸引公司更多投资。没有要变革的冲击,就不会有更多的变革。因此,如果没有各种经济倾斜途径,现状是难以改变的。
三、加工问题
1、基础设施中分销问题
多年来石油化学工业已经建立了加工和分销烃类基础产品的有效基础设施。由于依赖进口原油,美国的多数基础设施是建设在海岸线上。因此,许多现有的加工装置并不适合大量植物基材料的收集。植物原料都是在木材加工厂、榨油厂和玉米湿法加工厂进行加工,它们最好接近于供应地。要应用大量植物原料就需要进一步将供应和加工制造集成起来。应当开拓确立农村发展优势和重点的战略和措施,更好地鼓励多用可再生资源。
2、分离技术
应用植物于工业用途的一个关键是缺少植物组分的分离技术。树木具有非常复杂的成分如木质纤维素。此成分强度高,但要将它分离为有用的分子组分则很困难。多数农作物收获品是种子,它们含有碳水化合物、蛋白质、油分和数万种其他组分。通常对许多谷物发芽和生长都能进行良好的安排,而对其作为原料进行分别管理则很困难。一些除去原始粗组分的工艺,如榨油和提取糖分等已经开发,但如何将专门形态的蛋白质和纯的含碳组分分离则仍是困难。在植物基原料加工中常遇到非常稀的水溶液物料,处理费用很高而且技术困难,这是应当要解决的问题。将反应与分离集成起来的加工系统(如催化蒸馏)可能是一个解决问题的方向。但是此类系统目前应用有限。而且还未被开发作为植物基原料方面的应用。通过引入某些基因而使植物增加新的组分,就更需要应用先进的分离技术来回收有意义的新组分。例如生物聚合物开发中目前就因缺少高效纯净的经济上可行的分馏工艺技术而受到限制。植物的组分如不能有效地分离出来,就不可能控制最终产品的特性和质量。
3、转换技术
要利用植物中各种组分的另一问题是将这些非均相的混杂原料转换成较为简单的分子,这才可以进行进一步反应。在植物基原料中,加工工艺需要有高性能的多功能生物催化剂或是非均相催化剂,这些催化剂具有多种功能并可以进行回收。
知识不足是另一关键,目前人们尚缺乏关于植物组分的自然差别和来自不同作物的同样组分的特性等方面知识。这些知识的缺乏和不足就构成难以鉴别植物的差异性,缺少鉴别的手段,因此也就难以考虑作为原料的应用。发酵是用来将某些农作物转化为各种产品的工艺,转化是非均相的。所用的转化方式,副产利用和分离等方面仍有许多有待改进之处。一般地说,植物系统的复杂化学问题使新型或改进植物基加工工艺的设计较为困难。烃类化学制造中有丰富的氧化化学知识,还原化学方面较少,这些都是植物系统加工所需要的。目前特别缺少关于还原生物催化剂共生因子系统方面的实践知识。
植物原料加工工艺开发的另一个大的障碍是当前缺乏有关的教育培训。目前化学工程课程中只有少数涉及生物化学课题,多数毕业生成为化学工程师只拥有非常基础的生物工艺知识和有限的重要生物分离的知识。多年来,工艺化学家和工程师的培训重点都是烃类化学,考虑植物基可再生资源加工需要很少。
四、生产方面
1、收率、持续性和基础设施
因为目前尚未利用大量植物基原料,除木材和造纸外,只是关注未来的供应分销而不是现实存在的问题。但是,这些对实现可再生资源的目标都是十分重要的。在供应的持续性方面,数量和质量都是未知数。如果植物基原料能加工成简单的碳分子,其持续性问题就不成关键。但是如果要设计应用其中某种特殊组分(如聚合物),或是要直接抽取其中某种专门组分,原料的质量和数量的稳定性就非常重要。
在一些情况下,供应持续性中的不确定因素实际上就是风险管理的内容。未来的石油化工供应问题和可再生资源供应问题都有风险。对石油化工来说,未来的供应不桷定因素可能因世界上一些区域的政治变化而增加。而对植物基原料来说,气候可能成为不确定的地区因素。如果某些专门植物不能大量生产可能导致贸易上的不确定因素,这些问题不需要采取断然措施,但是需要重视通过改变基础设施来保证经济可靠性。另一个冲击供应持续性的不确定因素是未来的农作物用途是作为食物还是作为工业原料。一方面是根据供应短缺理论,认为农业难以供应飞跃增长的人口和消费品增长所需的原料。实际上,从需求角度看,食物和原料都在增长,即使不考虑可再生资源进行工业利用,食物本身也存在问题。解决食物问题的方案也可能就是解决工业原料问题的方案。因此,在供应方面必须应用新技术,如生物技术,这样才能保持产率不断提高,使农业能达到一个新的水平。
2、植物设计、植物科学、基因学
转基因技术已经显示出令人鼓舞的前景,要进一步充分利用尚有大量工作有待进行。存在的一个主要障碍是对植物本身内在新陈代谢过程还不够了解,不能按特殊聚合物和其他材料的需要进行设计。因此,对植物新陈代谢和碳流的知识匮乏是其发展中的限制因素。
近年来功能基因学的进展有望促进对材料合成设计的理解。但是这门科学目前刚开始,与类似的医学领域相比所取得的支持还是很有限的。基因转变中的另一成就是让更多的专用基因嵌入和对质体以及细胞核的常规转变。在植物变化、基因学和生物信息等方面有着广泛的研究项目,但是将这些出现的新技术应用于可再生资源的专门研究则很少。
要使科学知识不断深化,在一定程度上取决于消除这些主要障碍,有些已被称为多学科的研究。但是,需要努力加强和协调才能促进现有的障碍及时地被克服。换言之,基因管理的研究必须紧密地与植物内含聚合物的功能性以及分离工程等研究相结合。
研究和开发的课题
《美国植物/农作物基可再生资源2020年设想的技术指南》(以下简称“技术指南“)列出为解决植物/农作物基可再生资源利用中的主要障碍应当进行研究开发的课题。“技术指南”按4个主要方面的障碍依重要性大小列出研究开发课题,每个研究课题的影响都有其时间范围,其中近期表示0—3年、中期表示2010年、长期表示2020年,近期目标的达到可用以衡量面向2020年可再生资源开发利用设想的前进步伐。
一、植物科学研究方面
1、近期影响课题(按重要性依次减小顺序排列,,下同)
(1)应用功能基因学了解植物新陈代谢和组成,至少要与1种主要农作物基因计划结合;
(2)开发能实时进行植物组分的定量分析工具;
(3)改进转基因方法,特别是对麦杆基因的专门嵌入,要在1998年基础上提高效益10倍;
(4)开发1—2种主要农作物的基因标记系列,使之有助于摆在有用的可再生组件含量;
(5)将80%现有的germplasmbase进行编目,有效利用各类淀粉、蛋白质和油分;
(6)找寻发展中的生物信息学利用途径,推动可再生资源的研究和开发,
(7)弄清nuclear-plastid相互作用。
2、中期影响课题
(1)在新陈代谢过程和碳流中至少弄清50个限制速率的关键步骤;
(2)利用功能基因学弄清分子、细胞和整个植物的控制管理;
(3)为主要植物用于可再生资源的组分制定标准;
(4)在2种植物中,建立碳库并为细胞分割确定控制点;
(5)在plastid转变中高效率(大于90%)方法的建立;
(6)创建示范工厂,使主要组分利用率大于60%(如油料、淀粉)或是专门碳键(如c5)大于3o%;
(7)利用基因开关的方法;
(8)建立为植物可再生资源利用的生物信息学基础。
3、长期影响课题
(1)重新设计新陈代谢过程,提供有用的碳结构骨架;
(2)应用有针对性进化技术建立100个未来原料的品种库;
(3)设计新型分子或改性现有化合物,使之适应于功能需要;
(4)为提供工业用原料,创制2种新植物种类;
(5)利用简单的细胞组织进行成本和能源效率评价;
(6)利用计算机技术设计植物组分。
二、生产研究方面
1、近期影响课题
(1)提高亩产量10%~15%以降低原材料单位成本;
(2)改善农业管理,提高肥料利用效率和虫害防治,
(3)确定至少10种影响原料组分和质量的因素;
(4)对至少10种具有潜力的系统和植物类型的亩产效率进行定标赶超(如主要农作物、林业和多年生种类等);
(5)调节气候条件对生产的影响;
(6)每年对2种农作物的潜力进行评价或用其他方法评价亩产量;
(7)提高当前农业加工中废料利用率5倍;
(8)在单位投入基础上提高贫瘠土地产量2倍。
2、中期影响课题
(1)提高产量,使单位投入的碳产出为1998年基础上的2倍;
(2)为长期可持续发展,开发尽量减小土地、大气和水利用影响的系统方法;
(3)对收获产物和主要植物成分建立标准;
(4)专门设计收获装备,尽量增大碳的收获;
(5)开发新的利用方法,使现在遗留在土地上的农作物45%能得到利用,
(6)培育适应专门土地和土壤的农作物;
(7)建立农业信息学基础,重点是不同来源的可再生资源植物类型、生产价值、质量和单位成本。
3、长期影响课题
(l)在化石燃料排出废气中co2的固定;
(2)从现在植物/农作物生产中消除碳的废料;
(3)设计新的农作物/植物生长系统,优化原料回收率(大于95%可利用);
(4)对主要能源获取和固定,提高化合效率;
(5)对收获前期工作和部分就地加工的装置进行设计;
(6)对连续生产系统进行设计和评价。
三、加工研究方面
1、近期影响课题
(1)改进分离技术,处理大于95%的非均—植物材料;
(2)改进单体基础原料变换的生物催化剂;
(3)开发3种具有高选择性的快速反应强力催化剂;
(4)为将植物聚合物转换为有用的单体,找出新型和性能优良的酶(具有10倍活性)并进行评价;
(5)将微生物进行工程化,改善非均—植物的发酵;
(6)提高废物利用率2倍;
(7)开发高效的除水技术并对改进的非水溶剂反应系统进行评价;
(8)在植物材料中利用天然立体化学方法的评价。
2、中期影响课题
(1)应用5种以上高级分离系统(如自行清净膜、离子交换、精馏等);
(2)为经济捕集植物单体和聚合物开发改进的分离——纯化技术;
(3)为2种以上植物类型建立经济共生系统;
(4)通过分子进化技术设计并创制50种新型酶;
(5)开发100种以上具有性能成本特性的新型酶库;
(6)研究反应性分级系统;
(7)对微生物、酶和化学品库的性能建立信息学基础,用于特殊的转化。
3、长期影响课题
(1)实现原料加工中无废料的多种产出的连续工艺;
(2)为改性植物和组分设计新设备;
(3)为3种以上新产品(如将工程化酶转入植物并在收获中得到活化)设计新机制;
(4)固态酶转化;
