前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料的影响范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词 高分子聚合材料;PAM;土壤;物理性质;水土保持
中图分类号 S152 文献标识码 A 文章编号 1007-5739(2016)22-0163-01
水土流失是制约我国经济发展的重要因素。土壤入渗及保蓄水能力差,同样的降雨会造成降雨更多地形成地表径流,冲刷土壤,带走细颗粒及有机成分,破坏土壤结构,降低土壤肥力,恶化作物生长的生态环境,对国民经济和农业可持续发展构成严重威胁。水土流失问题已经纳入国家重点治理领域。纵观我国水土流失治理技术,主要有建设工程设施拦截、种植生物措施改善以及因地制宜采用适宜的农业耕作方式,普遍存在投资大、实施难、效果差的问题。
随着化学工业的发展,化学产品在国民经济发展各领域得到广泛应用。采用化学产品进行水土流失治理与研究已经成为一个新的研究领域。聚丙烯酰胺(英文简称PAM)是丙烯酰胺及其衍生物的均聚物和共聚物的统称,已经被广泛应用于水处理等以及农业土壤改良[1-2]。为深入探讨聚丙烯酰胺在水土流失治理领域的应用,开展了大量试验研究。本文主要针对聚丙烯酰胺对土壤物理性质影响方面的试验研究取得的大量数据资料,进行了系统分析和整理。
1 试验地概况与研究方法
试验地点位于辽宁省西丰县泉河水土保持试验站室内试验小区进行。试验土壤选用具有代表性的辽西地区的砂壤土和辽北地区的中壤土及轻壤土,每种土质设2个处理,即PAM处理和对照(CK)。供试聚丙烯酰胺为辽宁省抚顺市化工六厂生产的阴离子型分子量300万~400万。试验小区长度2.0 m,宽度为0.5 m,小区土壤初始铺设厚度为0.3 m。小区田面纵向坡度为10°,为盛接小区径流和土壤侵蚀量,小区下游末端均设出水口和盛水池。试验降雨系统采用微喷模拟人工降雨,水源为储水池,供水水泵型号为Qd×2-16-0.25潜水泵,降雨强度控制在60 mm/h,每次降雨历时控制在3 h。将0.3 g聚丙烯酰胺溶于适量温水中,再定容在1 000 mL,摇匀后均匀喷施在小区田面。小区静置24 h后,进行模拟降雨。降雨完成后,小区再静置24 h后进行小区取样和各项试验,测定土壤物理性质变化[3]。
2 结果与分析
2.1 PAM对土壤沉降系数的影响
辽西砂壤土在经过PAM处理后,沉降系数由158%增加到172%,增加了9%;辽北地区的中壤土沉降系数由原来的144%增加到161%,增加了12%;辽北地区的轻壤土沉降系数也增加了8%(表1)。
这些变化表明,PAM能够改善土壤的沉降系数,有利于增强土壤的水稳性,提高土壤的抗水蚀能力。
2.2 PAM对土壤微团聚体的影响
经PAM处理后,3种土壤的分散系数减少了7%~19%,结构系数增大了3%~8%,这些说明土壤的微团聚体在浸水状况下结构性能增强,提高了土壤微结构的稳定性,从而有利于土壤的保水和保肥的作用(表2)。
2.3 PAM对土壤团聚体的影响
各个试验区域经PAM处理1 d后进行观测,发现降雨后土壤团聚体增加、疏松、不板结,而CK的表层土壤板结僵硬。试验结果表明,土壤使用PAM后,辽西地区的砂壤土水稳定性团聚体增加最为明显,增幅达到51%(表3),说明PAM对土壤结构有良好的改善作用。
2.4 PAM对土壤渗透性的影响
试验结果表明,土壤经PAM处理后,土壤渗透系数比CK增加32%,利于减少地表径流和雨水入渗,从而降低土壤侵蚀程度,有利于水土保持(表4)。
3 结论与讨论
3.1 结论
PAM具有改善土壤水稳性、改良土壤结构、增大土壤渗透性的作用[4-6]。试验结果表明,土壤经过PAM处理后,沉降系数增大8%~12%,分散系数减少7.1%~28.6%,结构系数增大3.2%~10.0%。因此,PAM处理后土壤检测指标趋向有利方向变化,表明了土壤保水性能增强。此外,土壤水稳性团粒含量增加4.5%~51.4%,土壤渗透系数增大32%,团聚体明显改善,微团聚体也得到改善。由于土壤结构的改良,其可以为作物生长提供更好的水、肥、气、热等条件,使土壤疏松透气,利于作物增产。此外,PAM不改变土壤的酸碱性。PAM是一种高分子聚合物材料,呈中性,当其溶解于水并与土壤颗粒发生作用时,不影响土壤溶液的酸碱平衡。
