前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇对生物化学的看法范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
作者:张巍 吕士杰 罗军 姜艳霞 徐俊杰 单位:吉林医药学院生物化学教研室
芦晓晶世界观培养应寓于生物化学教学中
生物化学这门基础医学中的重要学科,研究的是生物体化学组成、结构及生命活动过程中的各种化学变化规律。同时又包含着对生命、人体疾病的看法和观点,这就是世界观,是基础医学的出发点,又是辩证唯物自然观的组成部分,所以生物化学中包含着科学的世界观。随着现代生物学和生物化学的发展,人们对生命现象的本质认识和理解更加深入。人们以现代生物学和生物化学为工具,对生物大分子(蛋白质和核酸)进行了深入的研究,取得了重大突破。密码由DNA为载体进行复制而后经过RNA的传递与翻译,形成特定氨基酸序列的蛋白质。蛋白质又控制着新陈代谢和复制过程。这种新陈代谢包括经常不断地同外环境进行物质交替和能量传递以及不断地自我复制和自我更新,它是生物体内的基本矛盾运动。生物体像个“化工厂”,只是更加复杂些,外界物质,像碳水化合物、脂肪、蛋白质、维生素、矿物质、水、氧等不断的进入这个“工厂”,淀粉食物在胃肠道的水解酶分解为葡萄糖,被机体吸收入血后,运到全身细胞,在一系列酶的作用下,按着有氧氧化、无氧酵解、磷酸戊糖途径,生成三磷酸腺苷。这种化学能可以转变肌肉收缩的机械能,维持体温的热能等。蛋白质则经蛋白酶分解为氨基酸,被小肠吸收入血后进入全身组织,又在酶的作用下激活,按一定顺序排列起来,合成人体的组织蛋白,用于更新组织。生物体同外界环境进行物质交换和能量代谢的同时,生物体自身也处于不断的自我复制、自我更新的过程之中,新的成分不断的合成,细胞不断新生又不断死亡。生物体的自我更新使生物体在每瞬间既是自身,同时又是别的东西,生命总是和它的必然结果联系起来,这就是辩证的生命观。人体新陈代谢是合成代谢与分解代谢的对立统一,生成能量与消耗能量的对立统一,是新生与死亡的对立统一。人体是高度分化的机体,它的新陈代谢是靠一系列特定的器官来完成,而每一器官的功能活动充满了矛盾运动。如肾小球的滤过和肾小管的重吸收;体液调节中两种相互拮抗的两类激素;神经系统的传入神经的激活系统与传出神经的抑制系统等等,都是对立统一,相辅相成,并以此维持正常的新陈代谢。这就像我们生活的社会一样复杂,而人体确实就是一个微缩了的社会,细胞就是社会中的人。
生命体既是绝对运动有处于相对平衡中
人所生活的外界环境虽然经常是变化剧烈,但人的体内环境必须保持相对的稳定和平衡,如血糖浓度、酸碱度等始终要保持在正常范围内,以满足体内的新陈代谢(吸收与排泄、酶的生成与灭活,酸碱的产生与排除、体温的产生与发散等)所要求的严格条件,否则就会出现问题。人体也是处于不断运动变化的有机体,存在着细胞不断地死亡与新生,体内的化学元素也要经常不断地与环境交换等。可见生物化学教学中包含着科学的世界观和方法论。在生物化学教学过程中,教员应站在理论和哲学的高度,设法让学生掌握。完成的关键是自觉地去总结和概括,并贯穿教学的全过程。真正做到在传授知识和技术的同时讲解观点和方法,使之不但能“授之以鱼”,而且能“授之以渔”,只有这样才能发挥生物化学教学中的德育功能。
关键词:生物化学;医学生;世界观
中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2012)07-0032-03
高等教育是培养高层次人才的重要基地,人才培养应该是知识技能及思想素质的综合性培养。而思想素质的提高有赖于正确的人生观和世界观的建立。教育部在《关于进一步深化本科教学改革全面提高教学质量的若干意见》中指出:要坚持知识、能力和素质协调发展,继续深化人才培养模式、课程体系、教学内容和教学方法等方面的改革,实现从注重知识传授向更加重视能力和素质培养的转变。要根据经济社会发展和科技进步的需要,及时更新教学内容,将新知识、新理论和新技术充实到教学内容中,为学生提供符合时代需要的课程体系和教学内容。[1]而医学生作为未来工作面对病人、面对生命的受教者,也是生命科学的实践者或研究者,因此对其的教育和培养,不仅要注重知识和技能的传授,也要注重思想素质的培养。高校教师如何在传授医学知识的同时,树立其正确的人生观、世界观以及医学伦理观,就显得尤为重要。生物化学是生命科学的学科之一,纵观生命科学的发展史,可以看出生命科学的发展也是科学家们的科学态度、科学精神、科学世界观的发展史。因此在生物化学的教学中,结合树立同学们正确的世界观、医学伦理观,既是有效可行,也可以做到生动活泼的。
