前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇继电保护新技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
本文在结合当前信息技术不断发展,人工智能技术不断被应用的情况下,探讨了电力系统继电保护的新技术,从信息技术、人工智能、新型互感器等内容展开介绍,最后分析了电力系统继电保护技术的未来发展趋势,为新技术的研究提供可靠的理论借鉴,以期实现电力系统功能的完善。
关键词:
电力系统;继电保护;新技术;发展研究
近些年,信息技术的发展为很多行业提供了迅速发展的机会,电力系统继电保护技术乘上了这一趟快车,结合自身特点,将信息技术应用到自己的运行中去,很大程度上改善了我国电力系统继电保护的技术现状,奠定了电力行业发展的新基础,大大提高了继电保护效果,确保了电力运行的稳定性和安全性。
1电力系统继电保护新技术
1.1信息技术
信息技术在电力系统继电保护中的应用主要表现在两个方面:一是数字信号处理技术。尤其是DSP技术,数字信处理技术随之信息技术的发展不断成熟,应用在电力系统继电保护设备中,影响深远;二是小波变换技术。小波变换是指划分一个信号为不同的位置和尺度的小波总和,小波变换为震荡波形,持续周期较短,最多为几周,波形形式多样,也可能有新小波或者小波函数产生。小波变化的优势是时频局部化分析性能较好,可将信号或者图像中一些小细节精确分析出来。
1.2自适应控制技术
自适应控制技术是指根据电力系统自身运行方式,结合现有的故障状态,通过实施定值改变来保护电力系统性能或者特性的一种新型继电保护技术。图1是自适应控制模型。自适应控制技术的应用能够根据电力系统发生的变化实施有针对性的保护措施,大大改善了保护性能和电力系统运行状态,使电力系统运行更具经济性和安全性。自适应控制技术还能够削弱电力系统出现的振荡、故障发展、系统频率变化以及在单相接地短路时出现的过渡电阻等对电力系统产生的影响。自适应控制技术在输电线路自动重合闸、距离保护、发电机保护以及变压器保护等方面,应用前景良好。
1.3人工神经网络技术
人工神经网络技术是人工智能技术的一种,通过模仿人的脑细胞结构和功能、脑神经结构以及思维方式等增强这项技术的智能程度,具备较为复杂的动力学特性,可并行处理出现的问题。人工神经网络技术具备记忆、学习以及联想等功能,适应力、自组织能力较强,可以分类识别收集上来的故障样本,在电力系统继电保护中的应用主要体现在非线性优化、人工智能、自动控制以及信息处理等方面。
1.4模糊理论
模糊理论在电力系统继电保护中的应用主要表现在四个方面:一是区分出现的多模振荡是同步振荡还是失步振荡;二是可对一些复杂系统的失步震荡进行区分,在此基础上解列系统,确保更加稳定、可靠的解列;三是提取特征的依据是小波理论,区分变压器励磁故障与涌流的依据是模糊集法,即在提取变压器励磁涌流间断角特征时,以小波变极大值符号特征为依据,这种识别故障的方式提供给了研究新变压器保护的人员新的且较为先进的指导思路;四是收集整理振动中所存在的无功功率和阻抗中电抗分量之间的关系,确定好振荡中不对称故障的选相,在正确选相的基础上,电力系统就能借助距离保护系统及时切除振荡中存在的这种不对称故障。
1.5可编程控制器
可编程控制器可以看作是一种体系结构较为特殊的计算机,应用在工业生产中可以通过编程语言完成便捷的控制工作。电力系统继电保护操作较为复杂,需要定期改变操作任务,实现复杂的逻辑关系的处理,应用可编程控制器可以使处理电力系统中复杂的问题变得简单易行,通过过重编程软件代替原先的各分立元件接线。此外,还可通过用可编程控制器内所定义的各辅助继电器将以往的机械触点继电器代替掉的方式,实现减少占地面积的目的,完成更为复杂的逻辑关系的处理,减轻工作人员的工作压力,提高工作效率,确保工作质量。
1.6新型互感器
互感器在电力系统中的应用的目的在于实现电力运行的自动化,近年来,光电流互感器与光电压互感器在电力系统中的应用推动了电力系统继电保护技术的深入发展。这种新型互感器优势明显,具有完全将高压与弱电绝缘、隔离的特点,还能够通过应用光纤来实现无电磁干扰影响的数据测量和信号传递,与相对较宽的频带响应,能使各种保护技术的性能得到改善,使继电保护应用的条件与方式得到改善,经其应用范围拓宽。
