前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇钢铁冶金行业分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
Abstract: Iron and steel metallurgy industry as a pillar industry in China, plays a key role in the process of national economic development. In order to further enhance the quality of the industry's own development and production efficiency, control energy consumption and enhance the competitiveness of enterprises, iron and steel metallurgy enterprises should take electrical automation as the main direction of adjustment and constantly adjust and update the production mode and operating mode in the development process, and promote the healthy and rapid development of enterprises from the technical field. Taking the electrical automation technology as the research focus, under the guidance of relevant scientific theory, this paper comprehensively analyzes path for the iron and steel metallurgical industry to achieve the rational application of electrical automation technology, which provides a reference for the follow-up production practice.
P键词:冶金行业;电气自动化技术;应用方式
Key words: metallurgical industry;electrical automation technology;application mode
中图分类号:F426;TP273 文献标识码:A 文章编号:1006-4311(2017)16-0041-03
0 引言
我国钢铁冶金行业在过往制度红利以及劳动力红利的促进下,其生产规模、生产能力以及生产技术等方面获得了长足进步,涌现出一大批具有世界影响力的钢铁冶金企业。随着劳动力成本的增加,钢铁冶金企业在的运营成本与人员费用所有提升,为了保证钢铁企业的利润空间,实现钢铁冶金企业的可持续发展,同时现阶段供给侧结构改革工作的持续进行,要求钢铁冶金企业立足于宏观经济发展需求,在现有的政策环境下,持续深入的提升生产效率,提升有效供给,发挥自身的经济作用与社会价值[1]。因此越来越多的企业将电气自动化技术应用与轧材、采矿、浇铸、选矿以及冶炼等不同的工艺流程中,希望借助于电气自动化技术的技术优势,保证钢铁冶炼工程中电力资源、氧气以及水资源的持续稳定供应,通过这种方式有效提升生产效率,减少不必要的资源浪费与损耗,控制企业运行成本,同时增强冶炼产品的质量水平,实现钢铁冶炼产业的有效供给,促进钢铁冶炼行业的可持续发展。文章立足于现阶段钢铁联合式生产模式的发展实际,全面分析冶金电气自动化技术的特点与优势,在此基础上,将星型拓扑结构代替原有的总线结构,实现钢铁冶金行业电气自动化技术应用方案的规划设置,增强钢铁冶金行业的发展质量。
1 冶金行业电气自动化技术的特点
1.1 电气自动化技术体系复杂
钢铁冶金生产流程繁琐、技术工艺要求较高,因此在实际生产的过程中,为了满足电力资源的使用需求,保证生产加工的有序进行,需要将电气自动化技术覆盖于整个冶金流程作业之中,借助电气自动化技术在电气设备安装、调试、维护以及技术升级等方面的优势,实现钢铁冶金生产硬件与控制运行软件之间的良性互动[2]。但是由于钢铁冶金生产工艺较为繁琐,电气自动化技术在覆盖的过程中,需要大量的技术、资金与人力支持,这就在一定程度上增加了电气自动化技术体系的复杂程度,也在增加了电气自动化技术在冶金企业生产实践过程中应用的困难性,使得冶金企业在短时间难以实现电气自动化技术在冶金生产过程中的有效落实。