人生观——关于人生目的、态度、价值和理想的根本观点。世界观——人对世界总体的看法,包括对自身在世界整体中的地位和作用的看法,又称宇宙观。简单来说,人生观是如何看待自我,而世界观是如何看待外部世界。伦指人际关系,理指行为规范,因此,医学伦理观应该是医者和患者之间的关系,以及医者在工作中的行为规范。正确的人生观和世界观应体现出一种健康、积极和向上的精神。我是一名医学生物化学的主讲教师,多年来,我的周学时达到12或以上。在反复的上课过程中,我始终在思考、改进并贯彻教书育人目标,既要将知识的传授做到简洁和易懂,又要有一定的深度和广度,并且在某些知识点的讲述过程中水到渠成似的建立和强化医学生正确的人生观、世界观和医学伦理观。以下是我的几点方法和总结:
1.从讲绪论开始,在介绍生物化学起源和发展的同时引导同学们思考生命起源的问题,引发学生们对生物化学的兴趣;在介绍科学理论和伟大发现的同时融入解决问题的方法和思路。
生物化学是门古老的学科之一,其发生和发展的过程中融入了许多学科的科学家的探索和发现。生物化学最初(18世纪至19世纪末)研究的是生命物质的组成和结构,到了20世纪初开始蓬勃发展,生命物质在生命活动中是如何相互转变的,由此而思考那么这一切是谁来主宰的,是上帝吗?在介绍生物化学是一门学习什么内容的过程中,我不断引导学生在追寻科学家们的研究历程中一起思考,并以作业的形式让同学们去查阅资料,佐证自己的想法是否合理。例如我向学生提问,生命活动不由上帝去主宰,其起源是什么?是核酸还是蛋白质?为什么?这样的学习,既调动了学生学习的兴趣,又使学生在发现问题和解答问题的过程中增强了思考能力,并且不断地强化辩证的唯物主义的思想。作为未来的医务工作者和科研人员,必须必要树立起唯物的、科学的世界观。在生物化学的发展史中,有很多重大理论和技术的建立,而这些重大理论的建立过程,也真是人类思想由崇拜和唯心走向唯物的历程。例如:1953年,DNA双螺旋结构的发现,由此沃森和克里克获得了1962年度诺贝尔奖。“我认为他们应当像亚里斯多德和柏拉图那样世世代代受到尊敬,他们应该获此殊荣,然而,与他们的贡献相比,这奖励是微不足道的,这一发现使我们对生命的理解又一次发生了革命。”[2]我们的生命既不是由神创造的,也不是由基督拯救的,而是由DNA决定的。
而向同学们介绍stanley B.prusiner在探索并发现疯牛病(具有传染性、遗传性和散在分布的特点)的致病因子这一事件,正是树立同学们敢于挑战、敢于在实际中发现的最好例证。早在300年前,类似的症状就被发现在绵羊和山羊身上,人们称之为“羊瘙痒症”。20世纪60年代,英国生物学家阿尔卑斯用放射处理破坏DNA和RNA后,其组织仍具感染性,因而认为“羊瘙痒症”的致病因子并非核酸,而可能是蛋白质。由于这种推断不符合当时的一般认识,也缺乏有力的实验支持,因而没有得到认同,甚至被视为异端邪说。Prusiner证实疯牛病的致病因子就是蛋白质颗粒,而不含任何核酸,因他在疯牛病病因问题上的研究贡献而获得1997的诺贝尔医学奖。在绪论部分,给同学们选择介绍一些有里程碑纪念意义的,并且在后面是重点讲述的重大研究和发现。当我讲述这些科学家是如何探索和发现科学问题时,我力求在介绍这些知识时如故事般娓娓道来,并力求生动活泼,以引发同学们的学习兴趣,并且指出每一项科学研究,对未知事物的认识,都应该既要本着继承发扬也不能因循守旧,更要敢于突破的精神。这样我们的科学,我们对事物和世界的认识才会更全面和更深入。
关键词 Seminar教学模式;生物化学;应用;实践
中图分类号 G642 文献标识码 A 文章编号 1007-5739(2017)01-0278-03
Application of Seminar Style in Biochemistry Teaching
LIU Xiao-lin CHEN Ji-peng QUE Zhi-qun HUANG You-ming LIAO Jun-jie
(Yichun University,Yichun Jiangxi 336000)
Abstract Introduction of seminar teaching model in biochemistry teaching has proved that it can change the traditional one-way teaching mode of teachers′ ″teaching″,students′ ″learning″ and improve the students′ learning initiative and enthusiasm,the quality and effect of teaching,so as to cultivate high quality students.It is a kind of effective new teaching mode.