1.7广域保护
广域保护是指通过收集整理电力系统所产生的多点信息,对产生的故障实现精确可靠的切除,避免故障可能对系统产生的影响,以分析得出的结果为依据采取相应的解决或控制措施。广域保护系统拥有较好的继电保护功能,其构成部分包括电网安全稳定检测和控制主站、相量测量、通信线路、资料分析站、安全稳定控制装置、厂站安全稳定监控子站及网络服务器等。当前的电力系统继电保护的广域保护系统包括两种:一是应用广域信息对电力运行状态进行估计和安全监视,计算稳定边界,实现最终的控制。侧重于应用广域信息,提高安全性能;二是应用广域信息实现继电保护的控制。
1.8综合自动化技术
在继电保护中应用综合自动化技术,能够实现资源的集成、共享与远程控制,将远方终端单元与微机保护装置作为控制的核心,可在计算机系统中纳入变电所的计费、控制、测量以及信号等回路,和以往所用的保护屏相比能够节约变电所设备投资和占地面积,并能够强化系统二次运行的稳定性与可靠性。综合自动化技术相较于传统的变电所二次系统而言具有较多优势,主要表现在以下三个方面:
(1)微机化的设备控制、监视与操作
综合自动化技术最大的特点就是实现了各个子系统的信号数字化与系统功能软件化等,体现了电力系统的微机化特征。将常规变电所中的模拟式设备、机电式设备等一并摒除,提高了二次系统电气性能的可靠性。监视与操作的微机化的实现,促进了人机联系,使人机联系更为密切,可实现变电所监视与控制的智能化。
(2)智能化的运行管理
故障录波、自动报警、事故判断和处理、电压调节等是常规的综合自动化技术的自动化功能,它还具备较为先进的功能,如在线自诊断功能,是指将获得的信息向控制中心传输,更加主动的进行运行管理。
(3)光缆化与网络化的通信局域
综合自动化技术随着光纤通信技术与局域网络技术的广泛应用,其自身性能也不断改善,其中抗电磁干扰性能得到了提升。当前电力系统继电保护对通信局域提出了光缆化与网络化的要求,能使继电保护的实时性得到保证,同时,通信局域的光缆化和网络化能够提高数据的传输速度,更加灵活的实现系统组态,实现了电缆的简化,为施工提供了便利。
2电力系统继电保护新技术的发展趋势
电力系统继电保护新技术的未来发展趋势表现在两个方面:一是网络化趋势的不断推进。电力系统继电保护装置可看成是一种集多种功能于一体的计算机设备,通过从网上获取并收整理电力系统运行、故障等方面的信息了解电力运行状况,并将接收到的被保护元件的相关数据输送至网络控制中心。电力系统的继电保护装置向着更自动化的测量、获得和控制信息的方向发展,因此,必须有配套的网络信息技术辅助其发展。当前我国的继电保护信息系统自动化设备的发展已经相对成熟,在分析故障、计算数据、搜集保护信息、信息的网络化传输等方面均有一定经验。但是,需要在专业的技术层面继续深入研究网络化在继电保护装置的应用,当不管怎样,网络化是电力系统继电保护新技术的未来发展趋势;二是人工智能将越来越多的在继电保护装置中发挥重要作用。目前已经应用到继电保护技术中去的有人工神经网络技术和模糊理论等。用人工神经网络技术解决无法用方程式解决的非线性问题,因其具有自组织、分布式存储的特点,在判断故障类型、测定故障距离、保护主设备等方面应用广泛。神经网络技术可以通过分析大量故障样本正确判断故障类型,模糊理论、遗传算法等其他人工智能技术也拥有各自独特的求解能力,求解速度较快。正因为人工智能技术的独特优势,在为了的电力系统继电保护技术的发展中,将呈现出应用越来越深入和广泛的趋势。
结语
电力系统继电保护新技术的发展依托于社会经济的快速发展和信息技术的广泛应用,越来越多的新技术的出现促进了电力系统功能的改善,奠定了电力企业健康持续发展的良好根基,大大扩展了电力系统的运行范围,减轻了电力工作者的劳动负担。今后电力系统继电保护技术一定会向着更智能化更网络化的趋势发展,并将不断推进电力系统继电保护新技术的产生和应用。
参考文献
[1]王海涛.电力系统继电保护新技术发展分析[J].机电信息,2014(02).