3.2 讨论
根据以上试验结论,提出以下建议:一是针对不同侵蚀土壤应用PAM的治理技术。辽宁省现有坡耕地73.33万hm2,这些耕地低产薄收的主要原因之一是水土流失严重,为了进一步认识PAM的上述作用,建议按不同土质建立较大规模的试验观测区,来探索不同侵蚀土壤应用PAM的治理技术。二是利用PAM减缓水库淤积。辽宁省多泥沙河流及多泥沙水库现存的泥沙淤积问题比较严重,建议在其集水范围内的水土流失严重地段,建立较大规模的试验观测区,应用PAM进行保护多泥沙河流的河道和减少整治工程量的研究,以减缓多泥沙水库的淤积过程,延长水库有效使用寿命,发挥水库工程的更大效益。
4 参考文献
[1] 严瑞.水溶性高分子[M].北京:化学工业出版社,1998:84-171.
[2] 刘孝义.土壤物理化学及土壤改良研究法分析[M].沈阳:辽宁科技出版社,1982.
[3] 韩凤朋,郑纪勇,李占斌,等.PAM对土壤物理性状以及水分分布的影响[J].农业工程学报,2010(4):70-74.
[4] 于健,雷廷武,SHAINBERG I,等.不同PAM施用方法对土壤入渗和侵蚀的影响[J].农业工程学报,2010(7):38-44.
关键词:高分子材料 化学 分子
中图分类号:U465.4文献标识码:A
高分子材料:macromolecular material,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。
一、按特性分析高分子材料
高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。
①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。
②高分子纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。
③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。
④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。
⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。
二、现代新型高分子材料
高分子材料包括塑料,尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。
1.高分子分离膜
高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。膜分离过程主要有反渗透、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。用来制备分离、渗透汽化和液膜分离等。用来制备分离膜的高分子材料有许多种类。现在用的较多的是聚枫、聚烯烃、纤维素脂类和有机硅等。膜的形式也有多种,一般用的是平膜和空中纤维。推广应用高分子分离膜能获得巨大的经济效益和社会效益。例如,利用离子交换膜电解食盐可减少污染、节约能源:利用反渗透进行海水淡化和脱盐、要比其它方法消耗的能量都小;利用气体分离膜从空气中富集氧可大大提高氧气回收率等。
2.高分子磁性材料
高分子磁性材料,是人类在不断开拓磁与高分子聚合物的新应用领域的同时,而赋予磁与高分子的传统应用以新的涵义和内容的材料之一。早期磁性材料源于天然磁石,以后才利用磁铁矿(铁氧体)烧结或铸造成磁性体,现在工业常用的磁性材料有三种,即铁氧体磁铁、稀土类磁铁和铝镍钴合金磁铁等。它们的缺点是既硬且脆,加工性差。为了克服这些缺陷,将磁粉混炼于塑料或橡胶中制成的高分子磁性材料便应运而生了。这样制成的复合型高分子磁性材料,因具有比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等特点。
3.光功能高分子材料