(5)设计14种化学与生物结合型反应器;
(6)评价植物组分在分离前相内的作用。
四、应用和基础设施研究方面
1、近期影响课题
(3)探求3种在现有加工装置(如玉米湿法加工厂、纸浆厂)上扩大应用植物原料的机遇;
(4)分析测量系统,对90%以上的主要植物组分进行定量;
(5)实时评价单位性能成本和增值成本的方法;
(6)评价运输系统及成本;
(7)计算出100%年加工贮存量和投人产出的需求量;
(8)创建基础设施,扩大利用农业废料。
2、中期影响课匾
(1)深入掌握植物中10种以上组分和碳键新陈代谢体的结构与功能关系知识;
(2)开发对高质量原材料的100%鉴别保护系统;
(3)为价值驱动的生产和定货实现营销系统;
(4)对在同一地点的多目的利用区的协同作用进行评价;
(5)对原材料组分和加工过程中的中间产物实现实时定量分析手段(小于3分钟/试样);
(6)开发生产预测手段,准确性大于95%;
(7)在一组植物原料性能基础上建立信息学基础,如单位成本、性能、功能性、最佳来源、应用范围等。
3、长期影响课题
(1)所需功能进行分子结构设计制备植物化合物至少10种;
(2)在植物生产区内开发至少5个制造利用中心;
(3)开发3种以上有新功能的新材料;
(4)提出扩大利用可再生资源所需的教育培训需求;
(5)在植物组分功能间协同作用的利用;
(6)设计最终产品的贮存和运输,使之到达销售中心和出口;
(7)为供需关系的控制创建减轻超过90%风险的战略。
当前,美国有一些项目已在进行,可视为工业原料中应用可再生资源的先驱,也可视为本“技术指南”中研究项目的示范事例。其一是在转基因植物开发中的聚羟基丁酸酯(pib)。phb可在植物中生成,作为制造生物降解塑料的原料,用适当的细菌基因进行转化并弄清植物内在的新陈代谢路径,从而构成制备方法。现在正在进行分离、生产标准等项工作。
其二是用玉米淀粉作原料,通过酶反应制备聚乳酸(pla)。cargi11-dow合资企业已在充分研究的基础上进一步投资数百万美元建立制造装置进行工业开发。pla是一种生物裂解聚合物,原料是由玉米湿法加工工艺制备的葡萄糖,其中发酵过程和酶的活性是重要因素。最终的pla树脂可视用户制膜、纤维、碳制品和涂层的需要分别制出不同规格品种。pla具有聚苯乙烯、聚烯烃和纤维素的功能性。
协同与合作是取得成功的途径
未来利用可再生资源需要采取一条多学科和跨行业途径。在许多领域内的研究成就都提供了发展机遇,如生物聚合物、立体结构型分子、新型酶、新材料和转基因设计等。但是每个方面内的任何进展如果只当作孤立的技术领域是远远不够的,需要更有力的相关研究计划,采取平行的和协调的方式进行工作,才能取得成果。
要取得有效益的进展必须采取多学科的途径,这是非常清楚的。但是,任何一个组织都难以具备有如此深度和广度的技术能力。因此,对研究提供的支持应当是多方面的,而且要在跨行业的系统中进行。
“植物/农作物基可再生资源2020年设想”(以下简称“设想”)中提出的要求需将重点瞄准有限的热点目标同步取得进展。对于研究工作则需要有准确的时间表和系统中各方面的广泛交流,所有这些都要走相互协同的道路。例如,一位科学家可能发现一种新型聚合物,具有可以作为高级生物降解塑料的功能,但是,此研究成果的价值受到以下一些因素的限制:发现适当的基因、新陈代谢过程可靠性、:最佳作物类型是否能有足够的产率和可承受的成本、各种聚合物组分分离可能和利用此材料制造新产品的方法等。所有这些因素都需通过研究和开发才能取得相应的进展。进行这些研究开发要采取最佳途径保证研究成果关键的目标互相协调、平行地进行,此途径要鼓励私营部门的参与。
当前,植物和农作物作为生物质和原料已被应用,诸如淀粉、蛋白质、脂肪酸和异戊二烯化合物。林业主要是为纸浆和造纸提供原料。黄豆则是用于油墨和涂料。玉米通过湿法加工发酵工艺已经进入几个工业部门,但是各种用量都很少。由于基因工程可以通过新陈代谢操作使植物或农作物生成有功能需要的材料,从而显示出新的发展机遇。
“技术指南”已经突出了未来取得进展的途径,而且确定了系统的各个组成部分的目标。成功地达到这些目标就可实现“设想”中确定的到2020年可再生资源利用增加5倍的目的,同时也为2020年以后进一步发展奠定了基础。按“技术指南”目标提出课题是人们用所有的天然资源满足不断增长的消费品和能源的需要。当前进行研究将为今后的产品选择提供机会。可再生资源需要将注意焦点放在以下几个方面:发展方向、最佳科学思维的应用、最先进技术的应用和最高级智能水平的继续研究等。本“技术指南”已经提出了需求和研究开发课题,其目的就是为美国开拓实施一条成功的可再生资源战略。而且也选出了需要优先支持的领域,它们都是从几个已经确定的科学研究和工业开发需求中选择出来的,而且考虑了在高级可再生资源的关键部门有最大的投资回报。
未来世界许多方面都会延续但将发生变化。幸运的是我们已看见其需求并具有科学智慧适应变化的发展。美国要保持领先地位就要继续采取迅速的行动来满足扩大利用可持续发展的可再生资源的需求。不断的科学突破和技术进步(正如“技术指南”文件中所列出的项目和课题)才能满足资源利用的挑战。这些挑战正在我们面前,我们面临的挑战是为满足人们对产品不断增长的需求。
“技术指南”中从两个方面表明多学科和跨部门的研究开发对实现“设想”的重要性:
一是植物的投人,同时要考虑废料和副产物利用、改性基因学的应用。
关键词:环保建材 绿色建筑 重要任务
一、绿色建筑概述
这里所提倡的“绿色建筑”是一种概念.或者说是―种象征并不是指具体的建筑绿化、房顶绿化和环境绿化。总的说来,绿色建筑是以节能、环保、无害、舒适为目标,以绿色设计和绿色施工为手段,有效利用自然资源.达到建筑与环境和谐的新型建筑。为此.在绿色建筑
的设计与施工过程中.首先要考虑建筑物与环境的协调―致性与自然
的协调、统一性;其次,在绿色建筑设计和施工中要充分利用光能、风能等自然能源,达到绿色环保的效果。而且还要最大限度地减少能源的消耗,减少建筑物在施工中产生过多废弃物和垃圾。把建筑废物和垃圾对环境的污染降低到最小限度。加上对建筑物室内的合理布局。运用先进的环保材料进行装饰,为居住者和使用者创造安全、舒适、有益健康,且能接近自然的生活空间。
二、绿色建筑与建筑材料的关系
建筑材料是建筑的基础,又是建筑的灵魂。即使有再开阔的思路, 再玄妙的设计,建筑也必须通过材料这个载体来实现。
绿色建筑关键技术中的“居住环境保障技术”、“住宅结构体系 与住宅节能技术”、“智能型住宅技术 ”、“室内空气与光环境保障技术”、“保温、隔热、防水技术”都与绿色建材有关。
采用清洁生产技术,不用或少用天然资源和能源,大量使用工 农业或城市固态废物生产的无毒害、无污染、无放射性,达到使用周 期后可回收利用,有利于环境保护和人体健康的绿色建筑材料,将绿 色建材的研究、生产和各种新的绿色建筑技术的研究密切结合起来,成为未来建筑的发展趋势。
三、绿色建筑对建筑材料的要求
绿色建筑对材料在资源利用方面的要求可归纳如下:1尽可能地少用建筑材料;2使用耐久性好的建筑材料;3尽量的使用占用较少不可再生资源生产的建筑材料;4使用可再生利用、可降解的建筑材料;5使用利用各种废弃物生产的建筑材料。
少用材料对减少自然资源和能源的消耗、降低环境污染的作用不言而喻。耐久性好的材料对于能源节约、减少固体垃圾是非常有帮助的,此外材料的耐久性对于室内空气质量也起着重要作用,一般来说,耐久性越好的材料导致的室内污染越少。
绿色建筑强调减少对各种资源尤其是不可再生资源的消耗,包括水资源、土地资源。对于建筑材料来讲,减少水资源的消耗表现在使用节水型建材产品,如使用新型节水型座便器可以大幅减少城市生活用水,使用透水型陶瓷或混凝土砖可以使雨水渗入地层,保持水体循环,减少对水资源的消耗。在建筑中限制使用和淘汰大量消耗土地尤其是可耕地的建筑材料(如实心粘土砖等)的使用,同时提倡使用利用工业固体废弃物如矿渣、粉煤灰等工业废渣以及建筑垃圾等制造的建筑材料。发展新型墙体材料和高性能水泥、高性能混凝土等既具有优良性能同时又大幅度节约资源的建筑材料,发展轻集料及轻集料混凝土,减少自重,节省原材料。
充分利用建筑材料的可再生性对减少资源消耗具有非常重要的意义。建筑材料的可再生性指材料受到损坏但经加工处理后可作为原料循环再利用的性能。可再生材料一是可进行无害化的解体,二是解体材料再利用。具备可再生性的建筑材料包括钢筋、型钢、建筑玻璃、铝合金型材、木材等。要对不同材料分别回收,形成再资源化系统,利用建筑废弃物制成建筑部品。钢铁(包括钢筋、型钢等)、铝材(包括铝合金、轻钢大龙骨等)的回收利用性非常好,而且回收处理后仍可在建筑中被利用,这也是提倡在住宅建设中大力发展轻钢结构体系的原因之一。可以降解的材料如木材甚至纸板,能很快再次进入大自然的物质循环.在现代绿色建筑中经过技术处理的纸制品已经可以作为承重构件而被采用。
四、当前建筑材料业发展面临的关键问题
我国是一个资源人均占有量贫乏的国家,耕地、淡水、森林、石油、天然气等资源相对不足与世界平均水平相差较大。建筑材料业―直以来都是高耗能行业。建筑材料的能源、资源消耗需求与建设节约型社会,发展循环经济的矛盾显得尤为突出。解决这一矛盾,一定要
依靠科学技术的发展和良好的节约环保理念。只有大力推行节能、节电、无害环保建筑材料,才能保证绿色建筑的实施,只有通过科学技术的进步,才能从根本上解决这个矛盾。
五.结语
绿色建材是绿色建筑的基础,它对绿色建筑的发展和效果的优劣起着重要作用。将绿色建材的研究、生产和高效利用能源技术和各种新的绿色建筑技术的研究密切结合起来是未来建筑的发展趋势。
目前国内外建筑材料领域正在研究的“绿色混凝土”、“高效保温材料”、“储热材料”、“再生利用型材料”、“健康功能型材料”、“太阳能电池窗户”、“墙体屋面光电一体化建筑材料”、“绿色装饰材料”等绿色建材与各种绿色建筑节能技术(空调节能、通风
节能、屋顶节能、墙体节能等)结合,可以为绿色建筑的发展提供广阔的天地和光明前景。
参考文献:
[1]洪雯,建筑节能-绿色建筑对亚洲未来发展的重要性,中国大百科出版社.2008.11.