关键词:电力系统;继电保护;新技术;人工神经网络;自适应技术;网络继电保护
1 继电保护概述
1.1 继电保护的概念及其基本任务
电力系统继电保护和安全自动装置是在电力系统发生故障和不正常运行情况时,用于快速切除故障,隔离不正常设备的重要自动化技术和设备。当电力系统发生故障或发生危及其安全运行的事件时,它能及时发出告警,或直接发出跳闸命令以终止事件。
继电保护的基本任务一是检测故障信息、识别故障信号,进而作出是否出口跳闸的决定;二是反映电气元件的不正常运行状态并向值班人员发出信号,以便及时进行处理。
1.2 继电保护的发展历程
电力系统继电保护先后经历了不同的发展时期,电磁型继电保护、晶体管继电保护、基于集成运算放大器的集成电路保护,到了20世纪90年代,我国继电保护技术全面进入了微机保护时代,微机保护有强大的逻辑处理能力、数值计算能力和记忆能力,它不仅具有传统保护和自动装置的功能,而且还能发展到故障测距、故障录波等功能。微机保护经过20多年的发展,已经取得巨大的成功并积累了丰富的运行经验。
2 继电保护新技术的应用
随着科技的飞速发展以及微机继电保护的普遍应用,许多新技术不断应用到继电保护领域,例如IT技术的应用,实现了保护、控制、测量、数据通信一体化;应用人工神经网络,可以解决电力系统复杂的非线性化问题;应用自适应技术使继电保护获得更强的故障信息处理能力和自适应能力,显著提高其动作性能。应用网络继电保护可以实现保护功能的集成、自适应进行保护配置和定值计算等。
2.1 人工神经网络在继电保护装置中的应用
人工神经网络是模拟生物神经元的结构而提出的一种信息处理方法。人工神经网络由大量的模拟人脑的神经元互联组成,是一种非线性映射系统,具有强大的模式识别能力,通过对反映输入特征量的大量样本学习,可以对任意复杂状态或过程进行分类和识别。近年来,人工神经网络和模糊控制理论逐步应用于电力系统继电保护装置中,涉及故障类型的判别、故障距离的测定、方向保护、主设备保护等方面。
2.1.1人工神经网络在线路保护中的应用
输电线路常见的保护有纵联差动保护、高频方向保护、距离保护、电流保护等,其中纵联差动保护是广泛应用于220kV及以上输电线路的主保护,区外短路时,差动电流继电器的比率制动特性可防止不平衡电流引起的误动,但这种常规方式在实验得出的动作区域有变化时,常规微机保护原理需重新设计算法。人工神经网络避免了常规差动保护整定的不灵活性和原理上的不足,文献[1]提出了基于BP算法的差动保护,为简化计算,BP网的输入取制动和差动电流,输入层单元数为2个,输出则为动作信号0或1(0表示不动作,1表示动作),输出层单元数为1个;隐含层的单元数根据网络规模及试验确定,这里取4个。因此,BP网的结构为“2-4-1”型。仿真试验结果表明,神经网络用于线路纵联差动保护是合理、可行的。
电流保护是低压线路的主要保护形式,具有简单、经济等优点。但其定值整定、保护范围和灵敏系数等方面受电网接线方式及运行方式的影响明显,如电流速断保护,其整定值是按照系统最大运行方式下发生三相短路来整定的,当系统运行方式发生较大变化时,可能出现系统在最小运行下发生两相短路,或者被保护线路长度很短,电流速断无保护范围的现象[2]。人工神经网络由于其可对不确定系统进行学习或实现自适应,具有高度的容错性、鲁棒性及多输入多输出并行工作的特点,适合于复杂系统和对象的控制,文献[3]表明,基于人工神经网络的电流保护,在系统的各种运行方式下及各种故障中,不仅能够自适应识别线路的故障类型、相别和故障点位置,还可以准确地区分振荡与故障两种情况。
2.1.2人工神经网络在变压器保护中的应用
在变压器保护中关于励磁涌流状态的识别一直是困扰继电保护研究人员的棘手问题。文献[4]基于人工神经网络,综合考虑变压器励磁涌流状态和故障状态的特征,提出并建立了一个三层前向神经网络模型,它利用EMTP进行了大量的仿真计算,并将计算结果作为训练样本,对所建立的神经网络模型进行训练。对该模型进行故障状态检验结果表明,所建立的神经网络能够对变压器所发生的故障状态作出正确响应。
2.2自适应技术在继电保护装置中的应用