Key words Seminar teaching pattern;biochemistry;application;practice
提高教W质量是高校办学的主要任务之一,也是当今时代的要求。为了提高教学质量,目前各本科院校都在进行教学体制、教学模式、教学方法等教学改革,并取得了一定成效。其教学改革的主要目标之一就是打破传统的教学模式,注重学生创新意识的培养。传统的教学模式是以教师为主体,教师“教”,学生“学”。这种教学模式影响学生自主学习的积极性,不利于学生创新意识和创新能力的培养。生物化学是江西宜春学院农学、生物科学、园艺、动物科学专业的重要基础学科之一,是研究生物体的分子基础、化学变化及信息传递的一门科学。它是学生从分子水平了解生物各种生命现象和生物技术的理论与实践的基础。由于生物化学研究范围涉及所有生物体,知识多样,内容庞杂且抽象难以理解。另外,随着创新型人才培养模式的建立和学生减负的推进,生物化学的授课学时日益减少。过去,在本科生生物化学教学中主要以传统的讲授式教学模式为主,这种教学实践证明学生学习积极性普遍不高,教学效果比较差。因此,为了适应生物化学技术的迅速发展,为了实现人才培养目标,也为了适应生物化学授课学时减少的实际需要,从2014年开始在生物化学教学中引入一种新的教学模式――Seminar教学模式,并以此为契机,努力促进教学模式改革和课程整合,以适应新的教学需求,提高教学质量和教学效果,培养高素质、高质量的学生[1-3]。
1 生物化学课程教学模式改革的必要性和重要性
教学作为人类特有的一种社会实践活动,总是有既定的人为目的。教学要达到既定目的,完成所肩负的任务,离不开教学方法。教学方法是教师与学生联系的中介。采用适当的教学方法是提高课堂教学质量的关键,而课堂教学是学校培养人才的主渠道。生物化学是生命科学领域的前沿学科之一,它是在当代有机化学和生理学发展的基础上,在20世纪初期从生理学中分支出来的,并很快发展成为一门独立而年轻的学科。生物化学是利用化学的理论和方法研究生物的化学组成和生命过程中的化学变化的一门科学。具体来说,它是研究生物体的基本物质(如糖类、脂类、蛋白质、核酸等)的结构、性质及其生命活动(如生长、生殖、代谢、运动等)过程中的变化规律。通过生物化学的学习,要求学生掌握生物大分子的结构、性质和功能,大分子的结构及其与功能的关系、代谢过程及其调控规律,遗传信息的储藏、传递和表达调控的分子基础及基本的实验技能;掌握生物化学的基本原理,掌握对植物和微生物进行生化分析的一般方法,为进一步学习有关专业课程奠定生物化学知识基础。由于生物化学课程涉及的基础知识广泛,基础理论众多,实验技术基础性强、内容多,加之生物科学的空前发展使生物化学教学面临知识类别空前复杂,专业研究更加深入,成果信息日新月异的新形势。因此,传统的教学模式已很难适应这种新形势,而且不利于培养学生主动思考和探索学习的能力。而Seminar 教学法是一种“教”与“学”双向互动式的交流模式,能充分调动学生主动学习的积极性,做到教与学互相促进,有利于提高生物化学课程的教学水平和教学质量,促进生物化学教学改革的发展[4-6]。
2 Seminar教学模式概述
2.1 起源与发展
Seminar为德语词汇,发轫于18世纪德国,源于拉丁文seminarium,原意为培育幼苗的“苗床”。 Seminar在英文中含义可译为“研究班讨论会”“研讨班课程”“专家讨论会”等。它后来逐步演变和发展成为一种具有教学和科研双重功能的课程教学模式。Seminar是指大学或暑期学校学生为研究某问题而与教师共同讨论之班级或研习班。这种教学方法简而言之,就是“学生在教授或教师的指导下,就某一课题结成小组,在大量调查研究的基础上与教师自由地进行学术探讨,从而达到教学和科研的双重目的”。它起源于英国,后来成为欧美大学课堂教学的一种重要形式。20世纪30年代以后,Seminar 模式被引入中国。近年来,随着我国教育制度的不断改革,国内学者开始重视Seminar教学法及其运用,其主要运用于我国大学课程如管理、营销、英语、金融、预防、中医外科、肿瘤学等,并取得了一定成效。
2.2 结构
Seminar教学模式结构主要包括:一是主持人(主要是教师)介绍本次讨论主题及涉及的基本问题。二是主题报告宣讲。由报告人(学生代表)进行专题发言,介绍专题的背景知识和目前的研究进展。可以针对某一研究进展发表自己的看法、陈述自己的观点,也可以加入自己的研究内容。三是教师对报告进行补充和简略的学术评述,引发其他学生提问。四是针对报告人的发言进行提问和交流,包括课程参与者有教师、学生等。
2.3 特点