1)优势(S)①在油气生产领域的经验积累和技术优势.未来的一段时间内,我国重点发展的低碳能源仍将是石油和天然气,而我国石油工业在从上游的油气勘探,中游的管道运输到下游的石油炼制和化工产品的生产销售都有自己的一套成熟的经营体系和得天独厚的技术优势.②在节能减排方面取得了一系列重要进展.近几年来,在全国实施节能减排的大背景下我国石油工业更加重视技术创新,在降低石油化工产品生产过程中的单位能耗以及污染物的回收方面都取得了显著的效果.③非常规油气资源发展潜力巨大.在石油、天然气资源短缺以及发展低碳经济的大背景下,以页岩气、煤层气为主的非常规天然气凭借其资源储量丰富、碳排放量低等优势迎来了广阔的发展前景.我国非常规天然资源丰富,发展潜力巨大,如果能尽快对煤炭和石油等传统能源进行有效的替代,将为我国石油工业带来新的增长空间.④新能源和可再生能源有着广阔的发展前景.新能源和可再生能源如风能、太阳能、生物质能、地热能等在我国的储量都非常丰富,发展前景看好.生物燃料、电动汽车以及纤维素等如果能够得到广泛的应用将成为油气资源很好的补充,能在一定程度上缓解油气资源的供需压力.2)劣势(W)①整体技术水平落后,技术储备不足,创新能力有限.不断增加科技研发投入,提高能源利用效率,开发清洁能源技术,大力发展节能减排技术是低碳经济的本质要求[10].技术创新是发展低碳经济的重要推动力,而我国石油工业整体技术水平落后,导致非常规油气资源和可再生资源开发进程缓慢、节能减排效果差、能效低等一系列问题.②产业结构不合理.石油石化行业的低碳发展必然要求加快产业结构调整[11].我国石油工业产业结构不合理,存在很多生产工艺落后、生产方式粗放、能耗高、污染严重的中小型炼油厂,严重制约了我国石油工业的产出效益和低碳化进程.③管理水平低下,低碳发展意识薄弱.我国石油公司在低碳减排制度建设、低碳理念传播以及提高全员低碳意识方面远落后于国际大型石油公司,这非常不利于我国石油公司低碳形象的树立以及低碳发展政策的落实.④非常规油气资源分布不均,开采难度大.煤层气、页岩气等清洁高效的非常规油气资源虽储量丰富、勘探开发程度低,但由于分布不均且地质条件复杂、技术储备不足等的限制,勘探开发难度很大.3)机会(O)①为天然气和新能源业务带来发展机遇.低碳经济为天然气尤其是非常规油气资源和可再生资源提供了广阔的发展空间,给我国石油工业带来了新的经济增长点,从而实现油气资源能源对煤炭的有效替代也将改善我国的能源结构,实现节能减排.②促进石油产业发展方式的转变.主要表现在三个方面:首先,加快产业结构的调整.低碳经济对提高能源效率和节能减排的要求必然会促使我国石油工业加快产业结构的调整,淘汰高能耗、低附加值的工艺和设备.其次,加快技术创新.低碳经济的发展必然导致以低碳技术为代表的新技术、新标准、相关专利及新技术贸易壁垒的出现[12],必然会促使我国石油工业在提高能效、开发新能源、节能减排等方面的技术创新.最后,加快管理水平的提高.③国家政策的支持.为全面实现低碳经济的发展,政府在新能源开发、低碳技术扶持等方面都出台了一系列的保障政策.④提供了国际合作的机遇.发展低碳经济将改变石油石化行业的国际竞争格局,也将提供更多低碳技术开发等方面的国际合作的机会.4)威胁(T)①肩负着增加油气供应和降低碳排放的双重压力.我国石油工业既担负着保障油气供应安全的重任,又有着严格的碳排放量限制,如何在加大油气勘探开发力度的同时提高能效、实现节能减排将是现阶段摆在我国石油工业面前的一个难题.②增加了经营成本和经营风险.提高能效、实现节能减排以及新能源的开发都需要依靠增加技术投入来实现,这将大幅增加我国石油工业的运营成本,进而提高运营风险.③国际大型石油公司的竞争压力.发达国家的大型石油公司走在低碳发展的前沿,拥有大量的低碳技术专利和高附加值的石油、化工产品,这无疑竟给我国石油工业带来巨大的竞争压力.④新能源与可再生能源的替代威胁.新能源与可再生能源将依托低碳经济提供的机遇获得蓬勃的发展,而我国石油工业在短期内仍将延续以石油、天然气为主营业务的发展模式,因此新能源与可再生能源将在一定程度上挤占传统化石能源的市场.
2SWOT-AHP定量模型
低碳经济下我国石油工业的优势、劣势、机会和威胁见表1.表1清晰地指出了低碳经济下我国石油工业目前的优势与劣势,显示了自身资源及外部环境带来的发展机会,以及面临的威胁.1)判断矩阵A的构造首先对四个SWOT组中要素进行两两比较.在比较过程,针对某一准则Ci中两个元素Ai和Aj,按照表2标度确定其重要性程度值,这样对于准则C,n个被比较元素构成了一个两两比较判断矩阵.以下以优势组为例,进行概述(见表3).通过大量资料的查阅并参考相关专家的意见,将专家打分与前人研究成果相结合将优势、劣势、机会、威胁各因素进行分值统计,结果如下:2)权重W及最大特征根λmax的计算将判断矩阵每一列归一,得到判断矩阵A按列归一化后的矩阵A′如表4所示.
3战略选择
以总优势力度S、总劣势力度W、总机会力度O和总威胁力度T四个变量各为半轴,构成四半维坐标系.将计算出的变量值在坐标系的相应半轴上描出(S′、W′、O′、T′),依次连接得到战略四边形(图1).战略四边形的重心坐标P(X,Y)的坐标为:P(X,Y)=P(∑xi/4,∑yi/4)=(0.081,0.040).此战略四边形就代表低碳经济下我国石油工业的战略地位.
4结论与建议
循环制氢和利用生物质转化制氢等, 不仅对各项技术的基本原理做了介绍, 也对相应
的环境, 经济和安全问题做了探讨. 对可再生氢能系统在香港的应用前景做了展望.
关键词: 可再生能源, 氢能, 电解水, 光伏电池, 太阳能热化学循环, 生物质
引言
技术和经济的发展以及人口的增长, 使得人们对能源的需求越来越大. 目前以石
油, 煤为代表的化石燃料仍然是能源的主要来源. 一方面, 化石燃料的使用带来了严
重的环境污染, 大量的co2, so2, nox气体以及其他污染物, 导致了温室效应的产生和
酸雨的形成. 另一方面, 由于化石燃料的不可再生性和有限的储量, 日益增长的能源
需求带来了严重的能源危机. 据估计, 按照目前的消耗量, 石油仅仅能维持不到50年,
而煤也只能维持200年. kazim 和 veziroglu (2001)[1]指出, 做为主要石油输出国的阿拉
伯联合酋长国, 将在2015年无法满足石油的需求. abdallah 等人(1999)[2]则宣布, 埃
及的化石燃料资源, 在未来的20年内就会耗尽! 而作为能源需求大国的中国, 目前已
经有超过31%的石油需要进口, 而到2010年, 这一数字将会增长到45-55%[3]!
基于以上所述环境污染和能源短缺的双重危机, 发展清洁的, 可再生的新能源的
要求越来越迫切. 太阳能, 风能, 生物质, 地热能, 潮汐能, 具有丰富, 清洁, 可再
生的优点, 今年来受到了国际社会的广泛关注. 尤其以太阳能, 风能以及生物质能,
更被视为未来能源的主力军. 根据简单估算, 太阳能的利用率为20%时, 利用陆地面积
的0.1% 就足以提供满足当前全球的能量需求[4]. 而中国仅仅依靠风力发电, 就足以
使目前的发电量翻一番[5].然而, 这些可再生资源具有间歇性, 地域特性, 并且不易
储存和运输的特点. 氢, 以其清洁无污染, 高效, 可储存和运输等优点, 被视为最理
想的能源载体. 目前各国都投入了大量的研究经费用于发展氢能源系统. 在中国, 清
华大学已经进行了在2008年奥运会使用以氢为燃料的汽车的可行性分析,绿色奥运将成
为2008年北京的一道靓丽的风景线 [6]. 在香港政府和香港中华电力(clp)的支持和资
助下, 可再生氢能源系统在香港的可行性研究也已经在香港大学机械工程系展开. 本
文属于clp资助的项目的部分内容, 主要归纳总结了利用可再生资源制氢技术的基本原
理, 分析了各项技术的经济性, 对环境的影响以及安全性等关键问题. 通过对比分析
并结合香港的实际情况, 对于香港发展可再生氢能源系统进行了展望.
基于经济因素的考虑, 目前的氢主要是通过化石燃料的重整来制取, 比如天然气汽
化重整(natural gas steam reforming), 只有大约5%的氢是通过可再生资源的转换制取.
利用太阳能电池和风力发电驱动的电解水反应, 利用太阳能的热化学反应和利用生物质
制氢是最主要的从可再生能源中制取氢的技术. 其他可再生氢的制取技术, 比如生物制
氢, 光电化学技术, 光催化技术和光化学技术, 虽然具备很大发展前景, 但由于还处于
很早期的发展阶段, 其技术发展, 经济性等都还不明朗, 本文不做详细讨论.
1. 电解水制氢
1.1. 电解水基本原理及分类
电解水制氢是目前最为广泛使用的将可再生资源转换为氢的技术. 当两个电极(阴
极和阳极)分别通上直流电, 并且浸入水中时, 水将会被分解并在阴极和阳极分别产生
氢气和氧气. 这个过程就是电解水. 这样的装置则为电解槽.
电解水由分别发生在阴极和阳极的两个化学反应组成, 如式(1),(2)和(3):
anode: h2o + electrical energy
2
1 o2 + 2h+ + 2e- (1)
cathode: 2h+ + 2e- h2 (2)
overall: h2o + electrical energy h2 +
2
1 o2 (3)
电解水的基本原理见图1. 在催化剂和直流电的作用下, 水分子在阳极失去电子, 被分
解为氧气和氢离子, 氢离子通过电解质和隔膜到达阴极, 与电子结合生成氢气.
o2 h2
diaphragm anode cathode
e-
h+
图1. 电解水的基本原理示意图
fig.1. schematics of basic principle of water electrolysis
最早的电解水现象是在1789 年被观测到. 之后, 电解水技术得到了较快的发展. 到
1902 年, 世界上就已经有超过400 台电解槽装置. 目前市场上的电解槽可以分为三种: (1)
碱性电解槽(alkaline electrolyzer); (2) 质子交换膜电解槽(proton exchange membrane
electrolyzer)和(3)固体氧化物电解槽(solid oxide electrolyzer). 表1. 总结和对比了这三
种电解槽技术的特点.