自适应继电保护是20世纪80年代提出的研究课题,其基本思想是使保护装置尽可能地适应电力系统各种运行方式和复杂故障类型,通过各种数字信号处理方法、数学分析工具和人工智能技术有效提取并处理故障信息,从而获得更可靠的保护。
2.2.1 自适应技术在电流速断保护中的应用
电流速断保护动作值是按躲开线路末端的三相短路故障电流而整定的。在发生两相短路时,保护动作的灵敏度会大大减小。采用自适应技术后,当故障发生时,保护首先判别系统运行方式和故障类型,再根据不同的故障类型自适应调整电流保护动作值,从而大大提高动作的灵敏度。为实现电流速断的定值自适应整定,必须实时确定短路故障的类型和系统等值阻抗,文献[5]提出了实现自适应电流速断保护的基本方法。
2.2.2 自适应技术在自动重合闸中的应用
文献[6]提出了一种将模糊综合决策用于单相自动重合闸自适应优化判据的方法,以提高重合闸的成功率。文中将电容耦合电压与互感电压的比值作为模糊控制器的第1个输入变量,将故障端电压与互感电压的比值作为模糊控制器的第2个输入变量,跳闸信号作为模糊控制器的输出。这种方法利用电容耦合电压等故障边界条件信息以及模糊控制器可自适应修正原有的电压判据。经理论分析和动模试验结果表明,这种方法具有良好的应用前景。
2.2.3 自适应技术在串补输电线路保护中的应用
文献[7]介绍了串补输电线路自适应保护的基本特点。该保护方案以卡尔曼滤波器和自适应卡尔曼滤波器为基础,利用串补输电线路正常状态和故障状态时电流暂态信号的差异,实现对串补输电线路的故障定位并确定故障相。
2.3 网络继电保护在电力系统中的应用
当前网络已经成为信息和数据通信工具技术的基础,微机继电保护同样也离不开网络通信强的支持。目前,除差动和纵联保护外,其他继电保护装置只反映保护安装处的电气量,其重要原因是缺乏有力的数据通讯、数据处理以及数据上传的联网手段。如果将分散的继电保护装置和安全自动装置网络化并由主站统一进行协调管理,就可以使继电保护装置获取更多的系统信息,从而更加准确的判断、处理故障,整个系统安全性与可靠性将得到提升。另外,网络继电保护还存在保护配置可通过运行方式自适应调整、保护定值可根据运行方式自动计算、二次回路简单化、运维工作量小等传统继电保护不可比拟的优点。
在实际应用方面,一是目前运行的微机保护程序和软件原理成熟、功能完善,能够满足开发网络继电保护与控制软件的基本要求;二是基于EMS系统的数据支撑平台及体系结构的开放化和标准化已取得很大进展,这成为了开发开放化和标准化网络继电保护与控制系统的支撑平台及体系结构的技术基础;三是随着光纤通信技术的发展,利用就地测控装置组网的方式形成数字数据网,存在容量大、防干扰、信号衰减小的优点,可以提高继电保护运行的环境质量。从上述的技术基础上看,网络继电保护具备实现的可能性,虽然在开发和推进过程中还存在很多难题和挑战,但它依然为继电保护的发展指明了一条道路。
3 结论
总之,随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护已经呈现出了微机化、智能化的特征,为当今电力系统的高速发展提供了可靠、稳定的保护。同时,继电保护也将随着各种技术新一轮的发展呈现更新的特征,也将获得更广泛的应用。
参考文献:
[1] 贾德香,韩净.神经网络差动保护技术[J].电工技术,2003(3):11-12.
[2] 贺家李.电力系统继电保护原理[M].天津:天津大学,1991.
[3] 李营,杨奇逊.分布式微机母线保护的探讨[J].电力系统自动化,1999,23(1).
[4] Perez L G,Flechsig A J.Training an artificial neural network to discriminate between magnetizing inrush and internal faults[J].IEEE PWRD,1994,9(1):434-441.
[5] 赵梦华,葛耀中.微机式自适应馈线保护的研究和开发[J].电力系统自动化,1999,23(3):19-22.