1.2 电气自动化技术对电气的依赖程度高
随着我国产业结构调整工作的深入开展,国内大中型冶炼企业在发展的过程中,逐步认识到企业发展过程中电气自动化技术的重要性,立足于企业发展的实际情况,不断进行技术优化与升级,吸收国外冶金电气自动化技术应用的有益经验,逐步构建起现代化的自动化生产线,而自动化生产线的运行,需要以电气技术为平台,对生产线运行过程中的各类信息数据进行传输与信号转换,增强了钢铁冶金企业生产线运行的流畅性与稳定性,提升了生产效率。
1.3 冶金生产技术较为广泛
钢铁冶炼作为冶炼行业的重要分支,生产环节较多、生产内容多样,冶炼过程中不仅涉及到化学变化,还包含了物理变化等多样化的物质性态转变,这就要求钢铁冶炼企业在进行冶炼作业的过程中,对生产过程中的影响因素以及原料特性进行梳理,严格控制冶炼过程中物理变化以及化学变化过程中的各类参数[3]。电气自动化技术在应用的过程中,为了保证应用的质量与水平,需要从冶金流程出发,针对于不同的生产环节,推动冶金生产技术在冶金流程中的高效应用。
2 冶金行业电气自动化技术的现实意义
2.1 电气自动化技术在冶金行业中的应用能够有效提升冶金行业自身的自动化水平,推动其健康快速发展。电气自动化技术以信息技术为框架,实现了对钢铁冶炼流程的远程监测与科学调控,对原有钢铁冶金过程中所使用的相关技术与组件进行优化与升级,推动了我国冶金行业生产工艺与技术的现代化。同时电气自动化技术在很大程度上满足了冶金行业对于自身管理能力的提升要求,增强了钢铁冶金企业管理工作的科学性与高效性。电气自动化技术在冶金行业中的应用,在一定程度上促进了电冶金企业运行模式的改变,提升了企业自身的竞争能力,推动了冶金企业的健康快速发展。
2.2 电气自动化技术在冶金行业中应用,降低了冶金行业设备维护与保养的成本,保证了电力资源的安全稳定供应。电气自动化技术体系下,计算机与冶金行业中各个终端相互联系,因此借助于相关软件应用程序就可以对系统运行过程中出现的各类故障与问题进行及时诊断与排除,借助于这种方式,在满足冶金行业中设备维护的基本需求的前提下,能够大大减少工作人员的工作难度与压力,提升了人力资源的利用效率,减少了不必要的费用支出[4]。
3 冶金行业电气自动化技术应用遵循的原则
3.1 电气自动化技术在钢铁冶金行业中的应用必须要遵循科学性的原则。电气自动化技术在钢铁冶金中应用目标的实现,要充分体现科学性的原则,只有从科学的角度出发,对电气自动化技术应用的现实意义以及技术操作流程,进行细致而全面的考量,才能最大限度地保证电气自动化技术满足钢铁冶金生产工作的客观要求,只有在科学精神、科学手段、科学理念的指导下,我们才能够以现有的技术条件为基础,确保钢铁冶金行业电气自动化技术应用工作的科学实现。
3.2 电气自动化技术在钢铁冶金行业中的应用必须要遵循实用性的原则。由于电气自动化技术工作大多位于室外,使得电气自动化技术的应用环境较为简陋,难以实现电气自动化技术应用方案与相关施工技术的细致处理与操作。为了适应这一现实状况,电气自动化技术在进行实际应用的过程中,就要尽可能的增加自动化技术应用方案的容错率,减少外部环境对电气自动化技术应用活动的不利影响。电气自动化技术以及相关技术应用流程必须进行简化处理,降低操作的难度,提升应用方案的实用性能,使得在较短时间内,进行批量操作,保证钢铁冶金生产工作的顺利开展,减少不必要的费用支出,节约生产成本。
4 电气自动化技术在冶金行业中应用的途径
电气自动化技术在冶金行业生产环节中的应用是一个长期的过程中,在这一过程中,需要相关技术人员明确电气自动化技术的特点与应用的现实意义,在科学性原则与实用性原则的指导下,以现有的技术为框架,促进电气自动化技术在冶金行业中的应用。
4.1 继电保护在冶金行业中的应用
冶金企业电力系统在运行的过程中,为了实现对电力故障有效隔离,减少电力故障对于冶金生产活动的不利影响,增强电力资源供应的可靠性,需要进行继电保护机制的设置。电气自动化技术在冶金行业应用的过程中,技术人员可以将继电保护作为电气自动化技术应用的切入点,实现电气自动化技术体系下继电保护工作的有序进行[5]。为了达到这一目的,一方面技术人员要在科学性原则的引导下,需要根据冶炼行业的电力需求,进行输电线路纵连保护体系的建设,实现故障的有效排除,其结构如图1所示。
在电气化技术体系下,技术人员可以借助于纵连保护的结构优势,一旦输电线路发生故障,输电线路两侧的开关根据电流与电压的变化情况,及时进行跳闸操作,实现故障部位的有效隔离,并在隔离的过程中,借助于相关设备对线路两侧的判量关系,对线路故障类型进行分析,为故障排除方案的设定准备了必要的数据参考。在进行纵连保护的结构设计的过程中,为了提升继电保护工作的效果,技术人员需要针对于单侧电源网络的电力特性,对短路电压以及电流进行有效保护。冶金生产过程中,对于电力资源有着较为旺盛的使用需求,电力系统内部的电压环境与电流情况与其他生产部门有着一定的差异,因此为了实现对电力系统内部电压与电流的有效调节,减少输电线路故障对于电压电流的影响程度,确保生产流程的有序开展,在实际应用的过程中,技术人员可以进行特定值的设置,当线路故障发生时,电流电压低于或者高于特定数值时,输电线路中的断路器自动断开,实现电力故障的有效排除。另一方面对冶金生产设备进行接地与电网保护,电气自动化技术应用于接地保护与电网距离保护的过程中,为了限制漏电电流,避免漏电电流对于设备的损耗,需要技术人员可实用性原则为指导,增加接地方案的实用性,实现电路保护装置工作质量与效率的提升。对于电网距离的设置则应根据线路故障的发生位置以及反应保护装置的距离,最终确定保护装置安装位置,从而最大程度的提升保护装置的工作性能,增强继电保护的实际应用效果。
4.2 PLC技术在冶金行业中的应用
PLC作为编程逻辑控制器,借助于自身内部存储程序,实现了逻辑运算以及顺序的定时控制,有效满足了自动化生产线对于设备运行的客观要求。PLC在冶金行业中的应用可以实现不同生产环节间,信息数据的有效沟通与交流,进行通信环状网络的构建,提升冶金生产流程信息交互的流畅度。其在冶金生产过程中应用,极大地提升了冶金工作的管理水平,实现了工艺流程操控的科学化,例如在对炼钢吹风处理的过程中,可以使用PLC对风机的高低速M行编程,使其能够根据实际情况调节风速,满足生产需求。
5 结语
为了推动冶炼行业的健康快速发展,提升我国冶炼行业的整体竞争能力,文章以电气自动化技术为切入点,全面分析冶金行业电气自动化技术的特点与优势,在此基础上以科学性原则与实用性原则为指导,从多个角度出发,采取多种形式,促进电子自动化技术在冶金行业中的科学高效应用。
参考文献:
[1]蒋森.浅谈电气自动化技术在冶金行业中的应用[J].商品与质量:房地产研究,2014(5):57.
[2]王海芳.浅谈电气自动化技术在冶金行业中的应用[J].通讯世界,2015(18):146-147.
[3]田晓亮.浅析电气自动化技术在冶金行业中的应用[J].工业c,2015(57):90-91.
关键词:电气自动化;技术;冶金;应用
中图分类号:C35文献标识码: A
一、我国冶金电气自动化技术的发展现状
80年代左右,我国钢铁冶金行业还普遍采用单回路控制,一般控制设备都为常规仪表,控制水平简单。而在90年代以后,自动化技术开始在我国冶金行业中普及,大部分企业的控制装备方面都以PLC、DCS、FCS为主,控制水平可以达到准无人化水平。最近这几年,冶金行业自动化技术再一次升级,部分钢铁企业已经实现了全厂信息化,控制系统也更加优化了,出现了BPS/MES/PCS三级结构。自从我国加入WTO,再加上金融危机的影响以及国际钢铁市场的持续低迷,钢铁冶金企业现今正面临着严峻的考验,为了适应全球冶金行业的大环境,为了我国冶金行业更好的发展,提升我国钢铁行业自动化技术的水平势在必行。
(一)实现自动化生产
随着我国冶金行业的发展,许多技术都被应用到了冶金生产的控制方面。特别是采用PLC、DCS计算机控制,取代了传统的模拟控制,深受冶金企业的欢迎,目前已经得到普及。近年发展起来的现场总线、工业以太网等技术,也逐步在冶金生产的自动化系统中应用,分布控制系统结构替代了集中控制,成为自动化发展的主流。
(二)实现自动化监测
自动化技术在生产监测方面也得以大量应用。例如,闭环控制、安全生产等相关的流量、温度、压强等数据检测,用上了自动化仪表设施,保证了回路控制、安全生产、能源计量等方面的监测的准确和规范。生产过程的各种预报、报警等,也都引入最新的监管、测量技术和设施,满足了管理、进程的需要。
(三)进一步加快信息化进程