表1. 不同电解槽技术的对比
table 1. comparison between different electrolyzer technologies
electrolyzer type electrolyte operating temperature (oc) carriers efficiency cost (us$/kw)
alkaline electrolyzer
20-30% koh
70-100
oh-
80%
400-600
pem electrolyzer pem polymer
50-90 h+ 94% 2000
solid oxide
electrolyzer
yttria-stabilized
zirconnia
600-1000 o2- 90% 1000-1500
碱性电解槽是最早商业化的电解槽技术, 虽然其效率是三种电解槽中最低的, 但
由于价格低廉, 目前仍然被广泛使用, 尤其是在大规模制氢工业中. 碱性电解槽的缺
点是效率较低和使用石棉作为隔膜. 石棉具有致癌性, 很多国家已经提出要禁止石棉
在碱性电解槽中的使用. 据报道, pps(poly phenylene sulfide), ptfe(poly tetra
fluorethylene), psf(poly sulfone) [7]以及zirfon [8]等聚合物在koh溶液中具有和
石棉类似的特性, 甚至还优于石棉, 将有可能取代石棉而成为碱性电解槽的隔膜材料.
发展新的电极材料, 提高催化反应效率, 是提高电解槽效率的有效途径. 研究表明
raney nickel 和 ni-mo 等合金作为电极能有效加快水的分解, 提高电解槽的效率
[9,10].
质子交换膜电解槽由于转换效率很高而成为很有发展前景的制氢装置. 由于采用
很薄的固体电解质(pem), 具有很好的机械强度和化学稳定性, 并且欧姆损失较小. 在
日本, 效率达94.4%的质子交换膜电解槽已经研制成功 [11]. 但由于质子交换膜(目前
常用的是由杜邦公司的nafion)和使用铂电极催化剂, 价格昂贵, 制约了其广泛使用.
今后研究的重点是降低成本, 和进一步提高其转换效率. 成本的降低主要是通过降低
贵重金属铂在催化层中的含量和寻找廉价的质子交换膜材料. 目前这个两个领域都已
经取得了一定成效. 印度的电化学和能源研究所(ceer)成功将铂的含量在没有影响电
解槽整体性能的情况下从0.4mg/cm2降到了0.1mg/cm2 [12]. 使用喷溅沉积法(sputter
deposition)制备催化层也同样获得了成功, 并且使铂的含量降到了0.014 mg/cm2
[13,14]. 其他廉价的替代材料, 如polyphosphazene [15]和sulfonated polystyrene
(sps) [16]等也被证实具有和nafion类似的特性, 有可能被用到质子交换膜电解槽中用
做电解质. 可以预见, 随着质子交换膜电解槽技术的成熟和价格的降低, pem电解槽将
成为制氢的主要装置.
固体氧化物电解槽(solid oxide electrolyzer)是另一种新兴的电解槽技术. 这种
电解槽的缺点是工作在高温, 给材料的选择带来了一定限制. 优点是较高的反应温度
使得电化学反应中,部分电能被热能代替, 从而效率较高, 尤其是当余热被汽轮机, 制
冷系统等回收利用时, 系统效率可达90%. 目前的研究重点是寻找在高温下具有对氧离
子良好导电性的电解质材料和适当降低电解槽的工作温度.
1.2. 电解海水制氢
海水是世界上最为丰富的水资源, 同时也是理想的制氢资源. 尤其在沿海的沙漠
地区, 比如中东和非洲, 淡水资源缺乏, 电解海水制氢则成了唯一的选择. 但海水富
含盐份(nacl)和其他杂质, 并且通常电解槽的电极电势超过了产生氯气所需的电势,
这使得在电解海水时, 往往是氯气从阳极析出, 而非氧气. 虽然氢气的产生不会受此
影响, 但产生的氯气具有强烈的毒性, 需要完全避免. 在所有常用的电极材料中, 只
有锰和锰的氧化物及其化合物在电解海水时可以在阳极产生氧气, 而抑制氯气的产生.
ghany 等人[17]用mn1-xmoxo2+x/iro2ti作为电极, 氧气的生成率达到了100%, 完全避免
了氯气的产生, 使得电解海水制氢变得可行.
1.3. 利用可再生资源电解水制氢
如前所述, 电解水需要消耗电. 由化石燃料产生电能推动电解槽制氢由于会消耗
大量的不可再生资源, 只能是短期的制氢选择. 由可再生资源产生电能, 比如通过光
伏系列和风机发电, 具有资源丰富, 可再生, 并且整个生命周期影响较小等优点, 是
未来的发展趋势.
光伏电池在吸收太阳光能量后, 被光子激发出的自由电子和带正电的空穴在pn结
的电场力作用下, 分别集中到n型半导体和p型半导体, 在连接外电路的情况下便可对
外提供直流电流. 光伏电池可以分为第一代光伏电池(wafer-based pv)和第二代光伏电
池(thin film pv). 目前市场上多是第一代光伏电池. 第一代电池具有较高的转换效率
(10-15%), 但成本较贵, 限制了其大规模使用. 第二代电池虽然效率较低(6-8%), 但
由于采用了薄膜技术, 使用较少的材料, 并且易于批量生产, 制作成本大大降低, 目
前的研究方向是进一步提高薄膜光伏电池的转换效率[18]. 由于光伏电池产生的是直
流电,可以直接运用于电解水, 但为了保证光伏阵列工作在最大功率状态, 在光伏电池
和电解槽之间往往需要接入一个最大功率跟踪器(mppt)和相应的控制器.
风能发电由于具有较高的能量利用效率和很好的经济性, 在最近几年得到了很快
发展. 风力发电机组利用风的动能推动发电机而产生交流电. 根据betz law, 风力发电
的最大效率理论上可达59% [19]. 在风力充足的条件下, 风力发电的规模越大, 其经济
性越好. 因此, 近几年风力发电朝着大规模的方向发展. 另外, 由于海上风力较陆地
大, 并且不占陆地面积, 最近也有将风力发电机组建在海上的趋势. 风能发电只需交
流-直流转换即可与电解槽相接产氢, 经济性较好, 目前不少风力资源充足的国家都将
风能-电解槽系统列为重点发展的方向.
另外, 地热能, 波浪能所发的电都可以作为电解槽的推动力, 但和太阳能与风能
一样, 都受地域的限制.
1.4. 电解水制氢的现状
目前所用到的电解槽多为碱性电解槽. 加拿大的stuart是目前世界上利用电解水
制氢和开发氢能汽车最为有名的公司. 他们开发的hesfp系统包括一个能日产氢25 千
克的碱性电解槽, 一个能储存60 千克氢的高压储氢罐和氢内燃机车. 他们用于汽车的
氢能系统能每小时产氢3千克, 可以为3辆巴士提供能量. hamilton是另一个有名的电解
槽开发制造商, 他们的es系列利用pem电解槽技术, 可以每小时产氢6-30nm3, 所制氢
的纯度可达99.999%. 在日本的we-net计划中, 氢的制取也是通过pem电解槽来实现,
并且pem电解槽在80oc和1a/cm2的工作条件下, 已经以90%的效率连续工作了超过4000小
时 [11].
1.5. 电解水技术的环境, 经济和安全问题
从电解水的整个生命周期来看, 电解水制氢会对环境造成一定的负面影响, 并且
也有一定的危险性. 下面将做定性分析.
对碱性电解槽而言, 由于使用了具有强烈腐蚀性的koh溶液作为电解液, koh的渗漏
和用后的处理会造成环境的污染, 对人体健康也是一个威胁. 并且目前的碱性电解槽
多采用石棉作为隔膜, 石棉具有致癌性, 会对人构成严重的危害. pem电解槽使用质子
交换膜作为电解质, 无须隔膜. 但当pem电解槽工作温度较高时(比如150oc), pem将会
发生分解, 产生有毒气体. 固体氧化物电解槽虽然没有上述问题, 但工作在高温, 存
在着在高温下生成的氧气和氢气重新合并发生燃烧甚至爆炸的危险, 需要引起注意.
此外, 电解槽生产, 比如原材料的开采,加工, 以及最终的遗弃或废物处理, 都需要消
耗一定的能量, 并且会释放出co2等温室气体和其他污染物.
当电解槽由光伏电池驱动时, 光伏电池可能含有有毒物质(比如cdte pv), 将带来
一定的环境污染和危险性. 尤其当系统发生短路出现火情, 有毒物质将会释放出来,危
害较大. 另外, 光伏阵列的安装会占用较大的土地面积. 这点也需要在设计安装时加
以考虑. 风能-电解槽系统和光伏-电解槽系统相比, 则对环境的影响要小很多, 并且
也相对安全. 但也有需要注意的地方, 比如噪音, 对电磁的干扰, 以及设计时需要考
虑到台风的影响.
尽管电解水制氢具有很高的效率, 由于昂贵的价格, 仍然很难大规模使用. 目前
三种电解槽的成本分别为: 碱性电解槽us$400-600/kw, pem电解槽约us$2000/kw, 固体
氧化物电解槽约us$1000-1500/kw. 当光伏电池和电解水技术联合制氢时, 制氢成本将
达到约us$41.8/gj(us$5/kg), 而当风力发电和电解水技术联合制氢时, 制氢成本约为
us$20.2/gj (us$2.43/kg) [20].
2. 太阳能热化学循环制氢
太阳能热化学循环是另一种利用太阳能制取氢燃料的可行技术. 首先, 由太阳能
聚光集热器收集和汇聚太阳光以产生高温. 然后由这些高温推动产氢的化学反映以制
取氢气. 目前国内外广泛研究的热化学制氢反应有: (1) 水的热分解(thermolysis);
(2) h2s的热分解和(3) 热化学循环水分解.
2.1. 水的热分解制氢
由太阳能聚光器产生的高温可以用于对水进行加热, 直接分解而产生氢气和氧气.
反应式如(4)
2h2o 2h2 + o2 (4)
在这个反应中, 水的分解率随温度的升高而增大. 在压力为0.05bar, 温度为2500k时,
水蒸汽的分解率可以达到25%, 而当温度达到2800k时, 则水蒸汽的分解率可达55%. 可
见提高反应温度, 可以有效产氢量. 然而, 反应所需的高温也带来了一系列的问题.
由于温度极高, 给反应装置材料的选择带来了很大限制. 适合的材料必须在2000k以上
的高温具有很好的机械和热稳定性. zirconia由于其熔点高达3043k而成为近年来在水
的热分解反应中广泛使用的材料 [21,22]. 其他可选的材料及其熔点见表2.