Seminar教学法是一种全新的教学模式,是“以教师为中心”的传统教育模式向“以学生为中心”的现代教育模式的一种转变。与传统讲授式的教学方式相比,Seminar教学法有如下几个特点:一是Seminar 教学法是一个教学双向互动的过程,能调动学生的学习主动性和创造性。二是Seminar教学法更注重启发学生的思维,能使学生内在认知结构充分激活、展现,从而实现从知识再现型向知识创造型的飞跃。三是Seminar教学法的教学内容可以紧跟最新的研究进展,从而改变传统讲授式教学那种单调而又陈旧的“老黄历式”教学思路。四是Seminar教学法给每个学生提供了参与的机会,提供了与他人合作的机会,使他们逐渐学会如何与他人相处、开展工作。五是Seminar教学法有利于师生、生生之间的良性沟通模式的建立,不但提供了学生和教师之间互动学习交流的机会,也为学生之间的竞争学习提供了情景的压力,促使每一个参与者积极投入到相关主题的思考中去,从而大大地促进了学生学习趋向的纵深发展。六是Seminar 教学法有利于塑造民主、平等、现代的新型师生关系,有利于学生心灵的塑造。总之,Seminar教学方法是“教”与“学”双向互动式的交流模式,其主要目的是发掘学生的学习主动性、训练学生的口头表达能力和提高他们的参与意识,培养和训练学生探索问题和解决问题。它充分体现了互动性、民主性、激励性、学术性特点。Seminar 教学方法引入大学课堂教学,不仅丰富了教学手段,也实现了大学教育中“教会学生知识,更重要的是教会学生如何获取知识的能力”的这一目标,使教学活动注入了新的活力。变以往学生的“要我学”而为“我要学”,能极大地提高大学教学的教学质量和教学效果。
3 生物化学教学中引入Seminar教学模式的探索与实践
宜春学院自2010年成立以来,就在生科学院的农学、生物科学、园艺和动物科学等专业开设了生物化学课程。长期以来,在生物化学课程教学中主要采取传统的教学方法为主,虽然其中也进行了一些改革探索,引进了其他一些方法,但教学效果并没有明显提高,学生学习的积极性也不高。因此,针对这种情况,从2014 年开始,在生物化学传统的教师教授为主的教学方法中,引入Seminar 教学,旨在生物化学教学过程中探求一种更好的教学模式,以适应新的教学需求以及提高教学质量和教学效果的目标。根据近3年的教学实践,Seminar教学模式为生物化学课程教学注入了新的活力,学生学习此门课程的主动性和积极性明显提高,真正促进了教学相长、提高教学质量、深化教学改革发展的效果。
3.1 理论课程教学
生物化学是研究生命现象的化学本质的科学,其研究范围涉及所有生物体。该课程内容主要包括生物大分子如蛋白质、核酸、糖类、脂类、酶、维生素、激素等的结构、物理性质、化学性质及生物膜的结构与功能,各类有机分子在生物体内的物质代谢过程和能量的转换,代谢的调节机理,基因重组技术及学科发展的最新进展和研究的前沿技术。生物化学的任务不仅要揭示生物体内化学物质的种类、结构和含量,更重要的是要从分子水平上探讨这些物质与生物体的生长、发育、生殖、遗传、衰老等生命现象的关系。
在进行理论课程教学之前,一般是先根据各专业教学的要求和培养方案,向学生提供一份详细的生物化学Seminar课程计划,内容主要包括教学目标、选题范围、每周选题安排、课程流程设置、成绩考核标准以及关于各个选题的相关阅读材料、书目及参考文献等。
在理论课程教学过程中,各个教师结合核酸、氨基酸、蛋白质、酶、糖、脂类物质等各个相关选题,先主要是介绍该选题的主要知识点、当前这方面的研究热点、难点以及主要进展提供给学生参考。然后学生则根据该选题的内容选择自己感兴趣的问题,拟定Seminar题目。再由教师根据各班学生情况和题目情况进行分组,同时各组推举1名报告人,并准备PowerPoint报告。Seminar教学的具体实施过程如下:主持人介绍 (3~5 min);报告宣讲 (10~15 min);讨论交流(20~30 min);总结( 3~5 min)[7-9]。
3.2 实验课程教学
实验教学是生物化学课程构建的一个重要环节,对培养学生实践能力、实验技术和创新精神有着重要作用。在Seminar实验教学改革上,对验证性的实验项目,主要按照传统的实验教学方法进行。而对一些综合性、创新性的实验项目则在教师的指导下,由学生自主选择。然后再由学生进行报告,报告的演示文稿为PPT课件。学生报告后,再由教师和学生共同讨论。在讨论过程中,教师要积极引导学生发言。对相关的实验方案设计提出修改意见。最后方案确定后学生再开展具体实验。Seminar实验教学其他程序同上。比如,在正式进行玉米醇溶蛋白的提取与酶解工艺这种探索性的实验项目时,先由学生从国内外专业网站和期刊中查阅玉米醇溶蛋白和蛋白质的提取及酶解方法等相关文献,并阅读教师提供的有关材料,然后进行分组讨论,准备各自的实验方案和PowerPoint报告。然后按照Seminar其他程序,学生报告人从实验研究的构思、实验设计、实验实施等方面进行介绍并发表自己的观点。教师和其他学生在报告人介绍的基础上根据自己对这个实验课题的理解提出问题展开讨论。最后,教师对各组实验方案和讨论情况进行总结和点评。之后,学生则根据论的情况和教师的点评对原设计的实验方案进行适当修改确定最后实验方案。然后才开展具体实验。这样,不但拓宽了思路,丰富了知识面,而且取得了最好的实验结果[10-12]。
3.3 教学质量和教学效果影响评价
生物化学Seminar理论课程和实验课程结束后,结合生物化学校级重点课程建设,对Seminar教学法对生物化学课程教学质量和教学效果的影响进行调查和测评。主要通过召开学生座谈会和采用问卷调查等形式。调查测评主要内容包括2个方面:一是学生方面,二是教师方面。学生方面主要包括学习兴趣、学习方法、师生感情、创新素质、文献阅读水平、表达能力、组织协调能力、PPT制作水平、团队合作精神,选题的合适程度、课堂交流讨论的情况等。这些方面主要作为教师对学生Seminar课程进行成绩评定的主要依据。待学期结束时,学生的Seminar课程成绩作为平时成绩的主要部分,占80%,其他如实验实践考核和实验实践报告、上课表现和考勤等占平时成绩的20%。学生的生物化学课程总成绩按平时成绩占30%、期末考试成绩占70%计算。教师方面主要包括:教师的知识和能力水平、协助学生选题情况、对Seminar教学过程的控制情况、参与讨论的程度、调动学生积极性、介绍与总结点评情况等。对教师的测评情况主要作为教师改进Seminar教学水平和进行奖励的参考依据。
4 结语
通过在生物化学课程的理论、实验教学中运用Seminar 教学法,建立了合理的教、学体系,取得了良好的教学效果,得到了学生的普遍欢迎。使学生的交流能力、分析问题和解决问题的能力、研究能力等都有所提高和改进,增强了自信,同时密切了师生之间、学生之间的关系,学生的综合素质得到明显提高,也促进教师的教学水平得到明显提高。据调查,近2年来,各个班的学生期未考试平均成绩均较往年有较大幅度提高,提高10%以上,不及格率明显下降。此外,每年均有多人参加的学校大学生能力建设项目被立项,而且取得了一定成果。同时,有多名学生考取了研究生,部分甚至考取了名牌大学的研究生。
当然,在进行Seminar 教学上也存在一些不足。比如,学生对相关知识背景的储备有的很不充分,学生的理论基础和学习能力存在一些欠缺,有的主讲学生没有把精力全部投入进去,应付任务型的学生不少,有的学生参与讨论的积极性不够高,有的教师存在行为惰性等。这在一定程度上影响了Seminar 教学的效果。
总之,将Seminar教学模式引入生物化学课程的教学中,改变了枯燥、被动的填鸭式教学模式,激活了大学生的创造性潜能和创新的主动性,培养了学生的综合、全面思维方式,提高了学生的综合素质和能力。同时,也提高了教师的教学水平和能力。Seminar教学模式是适合大学生的一种新的教学方式。它在生物化学课程中的应用对大学生教学效果显著,具有较好的推广应用价值。
5 参考文献
[1] 徐继存.教学方法阐释[J].西南师范大学学报(人文社会科学版),2002,28(6):58-62.
[2] 李军.利用Seminar 教学模式提高教学质量[J].中国电力教育,2010, 161(10):75-76.
[3] 朱郁闻.论Seminar 教学模式在我国高等教育中的运用[J].江苏教育学院学报(社会科学),2012,28(3):46-47.
[4] 冯琳佩.略论基于社会互动理论的Seminar 教学模式对研究生教育质量的影响[J].成都教育学院学报,2006,20(4):45-47.
[5] 孙连坤,康劲松,李扬,等.Seminar在培养学生综合素质中的作用[J].中国高等医学教育,2006(11):84-85.
[6] 茅卫锋,殷玉玲,陈杨,等.生命科学专业本科生Seminar教学模式的探讨[J].教育教学论坛,2013(43):94-95.
[7] 林文珍,蔡丹昭,吴耀生,等.Seminar教学模式在生物化学研究生教学中的初探[J].中国高等医学教育,2010(8):8-9.
[8] 雷化雨.本科教学中构建Seminar教学模式的探讨[J].南阳师范学院学报,2010(7):102-106.
[9] 葛伊莉,郭慧.Seminar教学模式在分析化学实验中的应用[J].广东化工,2011(12):145-146.
[10] 毕玉水,赵晓红,巩学勇,等.Seminar教学模式在物理化学课程教学中的应用[J].中国电力教育,2014(3):123-124.
关键词:基因 基因概念 历史渊源
中图分类号:Q3 文献标识码:A 文章编号:1672-3791(2012)08(b)-0234-03
遗传学是研究生物起源,基因和基因组结构、功能及其演变规律的学科,而基因的研究对促进遗传学发展具有重要意义。自20世纪开始以来,基因的发展经历了理论水平、细胞水平的遗传学阶段和分子水平上的遗传学阶段,在前人大量实验的基础上,人们对基因的认识不断深入,特别是随着人类基因组计划和“DNA元件百科全书”计划(Encyclopedia of DNA Elements, ENCODE)的完成,人们对基因的认识又有了新的变化,并将遗传学中基因的概念和理论应用到了计算机、商业和信息技术等领域。
如今的21世纪,随着学科交叉研究的发展,一些科学研究者开始利用物理化学工具来研究核酸结构,从分子水平上阐述遗传现象背后的化学本质。本文结合大量文献综述了基因的发展历程以及现阶段物理化学方法在遗传学研究中的应用,并展望了量子化学理论在遗传学领域的应用前景。
1 基因概念的历史渊源
19世纪,由于农业生产发展的需要,人们开始重视动植物的遗传变异现象并对这些现象进行了系统研究,这为基因概念的产生创造了条件。1868年,Darwin C.受Hippocrates和Anaxagoras的生源说影响提出了泛生论的假说,认为生物体的细胞能产生自我繁殖的微粒,这些微粒可以汇聚于生殖细胞并决定后代的遗传性状,这种观点缺乏实验论证,不过它充分肯定了生物体内部存在特殊的物质负责遗传性状的传递。之后,Weismann A.又在前人基础上提出了种质论(Germpiasm),认为种质是生物体的遗传物质,它可能作为遗传单位存在于染色体上,这对基因概念的形成奠定了理论基础[1]。
2 基因的研究发展
2.1 基因概念的提出