关键词:继电保护,故障信息,小波变换,自适应。
中图分类号: TM774 文献标识码: A 文章编号:
1、引言
继电保护是一门理论和实践并重的科学技术,与电力系统的发展息息相关。19世纪末,人们为了防止发生短路时损坏设备就已经开始利用熔断器这一中介,从而建立了过电流保护原理。1905~1908年出现电流差动保护,而自1910年起,方向性电流保护的广泛使用,更是推动了20世纪20年代初距离保护的产生。到20世纪30年代初,已经出现了快速动作的高频保护[1]。因此,从继电保护的基本原理来看,现今普遍应用的继电保护原理基本上在20年代末就已建立,迄今在保护原理方面没有出现突破性发展。从实现保护装置的硬件来看,自1901年出现感应型继电器开始,大体经历了机电式、整流式、晶体管式、集成电路式、微型计算机式等发展阶段。因此,纵观继电保护将近100年的技术发展史可以看出,虽然继电保护的基本原理早已提出,但它总是根据电力系统发展的需要,不断通过相关科学技术的最新成果得到发展和完善[2]。
2、故障信息与继电保护技术
检测故障信息、识别故障信号是继电保护的首要任务,它据此做出是否保护出口跳闸的决定。因此,故障信息的识别、处理和利用是继电保护技术发展的基础,不断发掘和利用故障信息对继电保护技术的进一步发展有着重要意义。
新型继电保护的重要理论之一是建立在暂态故障信息基础上的小电流接地保护与行波保护。而应用暂态量发展出的利用高频故障电压、电流信号的超高速继电保护原理,已经被广泛使用并获得了许多重要成果,例如利用高频故障电压信号,对串补超高压输电线路的保护设置。该保护原理是基于故障点高频故障电压信号的非联合保护,但仍具有联合保护方案的优势;该方案使用组合调谐设备和输电线路阻波器来检测保护区域内的高频暂态故障信号(频率为70~81 kHz,可根据实际情况而定),使用其带阻特性可以区分内部故障和外部故障;该装置使用一个特殊设计的信号处理器来获取高频电压信号,可以完全满足超高压串补线路对保护装置的可靠性和安全性要求[3]。
总之,为了满足电力系统快速发展的需求,故障信息的发掘、提取与利用是继电保护技术发展的重要课题。新算法的引入为高频暂态信号的应用提供了可能性,但行波保护尚未成熟,仍存在一些有待探讨的问题。
3、计算机在继电保护领域中的应用
计算机在继电保护中的应用可以分为以下两类:
a. 计算机的出现,使许多原有理论得以最大程度得实现。例如早期就有人提出神经网络在电力系统中的应用问题,但训练神经网络所需的庞杂计算量以及传统计算方法对继电保护快速性的约束都限制了该理论的实际应用。而计算机的高速运算能力却轻松解决了这一问题。
b. 借助计算机开发的新理论与新技术,继电保护领域迎来了新一轮的革新。这其中较为成功的案例就是建立在暂态量基础上的、充分利用了计算机特性的行波保护原理。
虽然计算机在继电保护中的作用举足轻重,但其应用仍然存在一些问题。目前研究开发的多为通用型和用于自动控制系统的芯片,尚无继电保护装置专用芯片。由于电力系统继电保护对实时性和可靠性有着近乎苛刻的要求,开发微机型继电保护装置的专用芯片是计算机在继电保护领域中得到进一步发展应用所不可或缺的基础。
4、小波变换与继电保护
近几十年来,小波变换理论在工程界引起了极大反响,它被认为是傅里叶变换的重大发展,目前已在宇航、通信、遥感技术、数值分析等领域中被广泛应用。
众所周知,继电保护的首要任务是正确检测出故障。而电力系统中出现故障时通常都伴有奇异性或突变性,这对继电保护提出了更高的要求。为了增大输电线传输容量和提高系统稳定性,减小继电保护装置的动作时间是一种简单有效的措施。目前,利用小波变换的奇异性检测及模极大值理论已提出了实现故障起动和选相的方法,这种方法的主要特点就是快速性和可靠性。小波变换分析的应用能为快速可靠地检出行波信息提供有效保障,基于小波变换的继电保护装置必将在电力系统发挥其巨大作用。
5、自适应继电保护
自适应继电保护是20世纪80年代提出的一个较新的研究课题,它是根据电力系统运行情况和故障状态的变化,实时改变保护原理、性能、特性、定值的一种技术方法。自适应原理在继电保护领域的主要应用有自适应重合闸、自适应馈线保护、对串补输电线路的自适应保护以及自适应行波保护。下面以反时限过电流保护为例说明自适应过电流保护的基本原理。
在最大负荷电流IHmax的条件下,过电流保护的整定值为:
IDz= KIHmax(1)
根据式(1)可选用一条反时限特性,表示为:
t = f(I) (2)
当线路故障时,如果短路电流小于式(1)的定值,按上述特性动作的过电流保护将不能检出故障,但通过对负荷电流的实时监视,便可根据实际负荷电流IH自动改变定值,使保护具有更灵敏的另一条反时限特性:
t =φ (I)(3)
运用自适应原理的继电保护能克服同类型传统继电保护中长期存在的问题,它是继电保护智能化的一个重要组成部分。计算机为自适应继电保护的进一步发展提供了良好的技术支持。
总体来讲,新型继电保护的发展趋势是高速化、智能化与一体化。对故障信息的研究与利用是发掘继电保护新原理的基础;计算机为充分利用故障信息提供了技术支持;新算法为继电保护的进一步发展提供了拓展空间;而自适应保护则是继电保护智能化发展的趋势。
参考文献
[1] 葛耀中. (1996). 新型继电保护与故障测距原理与技术[M]. 西安: 西安交通大学出版社.