表2. 作为热化学反应装置备选材料及其熔点 [22]
table 2 some materials and their melting points [22]
oxides t oc carbides t oc
zro2 2715 b4c 2450
mgo 2800 tic 3400-3500
hfo2 2810 hfc 4160
tho2 3050 hbn 3000 (decomposition)
另一个问题就是氢和氧的分离问题. 由于该反应可逆, 高温下氢和氧可能会重新结合
生成水, 甚至发生爆炸. 常用的分离方法是通过对生成的混合气体进行快速冷却(fast
quenching),再通过pd或pd-ag合金薄膜将氢和氧分离. 这种方法将会导致大量的能量
损失. 近几年有研究人员采用微孔膜(microporous membrane)分离也取得一些成功
[22,23], 使得直接热分解水制氢研究又重新受到广泛关注.
2.2. h2s的热分解
h2s是化学工业广泛存在的副产品. 由于其强烈的毒性, 在工业中往往都要采用
claus process将其去除, 见式(5)
2h2s + o2 2h2o + s2 (5)
这个过程成本昂贵, 还将氢和氧和结合生成水和废热, 从而浪费了能源. 对h2s的直接
热分解可以将有毒气体转化为有用的氢能源, 变废为宝, 一举两得. h2s的热分解制氢反
应式见(6)
2h2s 2h2 + s2 (6)
该反应的转化率受温度和压力的影响. 温度越高, 压力越低, 越有利h2s的分解. 据报
道, 在温度1200k,压力1 bar时, h2s的转化率为14%, 而当温度为1800k, 压力为0.33bar
时, 转化率可达70% [24]. 由于反应在1000k以上的高温进行, 硫单质呈气态, 需要与氢
气进行有效的分离. 氢与硫的分离往往通过快速冷却使硫单质以固态形式析出. 同样,
这种方法也会导致大量的能量损失.
2.3. 热化学循环分解水制氢
水的直接热分解制氢具有反应温度要求极高, 氢气分离困难, 以及由快速冷却带
来的效率降低等缺点. 而在水的热化学分解过程中, 氧气和氢气分别在不同的反应阶
段产生, 因而跨过了氢气分离这一步. 并且, 由于引入了金属和对应的金属氧化物,
还大大降低了反应温度. 当对于水直接热分解的2500k, 水的热化学循环反应温度只有
1000k左右, 也大大减轻了对反应器材料的限制. 典型的2步热化学循环反应式见
(7)-(10).
2 y x o
2
y xm o m + (7)
2 y x 2 yh o m o yh xm + + (8)
或者 2 o o m o m y x y x + ′ ′ (9)
2 y x 2 y x h o m o h o m + + ′ ′ (10)
其中m 为金属单质, mxoy 或1 1 y x o m 则分别为相应的金属氧化物. 适合用做水的热化学
循环反应的金属氧化物有tio2, zno, fe3o4, mgo, al2o3, 和 sio2等. zno/zn 反应温度较
低, 在近几年研究较多 [24-29]. fe3o4/feo 是另一对广泛用于热化学分解水制氢的金属
氧化物. 该循环中, fe3o4 首先在1875k 的高温下被还原生成feo 和 o2, 然后, 在573k
的温度下, feo 被水蒸汽氧化, 生成fe3o4 和 h2. 经研究发现, 用mn, mg, 或co 代替
部分fe3o4 而形成的氧化物(fe1-xmx)3o4 可以进一步降低反应温度 [4], 因而更具发展
前景.
除了以上所述2 步水分解循环外, 3 步和4 步循环分解水也是有效的制氢方式.
is(iodine/sulfur)循环是典型的3 步水分解循环, 该循环的反应式见(11)-(13):
4 2 x 2 2 2 so h hi 2 o h 2 so xi + + + at 293-373k (11)
2 2 i h hi 2 + at 473-973k (12)
2 2 2 4 2 o
2
1 so o h so h + + at 1073-1173k (13)
在is 循环中,影响制氢的主要因素就是单质硫或硫化氢气体的产生等副反应的发生. 为
尽量避免副反应的发生, x 的值往往设置在4.41 到11.99 之间[30]. ut-3 则是典型的
4 步循环[31]. 其反应式见(14) - (17):
2 2 2 o
2
1 cabr br cao + + at 845 k (14)
hbr 2 cao o h cabr 2 2 + + at 1,033 k (15)
2 2 2 4 3 br o h 4 febr 3 hbr 8 o fe + + + at 493 k (16)
2 4 3 2 2 h hbr 6 o fe o h 4 febr 3 + + + at 833 k (17)
热化学循环分解水虽然跨过了分离氢和氧这一步, 但在2 步循环中, 生成的金属在
高温下为气态并且会和氧气发生氧化还原反应而重新生成金属氧化物, 因此, 需要将
金属单质从产物混合物中分离出来. 金属单质的分离一般采用快速冷却使金属很快凝
固从而实现分离. 同样, 在3 步循环中, 氢和碘也需要及时的分离. 采用的分离技术都
类似.
2.4. 热化学循环分解水制氢的现状
热化学循环制氢在欧洲研究较多, 但由于产物的分离一直是一个比较棘手的问题,
能量损失比较大, 此种制氢方法还没有进入商业化的阶段. 在swiss federal institute of
technology zurich,对zno/zn 循环制氢研究已经比较深入. 他们的研究目前主要集中在
产物的分离以及分解水反应的机理方面 [32]. swiss federal office 则已经启动了一个
“solzinc”的计划, 通过zno/zn 循环制取氢气以实现对太阳能的储存. 目前正在进行
反应器的设计, 将于2004 年夏季进行测试[33].
2.5.太阳能热化学循环制氢的环境, 经济和安全问题
太阳能热化学循环采用太阳能聚光器聚集太阳能以产生高温, 推动热化学反应的
进行. 在整个生命周期过程中, 聚光器的制造, 最终遗弃, 热化学反应器的加工和最
终的废物遗弃以及金属,金属氧化物的使用都会带来一定的环境污染. 其具体的污染量
需要进行详细的生命周期评价(lca)研究. 此外, 在h2s 的分解中, 以及在is 循环和
ut-3 循环中, 都使用了强烈腐蚀性或毒性的物质, 比如h2s, h2so4. 这些物质的泄漏
和最终的处理会带来环境的污染和危险, 需要在设计和操作过程中加以考虑. 另外, 由
于反应都是在高温下进行, 氢和氧的重新结合在反应器中有引起爆炸的危险, 需要小
心处理.
由于热化学循环制氢尚未商业化, 相关的经济信息都是基于估算. steinfeld
(2002)[29]经过估算指出, 对于一个大型的热化学制氢工厂(90mw), 制的氢气的成本为
大约us$4.33-5/kg. 相比之下, 由太阳能热电 – 电解水系统制取氢气的成本则约为
us$6.67/kg, 而通过大规模天然气重整制氢的成本约为us$1.267/kg [20]. 可见太阳能热
化学循环制氢和天然气重整制氢相比虽然没有经济优势, 但和其他可再生制氢技术相
比则在经济性方面优于太阳热电-电解水和光伏-电解水技术.
3. 利用生物质制氢
生物质作为能源, 其含氮量和含硫量都比较低, 灰分份额也很小, 并且由于其生
长过程吸收co2, 使得整个循环的co2 排放量几乎为零. 目前对于生物质的利用, 尤其
在发展中国家, 比如中国, 印度, 巴西, 还主要停留在对生物质的简单燃烧的低效率
利用上. 除燃烧外, 对生物质的利用还有热裂解和气化, 以及微生物的光解与发酵. 利
用生物质热裂解和气化产氢具有成本低廉, 效率较高的特点, 是有效可行的制氢方式.
3.1. 生物质热裂解制氢
生物质热裂解是在高温和无氧条件下对生物质的热化学过程. 热裂解有慢速裂解
和快速裂解. 快速裂解制取生物油是目前世界上研究比较多的前沿技术. 得到的产物
主要有: (1) 以氢(h2), 甲烷(ch4), 一氧化碳(co), 二氧化碳(co2)以及其它有机气
体等气体成分; (2) 以焦油, 丙酮, 甲醇, 乙酸等生物混合油液状成分; (3) 以焦碳为主
的固体产物[34]. 为了最大程度的实现从生物质到氢的转化, 需要尽量减小焦碳的产量.
这需要尽量快的加热速率和传热速率和适中的温度.
热裂解的效率和产物质量除与温度, 加热速率等有关外, 也受反应器及催化剂的
影响. 目前国内外的生物质热裂解决反应器主要有机械接触式反应器, 间接式反应器
和混合式反应器. 其中机械接触式反应器包括烧蚀热裂解反应器, 旋转锥反应器等,
其特点是通过灼热的反应器表面直接与生物质接触, 以导热的形式将热量传递给生物
质而达到快速升温裂解. 这类反应器原理简单, 产油率可达67%, 但易造成反应器表面
的磨损, 并且生物质颗粒受热不易均匀. 间接式反应器主要通过热辐射的方式对生物
质颗粒进行加热, 由于生物质颗粒及产物对热辐射的吸收存在差异, 使得反应效率和
产物质量较差. 混合式反应器主要以对流换热的形式辅以热辐射和导热对生物质进行
加热, 加热速率高, 反应温度比较容易控制均匀, 且流动的气体便于产物的析出, 是
目前国内外广泛采用的反应器, 主要有流化床反应器, 循环流化床反应器等[35]. 这
在国内各科研院所都已经开展了大量的研究, 如广州能源所, 辽宁省能源所等都开发
研制出了固定床, 流化床反应器.
催化剂的使用能加速生物质颗粒的热解速率, 降低焦炭的产量, 达到提高效率和
产物质量的目的. 目前用于生物质热裂解的催化剂主要有以ni 为基的催化剂, 沸石
[36], k2co3, na2co3, ca2co3[37]以及各种金属氧化物比如al2o3, sio2, zro2, tio2[38]
等都被证实对于热裂解能起到很好的催化作用.
热裂解得到的产物中含氢和其他碳氢化合物, 可以通过重整和水气置换反应以得
到和提高氢的产量. 如下式所示:
合成气 + h2o h2 + co (18)
co + h2o co2 + h2 (19)
利用生物质热裂解联同重整和水气置换反应制氢具有良好的经济性, 尤其是当反
应物为各种废弃物时, 既为人类提供了能量, 又解决了废弃物的处理问题, 并且技术
上也日益成熟, 逐渐向大规模方向发展. danz (2003 年)[39]估算了通过生物质热裂解制
氢的成本约为us$3.8/kg h2 (因氢的热值为120mj/kg, 这相当于us$31.1/gj), 这和石
油燃油的价钱us$4-6/gj 相比还没有任何优势, 但carlo 等[40]指出, 当热裂解制氢的规
模达到400mw 时, 氢的成本会大大降低, 达到us$5.1/gj. 可见实现大规模的利用生物
质制氢, 将会是非常有潜力的发展方向.