电气自动化技术的引入,使得我国冶金行业的信息化程度得以提高。随着管理能力的加强,信息化开始得到冶金企业的认可,企业信息化慢慢得以建立,很多企业还创建了企业信息网。特别是国内的一些知名的钢铁企业,在运用信息技术提高产品质量、降低能耗、控制生产成本等方面,都取得了较大的成功和突破。在生产控制方面,高性能控制器、集中管控智能仪表、模型技术得到了较为广泛的应用,增强了生产过程的可靠性、安全性、稳定性。近些年,一些冶金企业慢慢认识到制造执行系统,建成了主要生产线的MES和产销一体化系统。例如某著名钢企开发了数据挖掘系统,建立了智能质量设计知识库等,在信息化方面取得了显著的成果。
总之,电气自动化技术的引入,极大地推动了冶金行业的生产自动化进程,显著提升了我国的冶金电气自动化控制水平,缩短了我国与发达国家冶金产业的差距,取得了显著的成效。
二、一些基本的电气自动化技术在钢厂中的应用
(一)继电保护技术
继电保护是指当电力系统发生故障时,通过自动化控制装置将发生故障的电路隔离到电力系统以外。其主要作用就是提高系统运行的可靠性,尽可能的减少事故的发生及缩小事故的影响范围,以保证可以向用户安全连续的供电。其主要分为:①电源相间短路的电流电压保护,这是最基本的继电保护,其原理是当输电线路上发生故障时,将导致故障线路上的电流和电压发生变化,我们可规定一个正常值,当线路上有故障发生时,导致电流或电压高于或低于这个正常值时,保护器就断开故障线路上的断路器,将故障隔离。②接地保护:主要是限制漏电设备对地的泄漏电流,泄漏电流一旦超过安全范围,保护器就自动切断电源。③距离保护:主要反应保护装置与故障点的距离,并根据距离的范围来确定如何动作的保护装置。④线路纵连保护:是线路的一个重要保护,当线路发生故障时,两侧开关同时快速跳闸的一种保护装置。主要根据线路两侧判别量的特定关系来判定故障的发生。
(二)PLC控制技术
1、PLC定义
PLC(可编程逻辑控制器)是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它主要通过可以编制程序的存储器,在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等指令,并通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。随着自动化技术的飞速发展,PLC已被广泛应用在冶金行业中。在冶金企业的自备火电厂中,它保证着各大系统的安全运行,直接影响到机组和电网运行的安全性和经济性。在钢厂中,其应用更加广泛,如铁水的脱硫处理、转炉、精炼炉和连铸的加料、吹氧、出渣、除尘等等各个环节都采用PLC自动控制系统,基本实现了各个工艺环节的自动控制,提高了炼钢的质量和效率。
2、PLC在炼钢中的典型应用
①在控制不同的料仓时,可以利用参数文件,实现同一个画面控制。
②在炼钢除尘风机控制中,风机可以采用高低速控制,两种速度转换时采用步进式调节。
③在氧枪控制中,氧枪定位采用增量型编码器,可以通过高速计数模板采集编码器的脉冲信号,经CPU运算处理成工程量位移信号,从而控制氧枪运行。
④在LF精炼控制中,PLC实现了电极调节,电流、温度优化控制,合金优化配比等的自动控制。
⑤在连铸生产中,PLC更是通过现场总线、工业以太网实现了从大包回转到出坯的全过程自动控制。
3、PLC在钢厂其他生产活动中的应用
①称重系统
在钢铁企业中,要经常对钢坯、钢卷、废钢等进行称重,对所称得的重量要及时上传到生产管理系统,以便于生产管理。以前常采用工控机配合电子称进行控制,这种控制方式,可靠性比较差,费用高,自动化水平低,不便于管理。而现在多采用PLC控制,很大程度地提高了控制系统的可靠性和自动化程度,为企业生产管理提供了强有力的保证。
②化学水处理系统
大部分冶金企业化学水处理的方法是离子交换法,就是利用离子交换树脂将水中溶盐离子吸收,这种方法有个缺点,就是运行一段时间后,离子交换树脂就会失效,这时就要对树脂进行一些还原处理,以便再次使用。采用PLC控制系统,可以方便的控制两套设备进行切换使用,操作人员可以通过编制好的程序启动指令来控制其自动转换及运行,大大的提高了系统的可靠性,而且PLC编程方便,对环境要求相对较低,且与其他设备装置连接方便,提高了自动化水平,有效的解决了继电器控制存在的问题。
三、结语
随着新技术的不断发展和国家现代化进程的逐步加快,冶金生产的电气自动化技术也急需进一步提高。冶金电气自动化的发展在一定程度上影响了我国冶金产业的发展,我们应促进冶金电气自动化技术的更新、发展,不断推进冶金电气自动化技术的发展创新,以加强冶金生产过程中的整体创新,最终实现冶金产业的可持续发展。
参考文献:
[1]赖友钊.浅谈电气自动化技术在冶金行业中的应用[J].机电信息,2013,06:81-82.
内蒙古科技大学热能工程组建于1956年,原隶属于矿冶系热工教研室,1985年组建冶金热能系,从1991年开设招收冶金热过程方向研究生。前期的学科建设和科学研究主要由贺友多教授、李保卫教授领导下的冶金研究所完成。2001年与有关学科合并成立了能源与环境学院,2001年建立热能工程硕士点,2005年增设工程热物理硕士点。学科现有工程热物理和热能工程两个工学硕士点,一个动力工程领域工程硕士点。
内蒙古科技大学热能工程是自治区重点学科,热能工程学科经过20多年的建设和发展,结合内蒙古地区的特点,已充分发挥了钢铁和煤炭资源优势,围绕地区行业需求,形成了“高效洁净燃烧技术”、“冶金热过程”、“稀土冶金传输过程”等特色研究方向,建立了具有创新精神和团队意识的优秀学术梯队,获得了一批具有国内领先水平的产业化科技成果,培养了大批钢铁企业、热能行业发展急需要的创新型高层次人才。
《冶金工艺与热过程》是热能与动力工程专业专业教育平台的一门专业必修课,本课程使学生了解冶金工艺流程,掌握冶金领域的热工过程、主要热工设备的构造原理和结构特点,认识各种冶金设备在热工方面的特点,培养学生学会综合应用所学的专业基础知识和热工理论分析和解决实际工程问题的能力,用热理论分析研究冶金工艺流程各环节的热量变化和温度变化情况。
钢铁及稀土冶金行业是的支柱产业之一,近几年发展速度非常快,为了更好地为的钢铁、稀土等支柱产业结构更新的需要服务,在本科教学中优化及整合教学资源,适应经济发展对冶金和热能高层次人才的需求。
1 课程基本情况
本课程所讲授的冶金热过程主要有:加热、熔炼、烧结与煅烧、干燥、焦化、相变(凝固、结晶、汽化与冷凝等);本课程主要涉及的热工设备有:各类加热炉、热处理炉、烧结机、球团焙烧炉、回转窑、各类熔炼炉窑、各类竖炉和流化床炉、连铸相关的热设备,各类热回收设备(换热器、蓄热室、热管、余热锅炉等)。本课程着重培养学生利用热传输理论分析解决实际问题的能力,是一门重要的专业课程。
本课程涉及到了冶金的从烧结到连铸的所有工艺,工艺繁复,设备众多,涉及到的热传输过程也是最重要的。课程中穿插有稀土冶金方面的四个学时,增加了课程的特色,但是内容较多。这些都为本课程的讲授带来较大的困难,同时本课程和实际冶金工艺结合众多,非常需要现场的实际介绍,让学生有了感性认识后,才能更好的看清设备背后的理论知识。但是从目前来看,很难找到这样系统的见习机会。在本课程的教学中,由于没有统一的教材,同时,本专业又非冶金专业,也为本课程教案的编排带来很大困难,往往对于教学大纲的重点、难点把握不够。
为了解决以上的问题,有必要组织与整合冶金工艺的教学资源,例如现场录像,冶金工艺动画等,首先让学生对整个冶金过程有一个感性的认识[1]。同时编写适合热能与动力工程专业,冶金工艺及热过程的教案,满足非冶金专业冶金教学的要求。
2 组织与整合教学资源手段
(1)利用当地优势,邀请包钢技术人员在课程开始的前两个学时对冶金行业和冶金工艺进行介绍。冶金行业是整个工业的基础行业,通过这两个学时工程技术人员的讲解,能够让学生对整个冶金工艺有一个整体的认识,并且激发学生的学习兴趣。
(2)收集及整合冶金工艺方面的录像、动画等,重要的是,合理的穿插到课程的教学工作中。对于连铸过程中,钢液的液-固变化,及后续的冷却,可以用动画演示,增强教学效果[2]。在有关工艺及设备的教学工作中,通过模拟动画和工程录像对冶金工艺及设备进行解剖和分析,使原来黑板上难以讲解透彻的内容形象、生动的展现在学生面前。提高学生的学习兴趣和学习热情,加深学生对所学知识的理解及掌握。
(3)随着科学技术的不断发展,对冶金过程及其热工过程理论提出了更高的要求。20世纪60年代,国外许多大专院校的工程专业相继开设了有关“传输现象”的课程,传输理论成为与力学、热力学及电磁学等具有同等地位的工程技术基础课程。70年代初,美国盖格教授主编的“冶金中的传热传质现象”出版。该书将传输理论引入冶金热工过程,使冶金热工理论有了质的飞跃。将传输的相关知识,特别是热量传输的知识附着在工艺上,讲授给学生,让其用专业和理论的观点观察冶金工艺的方方面面[3]。
(4)在完善《冶金工艺及热过程》的教学大纲的基础上,编写新的《冶金工艺及热过程》教案。教案的编写本着以学生为本的原则,不仅起教的作用,而着重起导学的作用。在认真研究教学大纲的基础上,并参考三到四本精品教材,同时吸收优秀课程的成果,同时照顾到非冶金专业的特点。参考其他院校的冶金工艺课程教案,结合多套教材,进行编写,做到涉及方面广,适度的深入。同时希望能找到一本适合非冶金专业用的冶金教材,也为学生们学习找到一本好的参考书。开发系列课件,改善内容的条理性,有效解决专业课时压缩和信息量大的矛盾。将课程相关资源上网,并为学生提供了大量的相关扩充性资料索引,包括相关教材、相关的教学网站和资源等,有利于同学自主学习和研究性学习。
(5)利用我校在钢铁冶金上的教学优势,安排专项实验,内容包括基本原理验证、主要技能训练等内容。使学生掌握冶金过程的基本原理,能够运用相应的方法分析解决冶金生产的实际问题。
3 课程教学资源优化整合效果
[关键词]冶金行业;节能技术;应用;管理
中图分类号:TF31 文献标识码:A 文章编号:1009-914X(2014)37-0268-01
冶金行业走节能高效、可持续发展的道路已经是行业发展的必然趋势,而在这发展中最为关键的环节就是冶金节能技术的应用与管理,在过去传统的冶金技术中多以粗放型为主,造成资源消耗大,生产效率低,环境污染严重等等,随着科学技术的发展带来冶金节能技术的提高和冶金工作经验的不断积累,冶金节能技术的应用与管理在企业中扮演了越来越重要的角色,本文通过对冶金节能技术的分析,探究节能技术在冶金行业的应用与管理,并对冶金节能技术的发展提出展望。
1 冶金节能技术的概况
冶金就是从矿石中提取金属或金属化合物,用各种加工方法将金属制成具有一定性能的金属材料的过程和工艺。
随着我国钢铁企业的不断发展,装备配置和硬件设施几乎已经达到了世界很高的水平,但我国钢铁企业之所以还与世界发达水平存在很大差距,主要就体现在生产工序上存在较大差距,目前钢铁行业主要通过新技术的应用、工艺改进、设备改造等技术措施, 以及对原来废弃资源的综合利用等措施,来降低能耗,保护环境。
2. 金节能技术的应用与管理
2.1 焦化方面的节能技术
焦化方面的节能技术一直是冶金行业技术应用于管理的重要方面,也是国家重点推进的冶金环保技术,比较典型的应用包括干熄焦技术、炼焦配煤优化系统、烧结烟气的综合利用和催化燃烧烧结助剂的应用等等。
2.1.1 干熄焦技术
干熄焦技术在冶金行业的应用主要是替代传统的湿熄焦技术,通过惰性气体冷却炽热焦炭,从焦炉中推出950~ 1050e的红焦,送往干熄焦容器内,在通过惰性气体进行冷热交换,其惰性气体在从干焦炉中出来后大约是850e,经过除尘进入余热锅炉换热, 从余热锅炉出来的惰性气体再由循环风机送入干熄焦容器内进行循环使用,其节能的特点主要体现在红焦显然的回收利用,产生的蒸汽还可以用于发电等等,经干熄焦技术所产生的焦炭质量相对较高,在节能上经济效益和环境效益都非常明显。
2.1.2 炼焦配煤
将单种煤料配合均匀而获得各种用途的焦炭为炼焦配煤,炼焦配煤的应用利用了煤的结焦性,不同类别的煤在配煤中所起的作用不同,达到了相互之间取长补短,节能环保的目的。
2.1.3应用催化燃烧烧结助剂
在大中型钢铁企业中在烧结过程中加入催化燃烧烧结助剂可以提高燃烧效率和热能释放,在冶金过程中可以达到节约能源的目的,特别是在提高烧结矿硬度和强度方面作用明显。
2.2 炼铁
2.2.1 助燃剂在高炉喷煤的应用
高炉在喷煤的关键所在在于煤粉在高炉中喷吹时的煤粉能否燃烧,在以往的检测中可以发现,除尘灰中高达50%~60%的碳粉,说明喷吹的煤粉在高炉中没有充分燃烧,因此利用助燃剂在高炉喷煤时保证煤粉的充分燃烧,是提高节能效率的手段之一。
2.2.2 高炉喷煤比的提高
想要优化炼铁工序中的燃料结构,从而达到降低生产成本,降低资源消耗的目的,就需要合理搭配煤种,煤焦置换达到1.0高炉喷吹煤粉,合理控制混合煤的成分,提高高炉喷煤比。
2.3 轧钢方面
在轧钢方面新技术与技术改造设备多以蓄热式加热炉为主,在我国目前已有多达270个蓄热式加热炉,高效蓄热式加热炉和煤气、空气预热技术在轧钢工序中的应用。高效蓄热式燃烧技术,可以降低加热炉能耗35%。
2.4 炼钢
回收并利用转炉煤气。转炉煤气来自炼钢过程中转炉内处的高温碳氧反应形成的CO气体。要做到炼钢高效节能,就必须回收并利用转炉煤气,并且还要保证转炉煤气回收利用的质量。转炉煤气的回收利用的技术实现体现在采用电除尘净化转炉运转时的热烟气,并回收煤气,收集的除尘灰,进行热压块后又回到转炉中,作为转炉的冷却剂。转炉煤气干法烟气除尘处理、煤气回收及可以部分或全部补偿转炉炼钢过程中的能耗。
3 冶金节能技术的应用管理趋势
3.1 大型化焦炉和非回收型炼焦技术
在上文已经提到焦化方面的节能技术,在未来冶金节能技术的发展中,特别是大中型钢铁企业。大型化焦炉的节能应用是发展的必然趋势,可通过干熄焦技术回收热能用于发电,装煤系统采用了负压抑尘无烟装煤等技术,实现焦化系统的节能减排等等,除此之外,回收型炼焦技术也是大力加强和发展的方面,回收并非是化工副产品而是燃烧时排放的热能等,对于节能环保方面具有重要意义,且生产质量并未降低反而有更高的质量和经济效益。
3.2 氢冶金技术
随着煤炭资源紧张,资源日益短缺等问题的出现,在完善传统的冶金工艺同时也要加强新工艺的研究与推广,其中氢冶金技术在替代传统的碳还原剂炼铁工艺方面具有一定的发展优势,在氢冶金技术应用的实践中,首先需要解决的问题就是如何得到丰富且廉价的氢气,在传统的钢铁冶金过程中会产生出大量的焦炉煤气,可以为氢冶金技术提高丰富的氢气资源,而通过氢冶金反应的化学式中也可以看出,氢作为还原剂所产出的是水,对于节能环保方面是最佳选择。
3.3 对于冶金渣的利用技术
所谓的冶金渣是钢铁生产过程中所产生的最大量的副产物,冶金渣温的显然温度一般都会达到1400e以上,温度高,二次利用的价值非常大,但在冶金过程中,常常缺乏对这一部分能源的利用,造成能源浪费。一般来说,冶金渣可以用于水泥厂或建材厂作原料使用,或直接做成微晶玻璃或者矿渣棉等建筑装饰材料等。
4 总结
综合以上我们可以发现,冶金节能技术在企业自身的发展和国家建设中都有重要的作用,国家对于冶金生产也非常重视,推出了一系列具有共性和关键作用的节能环保先进技术,支撑清洁生产,企业出于经济效益与社会效益的考虑,也加大了对于冶金节能技术的应用与管理,各项冶金节能技术减少了资源消耗,提高了生产效率,减少了环境污染,促进了企业与国家的发展,而冶金节能技术的发展关键在于对节能技术的重视和节能技术的创新,相信随着冶金节能技术的发展,冶金节能技术的应用与管理将会迈向一个新的高度。
参考文献
[1] 王书桓,赵定国.高压冶金技术在高氮钢冶炼中的应用[J].太原理工大学学报,2014,01:15-18+24.
[2] 江涛,吕巧飞,张维娜,李帅,鄢南平,刘乐. 粉末冶金技术在材料科学与工程专业教学实践中的研究和讨论[J]. 人力资源管理,2014,04:182-183.
关键词:冶金工程;培养;应用型专门人才;思路
一、培养方案与提高专业兴趣
以培养冶金工程专业工程应用型技术能力为宗旨,恰当设置理论教学和实践教学比例及逻辑关系,加强本科生工程能力培养力度。专业课理论教学中,以讲授冶金工艺基础知识和生产控制基本规律为重点,培养学生冶金知识学习与应用能力。结合冶金行业工程案例讲解,引导学生应用所学知识解决生产和工程设计问题,培养思维判断与分析能力。例如,氧化铝生产工艺专业课,根据氧化铝生产主要流程,从原料制备到氧化铝成品生产共12个主要工序,制定12个专题讲座,在阐明原理的基础上,采用视频、图片辅助,详细介绍工业化生产中的主要设备、工况条件及调控机制,使氧化铝冶炼过程讲解更加具体。在入学教育、专业基础课和专业课教学过程中,让学生充分了解所学专业,掌握一定专业知识[4]。介绍教师的研究课题及参与的工程项目,引导学生搜集整理冶金研究领域有关最新科研成果,提高专业和科研兴趣。教学过程中充分利用多媒体平台,提供图、文、声、动、实等信息,加深对抽象知识点的理解与应用。组织学生参加校内外学术讲座,了解专业最新发展,开阔科技视野,加深对专业的认识。
二、优化教学方法及资源
(一)工程案例教学法
结合冶金工程专业特点,在教学过程中引入工程案例教学法,并将大量工程实践研究成果编入教案,引导学生运用理论知识分析、解决实际生产问题,培养知识应用、思维判断和分析能力。聘请企业工程师任教。外聘的校外导师定期以生产流程工程技术路线及实际问题的解决方案为案例,讲授冶金专业生产实践,传授专业知识在生产实践的应用。目前,学院已聘请了3位分别来至中国铝业贵州分公司、贵州中铝铝业有限公司及贵州华锦铝业有限公司教授级高工为冶金专业校外指导教师,近期将与首钢水城钢铁(集团)有限责任公司、贵州大龙锰业有限责任公司等省内企业合作,聘请具有一线丰富生产经验的高级工程师为校外导师。
(二)实验室教学平台
本科生实验课大多数是基于基础课、专业基础课和专业课进行的验证性实验,是提高专业基础实验技能的重要教学手段之一。专业基础实验技能的培养目标主要是使学生掌握基本理论和基本实验技能,重点在于仪器使用、基本操作规范和对基本实验现象的理解[5-6],加强冶金工程实验教学平台建设对培养学生实践能力极为重要。目前,冶金实验中心规划建设的主要实验室为“冶金专业基础实验室”、“仪表实验室”、“矿物预处理实验室”、“有色金属冶金实验室”、“钢铁冶金实验室”、“冶金环保实验室”及“分析实验室”。所有实验室建设方案已完成,相关主要设备已完成选型,保证冶金工程本科实验教学工作顺利开展。
(三)虚拟仿真实验室
近年来,虚拟仿真技术被应用于冶金工程专业实验、实习和课堂教学,显著提高了学生实践能力和学习效果[7-9]。冶金实验中心规划重点建设实验室有“虚拟仿真型实验室”,主要建设内容有“钢铁生产全流程虚拟仿真实验教学中心”,以烧结、高炉炼铁、转炉炼钢等系统全流程实验教学资源为核心,建设虚拟仿真实验教学中心,利用虚拟仿真技术资源,结合实验教学大纲和实验考核方式,提高学生工程实践能力。该中心规划采购METSIM过程模拟软件,应用于冶金工艺流程热量平衡计算、化学反应、过程控制、设备设计、成本估算和过程分析,实现实验过程零污染,教学资源零消耗,实验无危险性[6],实验教学内容丰富,增加学生动手操作机会,为冶金工程专业工程师培养提供重要保障。
(四)实习基地平台
按照冶金专业本科培养方案,集中实践性环节学分比例占整个培养方案的17.14%,具有相当分量。本校已与中国铝业贵州分公司签订《冶金专业本科教学实习基地建设》合同,共建冶金专业本科实践教学实习基地,将认识实习、生产实习及毕业实习等实践教学环节安排在企业进行,在生产实践过程中实现专业基本应用能力培养。实践基地主要为冶金专业学生提供实践教学场所,项目实施后,将定期聘请较高专业技术水平和生产经验丰富的企业技术人员进行专项讲座和培训,可满足每年300人次冶金工程专业本科生的实践需求。根据冶金专业发展需要,学校将陆续拓展实习基地建设,选择国有或地方大型骨干冶金企业作为合作对象,增加冶金专业实习基地的多样性。
(五)“双创”项目全覆盖
全面实施创新创业教育,培养“强责任、精技术、善管理、重实践、求创新”高素质应用型人才,确立了“113”创新创业教育目标(“双百分百”),即“让100%学生接受创新创业知识教育,资助100%学生经历创新或创业训练,期待3%学生取得优质创新创业成果”。开展“本科生导师制”,由学生自愿选择专业老师,并在其指导下,申报“双创项目”,独立开展立项项目的实验研究、撰写论文、完成课题。以本文指导的2016级3名本科生为例,经过一年来实验室科研项目实践,在专业认识和科研开展基础手段方面获得较大提高。
(六)提高师资队伍工程教育素质和水平
承担冶金专业本科生培养任务的工科教师,不仅应在工程教育教学方面具有突出能力和综合素质,还应具有工程实践、工程设计开发、工程技术创新和工程科学研究背景[1]。高校教师更擅长于知识理论性和系统性讲解,对知识的实际应用和工程实践掌握相对薄弱。本校为新建院校,教师以刚从高校毕业的博士为主,他们从学校到学校,缺乏工程经历和实践经验。目前,本院现有专职教师44人,其中具有2年以上企业工作经历的“双师型”教师只有6人,占比不超过14%,总体而言,是一支实践能力较弱的教师队伍。为提高工程实践能力,选派新入职教师去企业进行脱产1年的实践。目前约30%青年教师完成了相关实践,获得了较好的效果。