关键词:继电保护 自动化
中图分类号:TM58 文献标识码:A 文章编号:
正文:
1 继电保护自动化简述
电力系统作为一个全面、综合工作的网络系统,需要专门的保护装置与专业的技术人员确保其安全工作。继电保护的最基本职能就是在电力系统在运行不够稳定或出现一些故障时实施有效的保护措施,将故障带来的损失降到最低,防止电力系统的进一步恶化。
继电保护自动化在实施保护措施时主要表现在一下两个方面 :第一 :当运行中的电力系统发生故障时,继电保护就会迅速的做出保护措施,将出现故障的零件或者设备与整个系统隔离,这样能够防止故障对其他的设备或整个电力系统带来影响,避免故障的进一步扩散,将故障造成的损失降到最低。第二 :当故障已经发生时,继电保护装置就会迅速的发出报警信号,提醒工作人员及时的对设备进行修理。当故障发生较为严重时,我们要停止整个电力系统的工作,对其进行一次全面的检查,对于存在安全隐患的设备或零件尽快的更换,确保整个电力系统安全的运行,为客户提供高质量的电能。继电保护系统通过解决这些出现的小问题,能够有效的防止电力系统出现较大的安全事故。第三、当设施设备和电力系统发生的故障比较严重时,已经威胁到电网的安全或者已经损坏了电力系统的安全设施设备时,继电保护的自动化装置就会发挥它的功能和作用,尽量减少损坏或者威胁的程度,尽量避免更大面积的灾害发生,继电保护的自动化装置,能够减弱电力系统被破坏的程度和损坏电力系统给安全供电造成的影响,比如说:变压器温度升的过高、变压器比较轻、单项接地、重瓦斯的信号等等。这样在及时的警醒下和科学、规范、合理的维护工作中,使电气设备的故障尽快恢复到电力系统的正常工作状态。
2 继电保护自动化性能的标准
继电保护自动化的组成部分包括感受元件、比较元件和执行元件等,继电保护不仅能够降低装置由于单相接地、变压器轻、重瓦斯信号、变压器温升过高等带来的损失,还能够自动的进行故障的调整与发出不同的危险信号,根据其工作的职能与性质其设计原理应遵循以下标准。
2.1 灵敏性
灵敏性是反应由于设备在保护范围内发生故障或运行不够稳定时继电保护系统做出保护措施的反应能力,通常以灵敏系数来评价其保护能力,灵敏系数与保护能力成正比例关系。在对设备选择继电保护装置时,灵敏度是首先要考虑的关键因素,它是电力系统安全运行的保障。高灵敏度的保护装置在设备发生故障时可以迅速的切断故障与设备或整个系统的联系,从而有效的提高系统的稳定性。
2.2 可靠性
可靠性是指继电保护在系统正常工作时,继电保护不会采取任何措施去影响系统的正常工作,或者是发出错误的信号,只有在出现故障时,针对故障的出现的位置做出准确的判断,及时的发出报警信号。如若设备没有出现任何的异常而继电保护却发出报警信号说明继电保护装置出现了问题,需要及时的对其进行修理。任何电力设备如线路、母线、变压器等都不允许在无继电保护的状态下运行,因此,我们要严格的选用可靠性指标较高的继电保护装置。
2.3 快速性
快速线是指在出现故障时,继电保护能够及时的切断故障设备与系统之间的联系,防止故障的进一步扩散。此外,快速性还包括设备在出现故障之后能够及时的排除故障,快速的使设备恢复正常的使用状态。
2.4 选择性
选择性是指在故障发生之后,继电保护能够对出现故障的位置准确的判断切除。并不是对整个系统或者大范围的切除。选择性的切除能够确保哪里有故障就将哪里切除,其他的设备还能够正常的工作。当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护来切除故障。
3 继电保护自动化策略分析
3.1 与计算机系统相结合
计算机软件的使用能够有效的提高继电保护自动化的能力,在实际的工作中,继电保护要想真正的实现自动化就必须与先进的计算机技术进行充分的融合,这样不仅能够实现电路的基本保护功能,提高清除故障的能力,还能够提高继电保护的综合水平。随着计算机向着微型化、高存储量与高速处理数据方向的发展,继电保护的自动化已经离越来越不开计算机。
3.2 控制、检测、保护数据通信一体化