3.2. 生物质气化制氢
生物质气化是在高温下(约600-800oc)下对生物质进行加热并部分氧化的热化学过
程. 气化和热裂解的区别就在于裂解决是在无氧条件下进行的, 而气化是在有氧条件
下对生物质的部分氧化过程. 首先, 生物质颗粒通过部分氧化生成气体产物和木碳,
然后, 在高温蒸汽下, 木碳被还原, 生成co, h2, ch4, co2 以及其他碳氢化合物.
对于生物质气化技术, 最大的问题就在于焦油含量. 焦油含量过高, 不仅影响气化
产物的质量, 还容易阻塞和粘住气化设备, 严重影响气化系统的可靠性和安全性. 目前
处理焦油主要有三种方法. 一是选择适当的操作参数, 二是选用催化剂加速焦油的分解,
三是对气化炉进行改造. 其中, 温度, 停留时间等对焦油分解有很重要的作用. milne ta
(1998 年)[41]指出, 在温度高于1000oc 时, 气体中的焦油能被有效分解, 使产出物中的
焦油含量大大减小. 此外, 在气化炉中使用一些添加剂如白云石, 橄榄石以及使用催化
剂如ni-ca 等都可以提高焦油的分解, 降低焦油给气化炉带来的危害[42,43]. 此外, 设
计新的气化炉也对焦油的减少起着很重要的作用. 辽宁省能源研究所研制的下吸式固定
床生物质气化炉, 在其喉部采用特殊结构形式的喷嘴设计, 在反应区形成高温旋风动力
场, 保证了焦油含量低于2g/m3.
由气化所得产物经过重整和水气置换反应, 即可得到氢, 这与处理热裂解产物类似.
通过生物质气化技术制氢也具有非常诱人的经济性. david a.bowen 等人(2003)[44]比较
了生物质气化制氢和天然气重整制氢的经济性, 见图2. 由图可见, 利用甘蔗渣作为原
料, 在供料量为每天2000 吨的情况下, 所产氢气的成本为us$7.76/gj, 而在这个供料量
下使用柳枝稷(switchgrass)为原料制得的氢气成本为us$6.67/gj, 这和使用天然气重整
制氢的成本us$5.85-7.46/gj 相比, 也是具有一定竞争力的. 如果将环境因素考虑进去,
由于天然气不可再生, 且会产生co2, 而生物质是可再生资源, 整个循环过程由于光合
作用吸收co2 而使co2 的排放量几乎为0, 这样, 利用生物质制氢从经济上和环境上的
综合考虑, 就已经比天然气重整更有优势了.
biomass feed to gasifier (tonnes/day)
hydrogen cost ($/gj)
500 1000 1500 2000
5
6
7
8
9
10
11
natural gas $3/gj
natural gas $4.5/gj
10.23
8.74
7.76
8.76
7.54
6.67
5.85
7.46
bagasse
switchgrass
图2. 生物质制氢与天然气制氢经济性的比较
fig. 2. comparison of hydrogen cost between biomass
gasification and natural gas steam reforming
以上分析的利用生物质高温裂解和气化制氢适用于含湿量较小的生物质, 含湿量高
于50%的生物质可以通过光合细菌的厌氧消化和发酵作用制氢, 但目前还处于早期研究
阶段, 效率也还比较低. 另一种处理湿度较大的生物质的气化方法是利用超临界水的特
性气化生物质, 从而制得氢气.
3.3. 生物质超临界水气化制氢
流体的临界点在相图上是气-液共存曲线的终点, 在该点气相和液相之间的差别刚
好消失, 成为一均相体系. 水的临界温度是647k, 临界压力为22.1mpa, 当水的温度和
压力超过临界点是就被称为超临界水.在超临界条件下, 水的性质与常温常压下水的性
质相比有很大的变化.
在超临界状态下进行的化学反应, 通过控制压力, 温度以控制反应环境, 具有增强
反应物和反应产物的溶解度, 提高反应转化率, 加快反应速率等显著优点, 近年来逐渐
得到各国研究者的重视 [45,46]. 在超临界水中进行生物质的催化气化, 生物质的气化
率可达100%, 气体产物中氢的体积百分比含量甚至可以超过50%, 并且反应不生成焦
油, 木碳等副产品, 不会造成二次污染, 具有良好的发展前景. 但由于在超临界水气中
所需温度和压力对设备要求比较高, 这方面的研究还停留在小规模的实验研究阶段. 我
国也只进行了少量的研究, 比如西安交大多相流实验室就研究了以葡萄糖为模型组分在
超临界水中气化产氢, 得到了95%的气化效率 [47]. 中科院山西煤炭化学研究所在间隙
式反应器中以氧化钙为催化剂的超临界水中气化松木锯屑,得到了较好的气化效果.
到目前为止, 超临界水气化的研究重点还是对不同生物质在不同反应条件下进行实
验研究, 得到各种因素对气化过程的影响. 表3 总结了近几年对生物质超临界水气化制
氢的研究情况. 研究表明, 生物质超临界水气化受生物质原料种类, 温度, 压力, 催化剂,
停留时间, 以及反应器形式的影响.
表3. 近年来关于生物质超临界水气化制氢的研究
table 3
recent studies on hydrogen production by biomass gasification in supercritical water
conditions
feedstock gasifier type catalyst used temperature and
pressure
hydrogen yield references
glucose not known not used 600oc, 34.5mpa 0.56 mol h2/mol of feed
glucose not known activated carbon 600 oc, 34.5mpa 2.15 mol h2/mol of feed
glucose not known activated carbon 600 oc, 25.5mpa 1.74 mol h2/mol of feed
glucose not known activated carbon 550 oc, 25.5mpa 0.62 mol h2/mol of feed
glucose not known activated carbon 500 oc, 25.5mpa 0.46 mol h2/mol of feed
[48]
glycerol not known activated carbon 665 oc, 28mpa 48 vol%
glycerol/methanol not known activated carbon 720 oc, 28mpa 64 vol%
corn starch not known activated carbon 650 oc, 28mpa 48 vol%
sawdust/corn starch
mixture
not known activated carbon 690 oc, 28mpa 57 vol%
[49]
glucose
tubular reactor koh 600 oc, 25mpa 59.7 vol% (9.1mol
h2/mol glucose)
catechol tubular reactor koh 600 oc, 25mpa 61.5 vol% (10.6mol
h2/mol catechol)
sewage autoclave k2co3 450oc, 31.5-35mpa
47 vol%
[50]
glucose tubular reactor not used 600 oc, 25mpa 41.8 vol%
glucose tubular reactor not used 500 oc, 30mpa 32.9 vol%
glucose tubular reactor not used 550 oc, 30mpa 33.1 vol%
glucose tubular reactor not used 650 oc, 32.5mpa 40.8 vol%
glucose tubular reactor not used 650 oc, 30mpa 41.2 vol%
sawdust tubular reactor sodium
carboxymethylcellulose
(cmc)
650 oc, 22.5mpa 30.5 vol%
[47]
生物质的主要成分是纤维素, 木质素和半纤维素. 纤维素在水的临界点附近可以快
速分解成一葡萄糖为主的液态产品, 而木质素和半纤维素在34.5 mpa, 200-230oc 下可以
100%完全溶解, 其中90%会生成单糖. 将城市固体废弃物去除无机物后可以形成基本稳
定, 均一的原料, 与木质生物质很相似. 由表可见, 不同的生物质原料, 其气化效率和速
率也有所不同. 温度对生物质超临界水中气化的影响也是很显著的. 随着温度的升高,
气化效率增大. 压力对于气化的影响在临界点附近比较明显, 压力远大于临界点时, 其
影响较小. 停留时间对气化效率也有一定影响, 研究表明, 生物质在超临界水中气化停
留时间与温度相关, 不同的温度下有不同的一个最佳值. 使用催化剂能加快气化反应的
速率. 目前使用的催化剂主要有金属类催化剂, 比如ru, rh, ni, 碱类催化剂, 比如koh,
k2co3, 以及碳类催化剂 [51,52]. 反应器的选择也会影响生物质气化过程, 目前的反应
器可以分为间歇式和连续式反应器. 其中间歇式反应器结构简单, 对于淤泥等含固体的
体系有较强适应性, 缺点是生物质物料不易混合均匀, 不易均匀地达到超临界水下所需
的压力和温度, 也不能实现连续生产,. 连续式反应器则可以实现连续生产, 但反应时间
短, 不易得到中间产物, 难以分析反应进行的情况, 因此今后需要进行大量的研究, 研
制出更加有效的反应器以及寻求不同生物质在不同参数下的最佳气化效果, 实现高效,
经济的气化过程.
4. 其他制氢技术
除热化学方法外, 生物质还可以通过发酵的方式转化为氢气和其他产物. 此外,
微藻等水生生物质能够利用氢酶(hydrogenase)和氮酶(nitrogenase)将太阳能转化为
化学能-氢. 这些生物制氢技术具有良好的环境性和安全性, 但还处于早期的研究阶段,
制氢基理还未透彻理解, 尚需大量的研究工作.
太阳能半导体光催化反应制氢也是目前广泛研究的制氢技术. tio2 及过渡金属氧化
物, 层状金属化合物如k4nb6o17, k2la2ti3o10, sr2ta2o7 等, 以及能利用可见光的催化
材料如cds, cu-zns 等都经研究发现能够在一定光照条件下催化分解水从而产生氢气.
但由于很多半导体在光催化制氢的同时也会发生光溶作用, 并且目前的光催化制氢效
率太低, 距离大规模制氢还有很长的路要走. 尽管如此, 光催化制氢研究仍然为我们
展开了一片良好的前景.
5. 制氢技术总结以及在香港的应用前景
前面讨论了利用可再生资源制取清洁燃料-氢的各项主要技术. 这些技术的特点,
经济性, 环境和安全方面的特点总结于表4.