在前人的遗传学理论研究基础上,Mendel G.J.第一个对遗传现象做了系统的实验研究。通过豌豆杂交实验,他认为生物性状是由“遗传因子”来控制的,这些遗传现象符合分离定律和自由组合定律。之后,Devries H、Correns C.和Tschermak E.分别证实了孟德尔的实验结果,到1909年,丹麦的Johannsen W.L.首次用“基因”一词表示遗传因子。不过,当时的遗传因子没有涉及到基因的具体物质概念,只是一个经过统计学分析的理论概念。
2.2 基因学说的创立
Mendel的遗传因子学说是宏观水平上的发现,其所提出的遗传因子到底是否存在于细胞中需要进行细胞水平上的研究。随着当时工业生产的发展,用以研究生物学实验的仪器设备有了极大的改进。20世纪初,Boveri T.[2]和Sutton W.S.[3]各自在研究减数分裂时,发现遗传因子的行为与染色体行为呈平行关系,提出了基因就在染色体上的假说。然后,1910年,Morgan T. H.等[4]用果蝇作材料,进行了一系列杂交实验,发现了伴性遗传现象和基因连锁互换定律,直接证实了基因在染色体上,建立了染色体遗传理论。1926年,Morgan T.H.正式提出了基因学说,即“三位一体”的基因概念,基因首先是决定性状的功能单位,能控制蛋白质的表达,决定一定的表型效应;其次是一个突变单位,可以发生在等位基因之间,表现出变异类型;最后它是一个重组单位,只发生在基因之间,可以产生与亲本不同的基因型[5]。这把染色体和基因联系了起来,说明了基因具有物质性,不过,Morgan在其著作中并没有涉及基因的本质是什么以及基因的功能是如何发挥等问题。
2.3 基因化学本质的研究
对于基因的化学本质和功能等问题,早在1909年,英国Garrod A.E.就提出过基因产生酶的观点。之后,1941年斯坦福大学Beadle G.和Tatum E.[6]在研究真菌过程中,提出了“一个基因一个酶”的假说,认为一个基因控制一个酶的合成,基因通过酶控制生物的代谢途径,这从生物化学角度阐述了基因的功能,不过这种基因的概念仍然没有揭示基因的化学本质,只是解释了基因发挥功能的途径。到1944,Avery等通过肺炎双球菌转化实验证明了遗传物质的化学本质是DNA,然后,1956年,美国的Fraenkel又通过烟草花叶病毒实验证明了RNA也可以作为遗传物质进行传递[7]。
2.4 基因功能的研究
1953年,Watson J.D.和Crick F.H.C.[8]提出了DNA的双螺旋结构,人们开始从分子水平上认识基因的本质,即基因是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位[9],从此以后,人们对基因功能的认识开始有了深入的了解。1955年,Benzer S.[10]通过T4噬菌体感染大肠杆菌的互补实验提出了顺反子学说,认为基因就是顺反子,即一个遗传功能单位,一个顺反子决定一条多肽链,它并不是一个突变单位和交换单位。一个顺反子可以包含一系列突变子,突变子是DNA中构成的一个或若干个核苷酸,由于基因内的各个突变子之间有一定距离,所以突变子彼此之间能发生重组,重组频率与突变子之间的距离成正比[11]。
20世纪60年代之前,人们已经认识到基因是有着精细结构的DNA分子,其结构可以继续分割,不过,当时对于基因功能表达及其具体作用等问题的研究依然局限于传统的“一个基因一个酶”的学说。1961年,法国遗传学家Jacob F.和Monod J.L.[12]根据对大肠杆菌的试验,提出了大肠杆菌操纵子模型,认为DNA的不同区域存在一个调节基因和一个操纵子,操纵子模型包括若干结构基因、操纵基因和启动基因。这一模型进一步说明了基因是可分的,通过基因间的密切协作,细胞才能表现出独特的功能[13]。此后,随着DNA重组技术和DNA测序技术的发展,人们对基因的研究更加深入,发现了许多基因的其他功能和特点,极大地完善了人们对生物体各种遗传现象的认识。
2.5 基因概念的新发展
20世纪70年代以后,随着分子生物学技术的飞速发展,人们对基因的结构和功能上的特征有了更多的认识,其中比较重要的发现有假基因、重叠基因、跳跃基因、断裂基因、反转录基因、印记基因等。结合基因的这些新发现,现今人们认识基因有以下几种特点[5]:(1)基因不都是离散的,因为有重叠基因;(2)基因不一定是连续的,如断裂基因;(3)基因可以移动,其位置可以改变,如跳跃基因;(4)基因不是全能的结构单位,有很多顺式作用元件影响转录或剪接;(5)基因也不是简单的功能单位,因为基因可以通过顺式或反式剪接,产生多种蛋白质。那么,到底应该怎样给一个基因准确定义呢?近年来,有很多人对此提出了看法。
Gerstein等[14]提出,基因的定义应该和原来的定义有兼容,建立在已有的生物术语基础之上。他们认为,基因是基因组序列的联合体,这些序列可以编码具有潜在重叠功能的产品(蛋白质或RNA),基因与其调节序列是多对多关系。在此基础上,Pesole[15]则认为基因是一个离散的基因组区域,其转录可以被一个或多个启动子和远端调节成分调控,并含有合成功能蛋白质或非编码RNA的信息。基因在最终功能产物上有共同性质,这个定义主要针对真核生物基因组,强调每个基因都分布于基因组的连续区域,基因序列包含5′UTR和3′UTR。此外,还有学者从计算机角度对基因的定义做了描述,他们把基因组比喻为一个生命体的大的操作系统,而基因就是其中的一个子程序。总之,随着当今科技水平的发展,人们通过对DNA、RNA和蛋白质新功能的研究,发现基因并不是以前想得那么简单,其概念、功能和特征是随着一些特殊的生命遗传现象可以改变的。
如阮病毒的发现,朊病毒是一种只有蛋白质而没有核酸的病毒,就之前生物学家对基因的概念而言,朊病毒的复制并非以核酸为模板,而是以蛋白质为模板,这又重现了20世纪遗传物质本质问题的争议,是现阶段基因概念的新挑战。此外,2006年,《自然》杂志在New Feature栏目上刊登了“什么是基因?”一文,这篇文章结合最近的研究成果对基因的概念做了新的诠释,一些研究发现,RNA不是被动的将基因信息传递下去,而是主动地调控细胞的活动,有的RNA链不是传统认为的只由DNA的一条链转录,而是由两条链转录得来,还有一些RNA可以通过某种途径使正常基因沉默,在必要时还会作为模板纠正某些异常基因,跨世代地携带生物体遗传信息[16]。这些研究发现加深了我们对RNA的认识,深化了我们对生物体遗传现象的了解。又20世纪90年代,美籍华人牛满江教授又发现了“外基因”,即一些生物体细胞质中mtRNA能激活一些特定基因,使生物体表达特定的蛋白质,还有,2008年《自然》杂志上报告,美国科学家确认了一种可导致乳腺癌转移的超级基因,这种基因可控制肿瘤细胞中其他基因的表达,它的表达与癌症发生有密切的联系[17]。
总之,随着科学的不断发展,人们对于生物遗传现象的认识越来越深入,基因的概念也随着生物学的发展不断变化和完善。由于其他非生命领域的研究对象显示出了生命力及与生物基因相似的特征,现今,经济领域和计算机领域中又出现了企业基因[18]、产品基因[19]、数据基因[20]等新的定义,基因概念的基本理论已经发展到更多学科中了,对基因本质和特征的研究越来越有必要。
3 量子化学作为研究核酸方法的应用
当前,遗传学的研究已经发展到了分子水平,然而对于生物遗传现象中一些酶、核酸、激素等活性物质的构象、生物活性和其具体作用机制依然存在争议。生物系统研究的最大难题是生物分子的复杂性,常规的实验方法只能得到实验现象的宏观方面解释,而不能从微观方面对实验现象的化学本质做出解释。目前有一些研究者将物理化学方法应用到了生命科学领域,建立了从理论分析到实验优化的方法模式,他们根据实际体系在计算机上进行实验,通过比较模拟结果和实验数据检验理论模型的准确性,并在此基础上模拟生物大分子的结构、性质和反应过程。
随着计算机技术和物理化学理论的发展,以及X射线、NMR等技术的应用,人们可以利用一些物理化学工具在计算机上进行分子模拟,以此来模拟DNA、RNA和蛋白质的结构,预测蛋白质与核酸的功能和性质。而且,随着计算方法的改进,高度变化的核酸体系的精确分子模拟已成为可能,依赖强大的计算机就能模拟一些更复杂的反应,如DNA、RNA和蛋白质的催化及折叠等[21]。
其中应用比较广泛的物理化学工具就是量子化学方法,量子化学方法是应用量子化学基本原理和方法来研究化学体系的结构和化学反应性能的科学,其基本理论主要有价键理论(VB)、分子轨道理论(MO)、密度泛函理论(DFT),基本的计算方法有从头算方法(ab initio)、半经验方法(semi-empirical method)、密度泛函方法(Density Functional Theory)[22]。量子化学的原理和方法在物理化学、药学计算和生命科学领域有广泛的应用,可以很好地分析分子间相互作用的机理,解释实验中一些宏观现象的物理化学本质。如李梅杰[23]利用量子化学方法中的高精度组合从头算方法(ONIOM-G3B3)研究了核酸自由基性质和损伤机理,很好地解释了生命过程中由于自由基和电子转移导致DNA的断链损伤而引起的衰老、癌症、神经紊乱等疾病的发生。又如2002年,Starikov E.B.[24]总结了核酸中量子化学方法的应用,阐述了核酸中电荷转移过程的量子化学描述及其化学机理,并详细地讨论了不同量子化学方法在研究核酸电子构型中的优缺点。此外,于芳[25]运用量子化学工具对胞嘧啶与丙烯酰胺组成的分子体系进行了计算,以此来模拟核酸与蛋白质相互作用的反应过程,分析了DNA与蛋白质的作用形式。
对于利用量子化学方法研究蛋白质的应用,国外在这方面做得比较深入。如纽约州立大学石溪分校Simmerling C.等[26]应用量子化学方法研究了一种小分子量蛋白质,仅有20个色氨酸构成,准确地预测了蛋白质三维结构的折叠过程。又如Berriz和Shakhnovich[27]模拟了小的三螺旋束蛋白的折叠,Daggett和Fersht[28]模拟了小的单结构域蛋白的动力学折叠.还有Akira Shoji等[29]采用密度泛函理论方法优化了右手α-螺旋的PLA(聚L-丙氨酸)分子(如图1所示,即H-Ala18-OH分子),分析了αR-螺旋的PLA形成的机制,获得优化的αR-螺旋H-Ala18-OH构型外侧的1H、13C、15N、17O原子的化学位移与用高分辨率固相NMR检测的相同。
4 展望
近年来,国内外量子化学在分子生物学中的应用日趋广泛,如利用量子化学方法研究纳米微粒促进靶向给药、纯化核酸以及处理废气等技术的发展;应用量子化学方法优化生物活性分子结构,研发新型抗疾病药物;采用分子模拟的量子化学计算方法探究激素与受体以及其他活性分子与核酸的作用机理等等,很大程度上促进了分子生物学和医学的发展。从目前所作的科学研究看,量子化学完全可以作为遗传学工具来研究生物体遗传现象背后的化学本质,其在遗传学的研究中有广阔的应用前景。
参考文献
[1] 光晓元.基因概念的历史渊源及其历史发展[J].安庆师范学院学报,2002,8(4):95-97.
[2] Boveri T.ber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns[J]. Verh Phys.Med Ges Würzburg,1902, 35:67-90.
[3] Sutton W S.The chromosomes in heredity[J].Bio Bull,1903,4:231-251.
[4] Morgan T H.Sex-limited inheritance in Drosophila[J].Science,1910,32(812):120-122.
[5] 谢兆辉.基因概念的演绎[J].遗传,2010,32(5):449-454.
[6] Beadle G W,Tatum E L.Genetic control of biochemical reactions in neurospora[J].Proc Natl Acad Sci USA, 1941,27(11):499-506.
[7] 高汝勇.基因概念的发展历程[J].科技风,2009(11):128-128.
[8] Watson J D,Crick H F C.A structure for deoxyribosenucleic acid[J].Nature,1953:171,737.
[9] 赵亚华.基础分子生物学教程.2版.北京:科学出版社,2007,7:1-10.
[10] Benzer S.Fine structre of a genetic region in bacteriophage[J].Proc Natl Acad Sci USA,1955,41(6):344-354.
[11] 张勇.基因概念之演变[J].生物学通报,2002,37(10):52,54.
[12] Jacob F,Monod J.Genetic vegulator ymechanisms in the synthesis of proteins[J].J.Mol.Biol,1961(3):318.
[13] 刘元,陈国梁,梁凯.基因概念的演变[J].延安大学学报,2005,24(4):80-83.
[14] Gerstein M B,Bruce C,Rozowsky J S,et al.What is a gene,post-ENCODE?History and updated definition[J].Genome Res,2007,17(6):669-681.
[15] 施江,辛莉,郭永新,等.现代生物学基因研究进展—— 从遗传因子到超级基因(2)[J].生物学通报,2009,44(4):4-7.
[16] 唐捷.基因是什么[J].生物化学与生物物理进展,2006,33(7):607-608.
[17] 欧阳芳平,徐慧,郭爱敏,等.分子模拟方法及其在分子生物学中的应用[J].生物信息学,2005(1):33-36.
[18] 许晓明,戴建华.企业基因理论的演化及其顺反子系统新模型的构建[J].上海管理科学,2008,30(2):86-90.
[19] 杨金勇,黄克正,尚勇,等.产品基因研究综述[J].机械设计,2007,24(4):1-4.
[20] 奚建清,汤德佑,郭玉彬.数据基因:数据的遗传信息载体[J].计算机工程,2006,32(17):7-9.
[21] Pesole G.What is a gene?An updated operational definition[J].Gene,2008,417(1-2):1-4.
[22] 赵艳丽,许炎,李遥洁,等.量子化学在金属配合物中的应用进展[J].广东化工,2010,37(9):75-76.
[23] 李梅杰.核酸自由基性质和损伤机理的量子化学研究[D].合肥:中国科学技术大学化学与材料科学学院,2007.
[24] Starikov E B.Quantum chemistry of nucleic acids:how it could help and when it is necessary[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2002,3:147-164.
[25] 于芳.酰胺类化合物与DNA碱基相互作用的理论研究[M].江苏:江南大学应用化学系,2009.
[26] Simmerling C,Strockbine & Roitberg A E.All-atom structure prediction and folding simulations of a stable protein[J].Journal of the American Chemical Society,2002,124:11258-11259.
[27] Berriz G F,Shakhnovich E I. Characterization of the folding kinetics of three-helix bundle protein via a minimalist Langevin model[J].Journal of Molecular Biology,2001,310:673-685.