光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,主要包括光导材料、光记录材料、光加工材料、光学用塑料、光转换系统材料等。光功能高分子材料在整个社会材料对光的透射,可以制成品种繁多的线性光学材料,又可以开发出非线性光学元件,如储存元件兴盘的基本材料就是高性能的有机玻璃和聚碳酸脂。此外,利用高分子材料的光化学反应,可以开发出在电子工业和印刷工业上得到广泛使用的感光树脂、光固化涂料及粘合剂;利用高分子材料的能量转换特性,可制成光导电材料和光致变色材料;利用某些高分子材料的折光率随机械应力而变化的特性,可开发出光弹材料,用于研究力结构材料内部的应力分布等。
4.高分子复合材料
高分子材料和另外不同组成、不同形状、不同性质的物质复合粘结而成的多相材料。高分子复合材料最大优点是博各种材料之长,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质,根据应用目的,选取高分子材料和其他具有特殊性质的材料,制成满足需要的复合材料。高分子复合材料分为两大类:高分子结构复合材料和高分子功能复合材料。以前者为主。高分子结构复合材料包括两个组分:①增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物。②基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。
三、高分子材料的合成与加工
关键字:新型高分子材料;高分子材料应用;新型高分子材料的开发
引言:
高分子材料是指由相对分子质量较大的化合物分子构成的材料。按其来源,高分子材料可分为天然,合成,半合成材料,包括了塑料,合成纤维,合成橡胶,涂料,粘合剂和高分子基复合材料。从1907年高分子酚醛树脂的出现以来,高分子材料因其普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展。然而,现在大规模生产的还只是在寻常条件下能够使用的高分子物质,即通用高分子。它们存在着机械强度和刚性差、耐热性低等缺点,而现代工程技术的发展对高分子材料提出了更高的要求。于是新型高分子材料的开发与应用尤为重要。纳米、导电、生物医用、生物可降解、耐高温、高强度、高模量、高冲击性、耐极端条件等高性能的新型高分子材料的开发与应用不但能解决现阶段的高分子材料所面临的问题,而且也将积极地推动高分子材料向功能化、智能化、精细化方向的发展。与此同时,我国十二五计划也将高分子材料的开发研究纳入了其中,作为其重要研究方向之一的新型高分子材料的开发研究必将会极大地推动我国材料技术的发展。
一、简述高分子材料
1.高分子材料
高分子材料(macromolecular material),以高分子化合物为基础的材料。基本成分为聚合物,或以其含有的聚合物的性质为其主要性能特征的材料。高分子材料是由相对分子质量较高的化合物构成的材料,通常分子量大于10000,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合体。
2.国内外高分子材料开发现状
高分子材料与金属材料和无机非金属材料共同构成了应用性材料科学的最重要的三个领域。高分子材料凭借其独特的优势占领了巨大的市场。
世界高分子材料工业正在高速地发展着。世界合成树脂量从1950年的1.5M工增长到2005年的212M工,每年大概以5%的增长率在迅速地增长。现在塑料的产量早已超过了木材和水泥等结构材料的总产量。合成橡胶的产量也已超过了天然橡胶,而合成纤维的年产量在上个世纪80年代就已经达到了棉花、羊毛等天然和人造纤维的2倍。对于我国而言,目前我国是世界上最大的树脂进口国,每年进口的树脂数量大约是世界树脂总贸易的25%到30%。我国的树脂合成工业正高速地发展当中,树脂合成能力也在飞速地提高中。然而与西方发达国家仍然存在着差距。
3.开发新型高分子材料的重要意义和途径
自上世纪30年代高分子材料的出现开始到现代,世界工业科学不再只是满足与对基础高分子材料的开发研究,从90代开始,科学家们就将注意力集中到了高功能,高智能的高分子材料开发上。现代工业对于新型高分子材料的需求日益强烈。像纳米高分子材料,通常是将纳米微粒与聚合物基材进行复合,利用其特殊性质来开发新产品,这比研究全新的聚合物材料投资少,周期短,生产成本低。与普通改性材料不同,纳米粒子具有特殊的表面效应、体积效应、量子尺寸效应以及宏观量子隧道效应等,这些效应的综合作用导致了改性后的高分子材料具有特殊性能。比如,纳米粒子巨大的比表面积产生的表面效应,可使经纳米粒子改性后的高分子材料的机械性能、热传导性、触媒性质、破坏韧性等均与一般材料不同,有的材料还具有了新的阻燃性和阻隔性。
新型高分子材料的开发主要是集中在制造工艺的改进上,以提高产品的性能,减少环境的污染,节约资源。就目前而言,合成树脂新品种、新牌号和专用树脂仍然层出不穷,以茂金属催化剂为代表的新一代聚烯烃催化剂开发仍然是高分子材料技术开发的热点之一。在开发新聚合方法方面,着重于阴离子活性聚合、基团转移聚合和微乳液聚合的工业化。在第二次世界大战中发展起来的高分子复合技术,以及出现于50年代的高分子合金化技术后。新的复合技术和合金化技术层出不穷。新型高分子材料的开发,不但能够满足现代工业发展对于材料工业的高要求,更能够促进能源与资源的节约,减少环境的污染,提高生产能力,更能体现出现代科技的高速发展。
二、新型高分子材料的应用
现代高分子材料是相对于传统材料如玻璃而言是后起的材料,但其发展的速度应用的广泛性却大大超越了传统材料。高分子材料既可以用于结构材料,也可以用于功能材料。
现阶段新型高分子材料大致包括高分子分离膜,高分子磁性材料,光功能高分子材料,高分子复合材料这几大类:
第一,高分子分离膜是用高分子材料制成的具有选择透过的半透性薄膜。采用这样的薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,与以往传统的分离技术相比,更加的省能、高效和洁净等,被认为是支撑新技术革命的重大技术。
第二,高分子磁性材料是磁与高分子材料相结合的新的应用。早期磁性材料具有硬且脆,加工性差等缺点。将磁粉混炼于塑料或橡胶中制成的高分子磁性材料,这样制成的复合型高分子磁性材料,比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等。
第三,光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,应用也很广泛。
第四,高分子复合材料是指高分子材料和不同性质组成的物质复合粘结而成的多相材料。高分子复合材料最大优点具有各种材料的长处,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质。
这些新型的高分子材料在人类社会生活,工业生产,医药卫生和尖端技术等方方面面都有着广泛的应用。例如,在生物医用材料界上,研制出的一系列的改性聚碳酸亚丙酯(PM-PPC)新型高分子材料是腹壁缺损修复的高效材料:在工业污水的处理上,在不添加任何药剂的情况下,利用新型高分子材料物理法除去油田中的污水:开发的聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂复合材料,这些材料比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料;同样,在药物传递系统中应用新型高分子材料,在药剂学中应用,在包转材料中的应用等等。新型高分子材料已经渗透于人类生活的各个方面。
三、综述
材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,是一个国家工业发展的重要基础和标志。作为材料重要组成部分的高分子材料随着时代的发展,技术的进步,越来越能影响人类的生活。新型高分子材料的不断开发像纳米技术、荧光技术、导电技术、生物技术等的实施必将使得高分子材料在工业化的应用中不断进步。区别于我们已经开发研究成熟的一些传统材料,高分子材料的研究开发存在着无穷的潜力。正如一些科学家预言的那样,新型高分子材料的开发将有可能会带来现代材料界的一次重大革命。
参考文献:
[1]程晓敏,高分子材料导论[M],安徽大学出版社2006,
[2]于金海,应用新型可降解材料修复腹壁缺损的实验研究[J].中国知网论文总库2010
[3]赵利利,论新型高分子材料的开发与应用[J],科技致富向导,2011.(02).
【关键词】高分子材料 合成应用 绿色战略
绿色化学的概念从提出到现在一直备受关注,我国的化学研究工作中也逐渐重视绿色和环保的理念。尤其是在高分子材料的研究方面,人们更倾向于无毒的环保的生产过程。近来,高分子材料的绿色化学有了新的进展,高分子材料合成与应用中的绿色战略已经形成。
1 原材料本身的无毒化
在现今的高分子化学材料的研究过程中我们逐渐引进了生物降解的技术来保证高分子化学材料本身的无毒和绿色,这也是化学研究的一大热门领域。用生物来降解高分子化学材料的方式应用较为广泛,降解的高分子材料包括了天然的有机高分子材料和合成的有机高分子材料。这种技术对淀粉、海藻酸、聚氨基酸等各种高分子的研究非常实用。目前,医药领域的许多材料多采用这种绿色无毒的形式来进行生产,达到和人体的和谐相容。
2 高分子原料合成朝无毒化方向发展
高分子原料的合成也在向绿色的方向发展。在化学合成过程中,许多高分子化学材料的合成可以采用一步催化的方式来完成,转化利用率可以达到百分之一百。而且这种过程避免了使用有毒的化学催化剂,改变了传统的操作模式。例如已二酸的合成就是采用生物合成的技术,使其生产过程完全绿色化,安全可操作。传统的方法生产环氧丙烷是采用两步反应的方式,而且中间使用了氯气。这种气体带有一定的毒性会造成环境的污染。但现在,国内外已经改变了这种生产方法,采用的催化氧化的方法使原材料在制作反应的过程中完全利用,而不产生有的物质来污染环境。目前,在进行制作合成化学材料的过程中,许多都在逐步改善材料合成产生有毒废弃物的或排放物的情况,朝着绿色生态环保的方向发展。
3 合成原料的绿色化
生活物质材料中有许多都是采用高分子合成的原料制造的。尤其是医用材料,这些材料在使用的过程中必须保证无毒,而且必须是生物可降解、可以为人体的免疫系统所接受的。因此,对合成原料的要求必须是绿色的、安全的。近年来,在这方面,国内外已经取得了较多的成就。
1988年在荷兰有相关学着就在研究聚乳酸类网状弹性体材料,这种材料完全采用绿色原料合成,并且可以被生物所降解。他们用赖氨酸二异氰酸醋等扩链了由肌醇、L--丙交酯等生成的星形预聚体。LDI可以称为“绿色”的二异氰酸酯扩链剂,因为LDI扩链部分最终的降解产物是乙醇、赖氨酸等,这些降解产物都是无毒的,完全可以进行生物利用。在这一聚合物生成的过程中,不仅最终的产物是环保安全的,而且其原料肌醇是人体所需的维生素之一,乳酸、6―烃基己酸等在生物医学上颇为常见,也是一些安全的、“绿色”的物质,可以说这一过程接近于“完全绿色”。1994年strey等学者在此基础上进行进一步的研究,合成了与该绿色试剂LDI聚乳酸衍生物,用高结晶性的聚乙醇酸纤维为增强材料,制备了无毒的、可生物吸收的骨科固定复合材料。
4 催化剂的绿色化
在聚乳酸类材料研究过程中,虽然目前的高分子原材料和聚合物都实现了基本的绿色化、无毒化,但在这过程中大家可能会忽略一个因素,那就是催化剂的使用安全问题。例如聚乳酸化合物的生成过程中大多采用辛酸亚锡作为中间催化剂,加快化学反应的过程。但是这种催化剂由于含有锡盐成分可能会具有生理毒性,如果是人体吸收可能会造成中毒的情况。相比而言,用生物酶作催化剂就显得安全可靠。使用生物酶催化的瓶颈在于酶的种类有限问题,致使一些化学反应找不到相应的生物酶进行催化。在目前的高分子聚合物当中,虽然一些加聚反应的原子利用率可以达到100%,但是各种催化剂和添加剂的使用对安全情况造成的影响却不能忽视。尤其是在医用物品当中,必须对这些材料的安全性进行试验和考核。催化剂的绿色化道路的发展还值得我们进一步努力探索。
5 合成高分子材料的安全应用
人工合成的高分子材料可能会对环境存在一定的危害,对不可利用的高分子材料的垃圾处理也得考虑到绿色无毒的问题。我们必须选择正确的方法来安全使用这些高分子材料。
对于可用生物降解的高分子合成材料可以采用填埋的方式进行处理。对于不可生物降解的高分子材料废物进行分类,主要分为可回收利用的废物和不可回收利用的废物。将可回收的高分子材料分类进行整理,实现循环利用,减少资源的浪费。对于可焚烧的高分子材料可以进行焚烧处理,还可以将垃圾焚烧过程中释放的热能加以利用。
(1)对可以再生与循环使用的环境惰性高分子材料,如 PP、PE、PET、尼龙 66、PMMA、PS 等,应尽可能地再次利用,尽可能避免使用填埋方法处理环境惰性塑料垃圾。
(2)PP、PE等聚烯烃具有很高的热值,与燃料油相当,并且具有无害化燃烧特性。因此,可以将这些高分子材料燃烧产生的巨大热能转化为电能或者其他形式的能源,避免热能污染。目前,顺利实施城市生活垃圾变电能的关键是将 PVC 除开,避免与PP、PE等混杂,避免造成能源回收困难而浪费能源。
(3)对 PVC 应合理使用。PVC 的制造、加工、使用和废弃物的处理,都涉及环境问题,其中最危险的是PVC 废弃物的处理。PVC的加工过程使用的添加剂非常多,使用不当就会使材料中的有毒物质渗出,应该尽量避免其与食物和医药产品的接触。PVC废弃物处理要尽可能避免使用焚烧的方式,因为这种高分子材料在焚烧的过程中会产生毒性物质,对环境造成的伤害非常大。应尽快使 PVC退 出包装、玩具 、地膜等使用周期短的应用领域;同时,鉴于PVC具有节约天然资源、适用性广、价格低廉、难燃、血液相容性好等优点,应加强对 PVC 生产、加工、使用、废弃物处理等方面的研究。
6 结语
高分子材料合成与应用的绿色化、无毒化、安全化会是将来高分子材料化学发展的热潮,结合高分子材料特有的实用性因素来建立高分子材料绿色战略的系统,可以使高分子材料化学朝着更加全面的、长远的绿色化道路发展。
参考文献
[1] 戈明亮.高分子材料探寻绿色发展之路[J].中国化工报,2003
[2] 罗水鹏.绿色高分子材料的研究进展[J].广东化工,2012
[3] 石璞,戈明亮.高分子材料的绿色可持续发展[J].化工新型材料,2006
关键词:高分子材料;导电;2000年诺贝尔化学奖;掺杂乙炔
说到导电高分子材料,我们就不得不谈谈其构成,导电高分子是由具有共轭π键的高分子经过化学或者电化学“掺杂”,使其由绝缘体变为导体的一类高分子材料。也有一些人认为,某一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6S/m以上的物质与高分子聚合物混合后的产物也可以称之为导电高分子材料。
导电高分子材料的特点:
第一,室温电导率范围大,导电高分子材料的电导率可以在绝缘体与半导体导电区间内变化。目前为止,任何一种高分子材料都不能进行比拟,拥有很广阔的前景,可以用于线路信号的屏蔽、特种导线的选材、防静电等一系列用途。
第二,绝缘体与半导体之间转换完全可逆,由于其是由共轭π键的高分子经过化学或者电化学“掺杂”,将绝缘体变为导体的高分子材料,因而将导电高分子材料通过特殊技术,将其“脱杂”,就可以变成绝缘体,将其“掺杂”,就可以成为半导体,这也是导电高分子材料的一大特性。
第三,绝缘体与半导体之间氧化还原完全可逆,一切物质的反应都伴随着能量的变化,而所有的物质都会进行氧化还原反应,而导电高分子材料在掺杂、“脱杂”过程中,发生了氧化反应与还原反应,因此,其氧化还原也是完全可逆的。
总的来说,导电高分子材料由于具有密度小、易加工、耐腐蚀、可大面积成膜以及电导率可在十数个数量级的范围内进行调节等特点,不仅可成为多种金属材料和无机导电材料的替代品,而且已成为工业部门和尖端技术领域不可缺少的一类高分子材料。在黑格等人才发现第一个导电的高分子材料后,科学家们又相继开发出了聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚酞菁类化合物等能导电的高分子材料。
导电高分子材料的用途:
导电高分子材料具有良好的导电性和电化学可逆性,可用作充电电池的电极材料。利用聚乙炔薄膜制作的可充电电池,经300次循环充放电试验后,充放电效果依旧没有明显的衰退,这样的试验足以说明导电高分子材料已具有商业应用价值。而美国科学家Jeskocheim利用聚吡咯和聚氧化乙烯固态电介质膜试制了光电池试验后,更加向我们证明了这种重量较轻、易成形、工艺简单,并能生成大面积膜,且绿色环保的导电高分子材料具有十分诱人的发展前景。
经过世界范围内科学家们多年的广泛研究,导电高分子材料在新能源材料方面的应用已获得了很大的发展,但离实际大规模生产应用还有一定的距离。由于其加工性不好、价格较其他的导电材料昂贵、稳定性不高等因素,并没有很快地进入大众家庭中。
导电高分子材料通常分为复合型和结构型两大类:
第一,复合型导电高分子材料。由通用的高分子材料与各种导电性物质通过分散聚合、层积复合或表面形成导电膜的方式制得。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。其由于复合方式的不同又可分为表面镀膜型(将金属等导电材料通过各种工艺方法涂覆于聚合物材料的表面,使其形成具有导电特性的聚合物材料)和复合填充型(通常在绝缘体中加入导电性填料,填充剂采取一定方法而制得)。主要品种有导电塑胶、导电纤维织物、导电涂料以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。
第二,结构型导电高分子材料。是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。导电高分子材料的结构特点是必须要具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导体的范围。采用掺杂技术可使这类材料的导电性能大大提高。例如,掺杂乙炔结构型导电高分子材料用于试制轻质塑料蓄电池、太阳能电池以及传感器件等。但目前这类材料由于技术不成熟,还存在各种问题,尚未进入实用阶段。
在电子工艺方面,导电高分子材料取得了突破性的进展:
第一,电解沉淀中的应用。以往使用沉淀方法印刷电路的过程中,首先在基板上镀上一层金属铜,过去的沉淀方法需要催化剂才可完成,而这些催化剂往往有毒。而现在,使用新型导电高分子材料,如将聚吡咯作为预涂层,涂在基板上,可以避免以上的问题,且无毒、加工简单、附着性好、沉淀在涂层上的金属不易剥离,还可以实现穿孔电镀。
第二,在电容器上的应用。在两电极间加入高分子固体电解质,施加一低于电极和电解质分解电位电压的直流电压,通过电流的导通作用使离子向一端电极移动,从而使电解质和电极之间形成双电层,这种双电层具有容量大的特性,可作为高容量的电容器。
第三,传感器方面的应用。在固体电解质中有许多材料对离子的透过具有选择性,因此高分子固态电解质薄膜两侧如果出现了某种特定离子的浓度差,通过测定其产生的电动势,就能将高分子固体电解质用作离子传感材料。这种传感材料同时具有不必活化、响应速度快、重现性好、内阻小、稳定性好等优点。
在美国和欧洲,导电高分子聚合物的回收已经从90年代的机械回收发展到原料回收和焚烧能量回收一体化。相比之下,我国在该领域的起步较晚,随着对导电高分子材料导电机理研究的不断深入,由于导电高分子复合材料具有极强的可设计性,在我国一般采用以下两种方法回收废弃材料:
第一,物理法回收利用废旧导电高分子材料,对废旧高分子材料经收集、分离、提纯、干燥等程序之后,加入稳定剂等各种助剂,重新造粒,并进行再次加工生产的过程。对于导电高分子材料来说,物理法是最为合适的方法了,早在导电高分子材料的生产公司在单体的选择、合成、材料的制备阶段就考虑到材料使用后可回收利用性,制备易于解聚、降解、可循环再生利用的导电高分子材料。为材料使用后的降解、解聚创造条件。
第二,通过燃烧废旧导电高分子材料的能量回收。
在不久的将来,功能强大的导电高分子材料必然会广泛应用于各个领域,势必会产生越来越多的聚合物废料。充分利用资源和减少环境污染是人们使用这一材料的最终目的,在世界能源日趋紧张的情况下,循环利用显得更为重要。我们应将更加致力于材料的循环研究,应用产品开发、现有技术的改进、设计和优化等,消除这一类物质对环境的影响。
参考文献:
[1] 齐宝森,张刚,栾道成.新型材料及其应用[M].哈尔滨工业大学出版,2007.
[2] 王建国,刘琳.特种与功能高分子材料[M].中国石化出版社,2004.
[3] 董炎明,朱平平,徐世爱.高分子结构与性能[M].华东理工大学出版社,2010.
作者简介:刘宇航(1995―),男,辽宁兴城人,沈阳理工大学。