表4. 利用可再生资源制氢技术比较
table 4. characteristics of candidate hydrogen production technologies
pv-electrolysis wind-electrolysis solar thermochemical cycle biomass conversion
development
status
pv technology almost mature,
electrolysis mature,
some demonstrations of
pv-electrolysis system been done
wind system mature, electrolysis mature,
wind-electrolysis demonstration needed
r&d pyrolysis and gasification r&d, biological
processes at early r&d
efficiency pv efficiency:
first generation, 11-15%,
second generation, 6-8%
solar to hydrogen around 7%
36% from wind to hydrogen, assuming wind
to electricity efficiency of 40% and
electrolyzer 90%
29% for zn/zno cycles conversion ratio up to 100% can be
achieved for gasification, efficiency of
10% for biological processes
economic
consideration
hydrogen cost about us$40-53.73/gj
depends on the pv type, the size
hydrogen cost about us$20.2/gj,
corresponding to 7.3cents/kwh
us$0.13-0.15/kwh, equivalent to
us$36.1-41.67/gj
us$6.67-17.1/gj for thermochemical
conversion depends on biomass types,
capacity size, for biological processes,
remain to be demonstrated
environmental
consideration
almost no pollution emission during
operation, energy consumption
intensive during construction, disposal
of hazardous materials
no pollution during operation, construction
energy consumption intensive, some noise
during operation
emission of hydrogen sulfide, use and
disposal of metal oxide, reactors
whole cycle co2 neutral, some pollution
emission during the stage of constructing
reactors
safety
consideration
handling hazardous materials during
fabrication, short circuit and fire during
operation, but not significant
relatively safe, a little danger exist during
maintenance
operating at high temperature, risk of
explosion exists; leakage of hydrogen
sulfide
operating at high temperature, explosion
may occur
由表可见, 生物质气化技术和风能-电解制氢技术具有良好的经济性. 对于环境的污染
以及危险性也相对较小, 极具发展前景, 可以作为大规模制氢技术. 而光伏-电解水技
术则目前还未显示出经济优势. 但由于太阳能资源丰富, 在地球上分布广泛, 如果光
伏电池的效率能进一步提高, 成本能大幅降低, 则是未来很有潜力的制氢技术. 太阳
能热化学循环也是可行的制氢技术, 今后的发展方向是进一步降低分解产物的能量损
耗以及发展更为经济的循环.
香港地少人多, 没有自己的煤, 石油, 天然气, 也没有大规模的农业, 所有能源
目前都依赖进口. 但香港具有丰富的风力资源和充足的太阳能资源, 利用可再生资源
部分解决香港的能源问题是一条值得探讨的思路.
香港总人口681 万, 总面积2757km2, 其中陆地面积1098 km2, 海洋面积1659 km2.
但香港绝大多数人口集中在港岛, 九龙等面积较小的市区, 而新界很多区域以及周边
岛屿则人口较少. 由于香港地处北回归线以南, 日照充足(13mj/m2/day), 风力强劲
(>6m/s), 具有很大的发展可再生能源的潜力. 简单计算可知, 如果将香港所有陆地面
积安装上效率为10%的光伏电池, 则年发电量可达144.7twh, 这相当于香港1999 年电
消耗量35.5twh 的4 倍! 这说明发展光伏技术在香港有很大潜力. 考虑到香港市区人
口稠密, 可以考虑将光伏电池安装在周边岛屿发电, 通过电解槽制氢. 由于光伏-电解
水成本很高, 这一技术还难以大规模应用, 如果光伏成本能大幅度降低, 则在香港发
展光伏制氢具有非常诱人的前景. 另外, li(2000)[53]进行了在香港发展海上风力发电
的可行性研究. 研究表明, 利用香港东部海域建立一个11 × 24 km 的风力发电机组, 可
以实现年发电2.1 twh, 这相当于香港用于交通的能源的10%. 此外, 香港周边岛屿,
如横澜岛等, 平均风力都在6.7 m/s 以上, 在这些岛屿发展大规模的风力机组也是值得
进一步探讨的问题. 除此之外, 香港每年产生的大量有机垃圾, 也可以通过气化或热
解制氢. 这些技术在香港的成功应用还需要更深入的研究, 本文不作深入探讨.
6. 小结
本文综述了目前利用可再生资源制氢的主要技术, 介绍了其基本原理, 也涉及到
了各项技术的经济性和环境以及安全方面的问题. 对各项制氢技术进行了对比分析,
总结出利用风能发电再推动电解水, 以及利用生物质的热化学制氢具有良好的经济性,
对环境的污染较小, 技术成熟, 可以作为大规模制氢的选择. 利用光伏-电解水技术具
有诱人的发展前景, 但目前还未显示出其经济性. 而太阳能热化学制氢则处于研究阶
段, 还难以用于大规模制氢. 香港具有比较丰富的可再生资源, 利用风力发电和有机
废物制氢是可行的制氢技术, 而光伏电池还需要大量研究以进一步降低成本. 尽管还
有大量的研究和更深入的分析要做, 利用可再生资源制氢以同时解决污染和能源问题
已经为我们展开了一个良好的前景.
致谢:
本文属<可再生氢能在香港的应用研究>项目, 该课题受香港中华电力公司(clp)及香港
特别行政区政府资助, 在此表示感谢!
参考文献:
[1] kazim a, veziroglu tn. utilization of solar-hydrogen energy in the uae to maintain its
share in the world energy market for the 21st century [j]. renewable energy 2001, 24(2):
259-274.
[2] abdallah mah, asfour ss, veziroglu tn. solar-hydrogen energy system for egypt [j],
international journal of hydrogen energy 1999, 24(6): 505-517.
[3] mao.zq. hydrogen---a future clean energy in china [a], symposium on hydrogen
infrastructure technology for energy & fuel applications, november 18, 2003. the hong
kong polytechnic university, hong kong, 27-33.
[4] steinfeld a, palumbo r. solar thermochemical process technology [j], encyclopedia of
physical science & technology 2001, 15: 237-256.
[5] middleton p, larson r, nicklas m, collins b. renewable hydrogen forum: a summary
of expert opinions and policy recommendations [z], national press club, washington dc,
october 1, 2003.
[6] wen feng, shujuan wang, weidou ni, changhe chen, the future of hydrogen
infrastructure for fuel cell vehicles in china and a case of application in beijing [j],
international journal of hydrogen energy 2004, article in press.
[7] rosa v.m, santos m.b.f, silva e.p.d, new materials for water electrolysis diaphragms
[j], international journal of hydrogen energy 1995, 20(9): 697-700.
[8] vermeiren p, adriansens w, moreels j.p, leysen r. evaluation of the zirfon separator for
use in alkaline water electrolysis and ni-h2 batteries [j], international journal of hydrogen
energy 1998, 23(5): 321-324.
[9] hu w.k, cao x.j, wang f.p, zhang y.s. short communication: a novel cathode for
alkaline water electrolysis [j], international journal of hydrogen energy 1997,22: 441-443.
[10] schiller g, henne r, mohr p, peinecke v. high performance electrodes for an advanced
intermittently operated 10-kw alkaline water electrolyzer [j], international journal of
hydrogen energy 1998,23: 761-765.
[11] hijikata t. research and development of international clean energy network using
hydrogen energy (we-net) [j], international journal of hydrogen energy2002, 27(2):
115-129.
[12] kumar g.s, raja m, parthasarathy s. high performance electrodes with very low
platinum loading for polymer electrolyte fuel cells [j], electrochimica acta 1995, 40(3):
285-290.
[13] hirano s, kim j, srinivasan s. high performance proton exchange membrane fuel cells
with sputter-deposited pt layer electrodes [j], electrochimica acta 1997, 42(10): 1587-1593.
[14] hayre r, lee s.j, cha s.w, prinz f.b. a sharp peak in the performance of sputtered
platinum fuel cells at ultra-low platinum loading [j], journal of power sources 2002, 109(2):
483-493.
[15] guo q.h, pintauro p.n, tang h, connor s. sulfonated and crosslinked
polyphosphazene-based proton-exchange membranes [j], journal of membrane science 1999,
154(2): 175-181.
[16] carretta n, tricoli v, picchioni f. ionomeric membranes based on partially sulfonated
poly(styrene) synthesis, proton conduction and methanol permeation [j], journal of
membrane science 2000, 166(2):189-197.
[17] ghany n.a.a, kumagai n, meguro s, asami k, hashimoto k, oxygen evolution anodes
composed of anodically deposited mn-mo-fe oxides for seawater electrolysis [j],
electrochimica acta 2002, 48(1): 21-28.
[18] green ma, recent developments in photovoltaics [j], solar energy 2004, 76(1): 3-8.
[19] ackermann t, soder l, an overview of wind energy-status 2002 [j], renewable and
sustainable energy reviews 2002, 6(1): 67-128.
[20] padro c.e.g, putsche v. survey of the economics of hydrogen technologies [z],
nrel/tp-570-27079, september 1999, national renewable energy laboratory, u.s.a.
[21] kogan a, direct solar thermal splitting of water and on site separation of the products 1:
theoretical evaluation of hydrogen yield [j], international journal of hydrogen energy 1997,
22(5): 481-486.
[22] kogan a, direct solar thermal splitting of water and on-site separation of the products-ii:
experimental feasibility study [j], international journal of hydrogen energy 1998, 23(2):
89-98.
[23] baykara s.z, experimental solar water thermolysis [j], international journal of
hydrogen energy, 2004, article in press.
[24] harvey, s., davidson, j.h., fletcher, e.a, thermolysis of hydrogen sulfide in the
temperature range 1350 to 1600k [j], ind. eng. chem. res 1998, 37: 2323-2332.
[25] steinfeld a, spiewak i, economic evaluation of the solar thermal co-production of zinc
and synthesis gas [j], energy conversion and management 1998, 39(15): 1513-1518.
[26] steinfeld a, kuhn p, reller a, palumbo r, murray j. solar-processed metals as clean
energy carriers and water-splitters [j], international journal of hydrogen energy 1998, 23(9):
767-774.
[27] haueter p, moeller s, palumbo r, steinfeld a, the production of zinc by thermal
dissociation of zinc oxide-solar chemical reactor design [j], solar energy 1999, 67(1-3):
161-167.
[28] lede j, elorza-ricart e, ferrer m, solar thermal splitting of zinc oxide: a review of
some of the rate controlling factors [j], journal of solar energy engineering 2001, 123(2):
91-97.
[29] steinfeld a, solar hydrogen production via a two-step water-splitting thermochemical
cycle based on zn/zno redox reactions [j], international journal of hydrogen energy 2002,
27(6): 611-619.
[30] sakurai, m., nakajima, h., amir, r., onuki, k., shimizu, s, experimental study on
side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production
process [j], international journal of hydrogen energy 2000, 25(7): 613-619.
[31] sakurai, m., gligen, e., tsutsumi, a., yoshida k, solar ut-3 thermochemical cycle for
hydrogen production [j], solar energy 1996, 57(1): 51-58.
[32] pre.ethz.ch/cgi-bin/main.pl?research?project6
[33] solar.web.psi.ch/daten/projekt/elprod/elprod.html
[34] babu bv, chaurasia as, parametric study of thermal and thermodynamic properties on
pyrolysis of biomass in thermally thick regime [j], energy conversion and management
2004, 45: 53-72.
[35] bridgwater av, peacocke gvc. fast pyrolysis processes for biomass [j], renewable and
sustainable energy reviews 2000, 4(1):1-73.
[36] williams.paul t., brindle. alexander j. catalytic pyrolysis of tyres: influence of
catalyst temperature [j], fuel 2002;81(18): 2425-2434.