继电保护是一个包含多方面工作的设备,电力系统的继电保护装置不但可从网上获取电力系统运行和故障的各种停息和数据,还可以将它所获得的被保护元件的任何数据以及信息传送给网络控制终端。随着科学技术的发展,将控制、检测、保护数据通信一体化能够有效的提高继电保护的效率,这也是未来继电保护自动化需要研究的方向。
将保护、控制、测量和数据通信一体化的计算机装置就地安装在保护设备的旁边,将保护设备中所有的数据进行整理和分析,通过计算机网络传送到电脑主控室,从而实现对系统的保护和对运行中出现的故障进行数据分析和控制。实现了继电保护装置的网络化、计算机化和智能化,继电保护装置就相当于是一套多功能的、高性能的 PC机,是整个系统运行的智能终端控制和监督平台,因此,每一个保护装置都可以直接从网上获取系统运行中的故障和信息数据,并且将这些数据和信息从送到网络监控中心和其它保护装置系统中去。
3.3 智能化
人工智能技术与继电保护相结合,在一定程度上能加快电力系统的计算速度。人工智能网络的神经网络是运用一种非线性映射的方法,在很多难以列出方程式的复杂的非线性问题上利用神经网络的方法,解开这些线性问题十分简单。其中如遗法算法、模糊逻辑和进程规划等在求解复杂问题的能力上也都有其独特的方法,因此人工智能技术在电力系统继电保护的自动化技术上发挥着重要作用,为继电保护技术中一些常规方法难以解决问题提出了确实可行的办法。
3.4网络化
计算机网络为各个工业领域提供了强大的通信手段,影响着各个工业领域的发展。继电保护的作用指是切除和预防故障,缩小故障带来的损耗,几点保护装置在处理故障信息时,受到的故障信息数据越多,对故障的性质、位置及和故障位置的距离才能判断的更准确,这是相对于一般非系统保护下,实施保护装置的计算机联网的最大好处。在实现了计算机联网化后,继电保护能根据系统的运行方式和故障数据的数据分析,自动生成保护原理和规律,从而实现保护装置的自适联网设备,提高保护的可靠性与准确性。微机保护网络化在未来的发展趋势上可以大大提高保护设置的性能与可靠度,实现这种微机保护的条件就是将全系统的各个设备的保护装置用PC机进行网络连接,从而实现各个主要设备间的数据共享和分析比较,用这种保护网络化对电力系统的几点保护进行自动化管理和监督。
4 结语
继电系统自动化发展的实现在保护装置性能的同时,也大大提高了装置的可行性,降低故障对保护装置的损坏度。在社会日益进步的今天,我们要充分的利用计算机和网络技术对几点保护装置的自动化发展进行改革和创新,通过对故障数据的分析和实际工作中的实践,利用计算机和网络中强大的数据分析能力、运行能力和匹配能力来推进电力系统的自动化的建设与发展,提升电力系统保护装置的质量和对故障处理能力的准确性能。
参考文献
【关键词】继电保护;光纤通信技术;应用
1.前言
光纤通道是信息传输的主要手段和通道,有着一般通信方式无法比拟的优点,具有运行可靠性高、抗电磁干扰能力强、传输容量大等诸多特点,目前在继电保护领域中得到了极为广泛的应用,常用的波长为1500/1550nm和1300/1310nm两种,复用方式有2Mbit/s和64Kbit/s2种。本文就继电保护中光纤通信技术应用进行研究。
2.光纤通道与光纤保护装置的配合方式
现在,光纤通道是纵联保护采用的方式,应用的更多了,在现场运行的设备当中,通常由以下几种方法:
2.1 保护的几种具体方法
2.1.1 光纤纵联电流差动保护
电流差动保护的基础产生了光纤电流差动保护,基于克希霍夫基本电流定律是保护原理,可以更好的使保护实现单元化,原理十分简单,而且不受运行方式变化等影响,而且没有电联系在两侧的保护装置上,运行的可靠性提高了。现阶段,电流差动保护在电力系统的主母线、变压器和线路上大量使用,其动作简单可靠快速、灵敏度高、非全相运行、能适应电力系统震荡等优点是在其他方法不能做到的。光纤电流差动保护除了电流差动保护的这些优点之外,以其传送电流的相位和幅值正确可靠地传送到对侧是可靠稳定的光纤传输通道保证的。主要技术问题是误码校验和时间同步问题,就是光纤电流差动保护面临的。
2.1.2 专用光纤保护
光纤纵联保护是纵联保护与光纤配合构成专用。通常采用允许式,传输直跳信号和允许信号在光纤通道上。此种方式,使用专门的单独光芯,需要专用光纤接口。特点是:提高了使用的可靠性,降低了信号的传输环节,避免了与其他装置的联系。缺点是:保护人员维护通道设备不方便,而光芯利用比较少。并且,在带路操作时,需进行带路保护与本路保护光芯的切换,因为使用的不便,而且因为接头由于长时间的拔插,会造成损坏。
2.1.3 复用光纤保护
纵联保护与光纤配合构成复用光纤纵联保护。如果是允许式,直跳信号和允许信号由保护装置发出,然后需要经音频接口传送给复用设备,然后通过复用设备上光纤通道。优点是:利于运行维护,接线简单。带路后,电信号切换,方便与实施。使光芯使用更多。缺点是:中间过程增多,而且通信室的带路切换设备,运行人员不是很方便巡视检查,通信设备的问题会有不好的影响。
2.2 通信性能影响因素
64Kbit/s复用方式与2Mbit/s复用方式相似,和64Kbit/s复用方式比较来说,2Mbit/s复用方式没有使用PCM复用设备,而且和PDH/SDH复用设备直接连接,具有更好的通信性能,而且提高了通信的可靠性。
2.2.1 时钟方式
2Mbit/s的复用方式之下,由于所连接的复用设备的不一样,使得发接口、光收的数据时钟基准也不同,若复用接口直接连接PDH时,一般把一端保护装置的时钟方式设置为“主时钟”而另一端保护装置的时钟方式设置为“从时钟”;把两端保护装置的时钟方式都设置为“主时钟”,一般是当复用接口连接SDH设备时。
2.2.2 屏蔽要求
采用同轴电缆进行连接,一般是2Mbit/s数据复用接口到PDH/SDH设备之间用电信号需防止电磁干扰,传送数据。由于双绞线比同轴电缆电磁屏蔽性能要差些,相对而言,2Mbit/s复用比64Mbit/s会有更好的屏蔽性能,只需要采用同轴电缆即就满足要求。数字复用接口与SDH的距离不大于50m,若当数字复用接口通过同轴电缆和PDH/SDH设备相连接时。
2.2.3 匹配问题
对2Kbit/s复用方式不一样的厂家的设备之间需要进行调试,与64Kbit/s复用方式的匹配问题相类似。2Mbit/s复用方式的匹配问题,首先是时钟匹配,通信接口的发送时钟相和PDH/SDH设备的时钟要匹配;其次阻抗匹配,通信接口的电阻和PCM装置要匹配,通常是75Ω不平衡;另外还有G.703编码匹配和48V电平匹配等。
3.光纤保护实际应用中存在的问题
3.1 施工工艺问题
超高压线路的中心保护是光纤保护,电力系统的安全、稳定运行受通道的安全可靠的主要影响。但是光缆传输不但需要转接光缆机、端子箱、高压线路和电缆层等连接环节,并且因为光纤的施工质量要求高、施工工艺复杂,因此如果在保护装置在使用之前的测试、施工中存在误差,就会导致保护装置的一些错误,因此影响全网的安全稳定运行。
3.2 光纤保护管理界面的划分问题
由于保护与通信不断的日益紧密联系,通信专业与继电保护专业管理界面越来越难以辨识,只有从制度方面出发,会直接影响到光纤保护的稳定运行。与独立纤芯的保护不同的是,继电保护专业与通信专业管理的分界点在通信机房的光纤配线架上。其中属于继电保护专业维护的是,配线架以上包括保护装置的那段尾纤,因此一定的光纤校验维护技能就是继电保护专业人员具备。
4.结语
总之,随着光纤通信技术的不断进步,继电保护也会随之而不断地进步,实现可持续性发展,具有较好的经济价值和社会意义。
参考文献
[1]罗志诚.试论光纤通信技术的发展[J].科技资讯,2009, 45(03):115-118.
[2]范文飙,曹磊.光纤通信技术的发展趋势[J].黑龙江科技信息,2009,23(10):105-108.
[3]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006,36(04):136-139.
免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
工信部备案:蜀ICP备18023296号-3 川公网安备:51010802001409 出版物经营许可证:新出发蓉零字第CH-B061号 统一信用码:91510108MA6CHFDC3Q © 版权所有:四川好花科技有限公司
免责声明:本站持有《出版物经营许可证》,主要从事期刊杂志零售,不是任何杂志官网,不涉及出版事务,特此申明。