[37] chen g, andries j, spliethoff h. catalytic pyrolysis of biomass for hydrogen rich fuel
gas production [j], energy conversion and management 2003; 44(14): 2289-2296.
[38] sutton.d, kelleher b, ross jrh, catalytic conditioning of organic volatile products
produced by peat pyrolysis [j], biomass and bioenergy 2002; 23(3): 209-216.
[39] eere.energy.gov/hydrogenandfuelcells/hydrogen/pdfs/danz_biomass.pdf
[40] carlo n.h, andre p.c.f, future prospects for production of methanol and hydrogen
from biomass [j], journal of power sources 2002, 111(1): 1-22.
[41] milne ta, abatzoglou n, evans rj. biomass gasifier _tars_: their nature, formation,
and conversion [z], nrel/tp- 570-25357, 1998, national renewable energy laboratory,
usa.
[42] demirbas a, gaseous products from biomass by pyrolysis and gasification: effects of
catalyst on hydrogen yield [j], energy conversion and management 2002, 43: 897-909.
[43] zhang rq, brown rc, suby a, cummer k, catalytic destruction of tar in biomass
derived producer gas [j], energy conversion and management 2004, article in press.
[44] bowen. d.a, lau f, zabransky r, remick r, slimane r, doong s, techno-economic
analysis of hydrogen production by gasification of biomass [z], nrel fy 2003 progress
report, national renewable energy laboratory, usa, 2003.
[45] adschiri t, hirose s, malaluan r, arai k, noncatalytic conversion of cellulose in
supercritical and subcritical water [j], j chem eng 1993,26: 676–80.
[46] hao xiaohong, guo liejie, a review on investigation of hydrogen production by
biomass catalytic gasification in supercritical water [j], journal of chemical industry and
engineering (china) 2002, 53: 221-228.
[47] hao xh, guo lj, mao x, zhang xm, chen xj. hydrogen production from glucose
used as a model compound of biomass gasified in supercritical water [j], international
journal of hydrogen energy 2003, 28(1): 55-64.
[48] xiaodong x, yukihiko m, jonny s, michael ja, jr. carbon-catalyzed gasification of
organic feedstocks in supercritical water [j]. industrial & engineering chemistry research
1996, 35(8): 2522-2530.
[49] antal mj, jr, xu xd, hydrogen production from high moisture content biomass in
supercritical water [z], proceedings of the 1998 u.s.doe hydrogen program review,
nrel/cp-570-25315, 1998, national renewable energy laboratory, usa.
[50] schmieder h, abeln j, boukis n, dinjus e, kruse a, kluth m, petrich g, sadri e,
schacht m, hydrothermal gasification of biomass and organic wastes [j], journal of
supercritical fluids 2000, 17(2): 145-153.
[51] schmieder h, abeln j, boukis n, dinjus e, kruse a, kluth m, petrich g, sadri e,
schacht m, hydrothermal gasification of biomass and organic wastes [j], journal of
supercritical fluids 2000, 17(2): 145-153.
[52] yoshida t, matsumura y, gasification of cellulose, xylan, and lignin mixtures in
【关键词】再生混凝土,研究现状,发展前景
引 言
再生混凝土是将废弃的混凝土块进行回收利用,然后再经破碎、清洗与分级后,按一定的比例与级配混合重新形成的再生骨料,部分或全部代替砂石等天然骨料,再加入水泥、水或部分天然骨料配制而成的新的混凝土,也叫做再生骨料混凝土。如果能够有效合理的地利用再生骨料或再生混凝土,可很好的地节约天然资源,这对于保护环境和自然资源具有很重要意义。循环再利用废弃混凝土被看作是发展绿色混凝土的重要措施之一,具有很明显的经济效益,环境效益和社会效益。
1 再生混凝土概述
将废弃混凝土经过清洗、破碎、分级和按一定比例相互配合后得到的“再生骨料”作为部分或全部骨料配制的混凝土即为再生混凝土。,再生混凝土按骨料的组合形式可分为:(1)粗细骨料全部采用再生骨料;(2)粗骨料采用再生骨料,细骨料采用天然砂;(3)粗骨料采用天然的碎石或卵石,细骨料为再生骨料;(4)再生骨料替代部分粗骨料或部分细骨料,或者再生骨料同时替代部分粗骨料和细骨料。跟据有关研究成果已表明应工程结构上采用再生骨料是可行的,但对其经济性尚存疑虑。当利用废弃混凝土作再生骨料时研究现状,石灰石资源可节省62%;而当废弃混凝土用作制造水泥的原料时,除可节省62%石灰石资源外,还可节约制造水泥的优质石灰石60%、黏土40%和铁粉35%,同时可减少20%的废气排放量;在欧洲共同体、美国、日本这些发国家,其每年混凝土废料超过3.6亿t,对混凝土废料再加工得到的再生骨料所需能耗只是开采天然碎石的1/10,并且成本可降低25%。再生骨料混凝土的应用解决了用量最大的混凝土人造材料对自然资源的占用及对环境造成的负面影响,从而保证了人类社会的可持续发展,因此,它是一种可持续发展的绿色混凝土。
2再生混凝土的发展现状
改革开放以来,随着中国经济不断的快速发展,环保、生态、资源已成为阻碍社会发展的“瓶颈”,可再生资源利用越来越受到人们的关注。在人类跨入21世纪前夕,中国政府在《中国21世纪议程―― 中国2l世纪人口、环境和发展白皮书》中,对世界面临的生态破坏和环境污染等问题给予了高度的关注。从2006年1月1日开始,正式实施《中华人民共和国可再生能源法》。中国政府制定的中长期科教兴国和社会可持续发展战略,加紧对再生混凝土的开发利用进行立项研究,并大力支持和鼓励废弃物研究和应用。目前,国内一些高校和科研院所的研究工作得到了相关部门的资助,并且已经着手对再生混凝土的性质和应用进行初步研究,并取得了一定的研究成果。
3再生混凝土的经济效益分析
“循环经济”的经济发展模式,是通过回收利用废弃物再生利用水平,在生产和消费过程中最大限度地降低污染,减少废弃物,它充分利用自然资源,是对传统“大量生产、大量浪费、大量废弃”增长模式的根本变革。循环经济的建立是以“减量化、再利用、再循环”为行为原则。废弃混凝土的回收利用符合循环经济发展模式。
一个地区废弃混凝土回收利用的主要影响因素有:地区人口密度和城市化水平、天然集料富余程度、废弃混凝土回收利用的设备及工艺技术水平,以及国家和地区对废弃混凝土回收利用的政策法规和财政税收上的扶持程度。
1)地区人口密度和城市化水平。地区人口密度和城市化水平决定着城市废弃混凝土的数量,城市规划中规定了建筑垃圾堆放场所的位置和数量其直接影响到废弃混凝土的清运和处理成本,对废弃混凝土的再生利用产生影响。
2)天然集料富余程度。天然集料的富余程度和贮量是推动再生集料和再生混凝土应用的最大动力。日本、丹麦、荷兰等国家石料紧缺,因而十分重视从废弃混凝土中回收利用再生集料站。同时,废弃混凝土的回收利用程度也和环境保护意识有关研究现状,如果无限制的开山采石,虽然可以获得价格较低的天然集料,但是无疑会破坏环境,长此以往,不仅不利于环境保护,更不利于社会可持续发展。
3)废弃混凝土回收利用的设备与工艺技术水平。废弃混凝土的回收与再利用,都需要通过一定的技术手段来实现,工艺技术水平、设备选择将影响废弃混凝土的可回收性和回收效益。便捷高效的废弃混凝土破碎筛分工艺、科学合理的再生混凝土技术将决定回收利用的成本和利润。
4)国家和地区对废弃混凝土回收利用的政策法规和财政税收上的扶持程度制定对废弃混凝土的回收利用和施工现场的零排放(无垃圾)等有关法律是必须的,以促进废弃混凝土及其他建筑垃圾的再利用。目前可以借助国家鼓励资源综合利用的政策和财政税收上的扶持,减少业主和拆除单位拆除旧建筑的费用支出,降低再生集料的生产成本,使再生集料的成本能与天然集料具有同等的竞争力。为了能够更好地开发利用废弃混凝土,需要尽快就再生混凝土集料制定集料标准、再生混凝土制品标准等。
4再生混凝土的发展前景
1)随着建筑业的发展,会产生大量的建筑垃圾,发展和利用再生混凝土符合循环经济发展模式。据有关资料粗略统计,在每万平方米建筑的施工过程中,仅产生建筑废渣可达500~600t。住房与城乡建设部在2005年首届周际智能与绿色建筑技术研讨会上指出,预计到2020年我国还将新增建筑面积约300亿平方米 。照此推算,我国现有建筑面积将至少产生20亿t建筑废渣。近20~30 年来,建筑业进入高速发展阶段,随着城市化进程加快,大批旧建筑物被拆除,就会产生大量的建筑垃圾。至2012年,我国城镇有约50% 的房子是上个世纪建造的,将被拆除,专家估计,随之而产生的建筑垃圾将达到5~7亿t,这是一个令人震撼的数字。而我国的垃圾处理技术还比较落后,建筑垃圾的综合处理利用仅处于初探阶段,所以大多数建筑垃圾只是进行简单的填埋。如此大的建筑垃圾产生量再加上如此简单的处理方式,长此以往研究现状,给城市和居民带来的危害显而易见。
2)再生混凝土的有效利用,是走可持续发展道路的有效途径。可持续发展的核心是发展。它要求人们改变传统的的生产方式和生活方式,改变人类对于自然的态度,在开发和利用自然资源的同时,必须注重对环境资源的保护。据统计,我国每年浇注混凝土约l5―2O亿m3 ,而混凝土中砂石骨料又占总质量的70% 以上,用量十分巨大。据中国砂石协会统计,近几年我国的建筑用砂量以10%以上的速度增长。由于对建筑骨料的需求量巨大,大量开采山石、淘挖河砂、掘坑取土等行为不仅会造成水土流失、植被破坏,危害高速公路、桥基、河道的安全,而且会加速资源的消耗。加快城市化进程,既是我国现代建设的历史重任,也是有效解除阻碍我国现代化推进的“瓶颈”约束,保证我国经济社会实现高速、持续和协调发展的重大战略举措。
可见,如果能真正得以推广应用再生混凝土技术,这将对自然资源的保护、建筑垃圾的综合处理起到积极的作用,也是建筑业可持续发展的必然要求。
参考文献:
[1]郭峰.浅谈再生混凝土的发展和研究前景.山西建筑,2009年第23期:178.
[2]郑远.再生混凝土的强度研究.低温建筑技术,2010年第11期:8.
[3]薛文博.可持续发展战略与再生混凝土技术的发展.黑龙江水利科技,2009年第5期。
[4]裴辉.再生混凝土技术研究发展的现状分析.黑龙江交通科技,2009年第5期。
作者简介: