前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇智能医疗行业研究范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
投资要点:
AI新品,进一步落地多个行业:2017年9月12日,公司了“精准医疗”、“AI+公安大数据”、“乐享智投‘三个行业的解决方案及产品。
(1)精准医疗:
目前还处于辅劣临床诊疗阶段,iMedical8.0P、临床科研大数据分析平台、感染智能监测系统、知识图谱构建系统等实现了辅劣医生优化治疗方案和临床科研的功能;
(2)AI+公安大数据:通过人脸识别、视频检索技术等不公安系统拥有的海量数据库结合,解决了以往案件侦查过程中嫌疑人筛选的问题,大幅提高了筛选速度;
(3)乐享智投:作为一款智能投顼产品,主要向金融客户提品评测、用户画像、投资组合、投资执行、风险监控、收益分析等服务,并提供个性化的解决方案。
本次AI产品的,公司实现AI技术在医疗、安防、金融三个热点行业的落地,有望搭上AI行业高速发展的顺风车,助力公司的进一步发展。
布局AI行业多年,技术成就应用:公司于2013年开始布局人工智能领域,是国内较早投入人工智能领域研发的企业之一,先后不中科院、清华大学、北航、IBM和微软等国内外知名校企合作。经过多年研究,公司基于人像识别、车辆软件识别、目标图像提取不分析等技术,研发出智能人像服务、人像卡口等系统。本次人工智能新品的是对以往产品的进一步改进,是公司多年技术积累的结果,产品系列较为成熟、可靠,用户满意度较高。
业务行业覆盖广,公司发展空间大:公司立足数字化行业多年,服务对象涵盖金融、电力、通讯、交通运输等10余个行业,产品线主要包括行业应用软件、人工智能解决方案、大数据服务。这不仅有利于公司率先占据AI行业的有利位置,更能够使公司在数据量上存在优势。公司能够尽快实现AI产品在多个行业的落地,在AI市场还在高速发展期的今天,占据多个行业就意味着拥有更大市场规模的可能性。
除此之外,公司拥有各个行业的大量数据,能够实现不同行业数据的相互补充,有利于AI系统的自我完善。
投资建议:作为国内IT企业龙头,公司将不断完善人工智能技术,并通过数据积累,在产品线和市场应用上不断拓展,最终实现人工智能+战略。我们公司预测2017年至2019年每股收益分别为0.48、0.53和0.68元,上调评级至买入-A,6个月目标价为13.92元,相当于2017年29倍的动态市盈率。
风险提示:
人工智能在医疗领域的广泛应用价值
目前,人工智能在医疗领域的研究成果频出,人工智能应用医疗领域已是大势所趋。各个科技巨头都相继布局人工智能医疗行业。对人工智能在医疗的应用主要基于多方面的客观现实:比如优质医疗资源供给不足,成本高,医生培养周期长,误诊率高,疾病谱变化快,技术日新月异;此外,随着人口老龄化加剧和慢性疾病发病率的增长,人们对健康重视程度普遍提高,医疗服务需求也在持续增加。
人工智能结合医学应用有非常多的益处,可以让患者、医师和医疗体系均受益。比如对于患者来说,可以更快速地健康z查,获得更为精准的诊断结果和更好的个性化治疗方案建议;对于医师来讲,则可以消减诊断时间,降低误诊的概率并对可能的治疗方案的副作用提前知晓;对于医疗体系来说,人工智能则可以提高各种准确率,同时系统性降低医疗成本。
据悉,人工智能在智能诊疗、智能影像识别、智能药物研发和智能健康管理等方面都有广泛的应用价值。
比如在智能诊疗方面,就是让计算机“学习”专家医生的医疗知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。智能诊疗场景是人工智能在医疗领域最重要、也最核心的应用场景。谷歌宣布已尝试将其面向消费者的机器学习能力应用到医疗保健领域中。今年谷歌的人工智能算法在乳腺癌诊断上也表现出了很高准确度;苹果公司最近收购了Lattice,该公司在开发医疗诊断应用的算法方面具有很强能力。
在智能影像识别方面,人工智能的应用主要分为两部分:一是图像识别,应用于感知环节,其主要目的是将影像进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握诊断能力。作为医生,从一个大的图像如CT、核磁共振图像判断一个非常小的阴影,是肿瘤是炎症还是其他原因,需要很多经验。如果通过大数据,通过智能医疗,就能够迅速得出比较准确的判断。
在智能药物研发方面,则是将人工智能中的深度学习技术应用于药物研究,通过大数据分析等技术手段快速、准确地挖掘和筛选出合适的化合物或生物,达到缩短新药研发周期、降低新药研发成本、提高新药研发成功率的目的。人工智能通过计算机模拟,可以对药物活性、安全性和副作用进行预测。目前借助深度学习,人工智能已在心血管药、抗肿瘤药和常见传染病治疗药等多领域取得了新突破,在抗击埃博拉病毒中智能药物研发也发挥了重要的作用。
在智能健康管理方面,则可以将人工智能技术应用到健康管理的很多场景中。目前主要集中在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。比如通过获取信息并运用人工智能技术进行分析,识别疾病发生的风险及提供降低风险的措施。计算机还能收集病人的饮食习惯、锻炼周期、服药习惯等个人生活习惯信息,运用人工智能技术进行数据分析并评估病人整体状态,协助规划日常生活。在精神健康领域,计算机可运用人工智能技术从语言、表情、声音等数据进行情感识别。在健康干预层面,计算机则可以运用AI对用户体征数据进行分析,定制健康管理计划。
从IBM Watson的发展看医学人工智能的未来
目前国内外已经有很多高科技企业将认知计算和深度学习等先进AI技术用于医疗领域,并出现了很多产品,其中以IBM的“沃森医生”(IBM Watson)最有代表性。IBM Watson作为该领域中的翘楚,随着人工智能技术的逐渐成熟,在2016年开始放开手脚,以肿瘤诊断为重心,开始在慢病管理、精准医疗、体外检测等九大医疗领域中实现突破,逐步实现人工智能作为一种新型工具在医疗领域的独特价值。
沃森是2007年由IBM公司开发的,IBM Watson具备了自然语言处理、信息检索、知识表示、自动推理、机器学习等能力,能够快速搜索分析非结构化的数据,获取想要的结果。2015年,日本东京大学医学院研究所最初的诊断结果,确诊一位60岁的日本女性患了急髓白血病,但在经历各种疗法后,效果都不明显。无奈之下,研究所只好求助IBM Watson,而IBM Watson则通过对比2000万份癌症研究论文,分析了数千个基因突变,最终确诊这位60岁的日本女性患有一种罕见的白血病,并提供了适当的治疗方案。整个过程IBM Watson只用了短短10分钟。
自2012年罗睿兰接手IBM开始,IBM公司发展方向与业务架构就一直在进行根本性调整。传统硬件与系统软件业务地位不断退后,而云计算、网络安全、数据分析与人工智能成为了公司现金流的核心投放领域。现在的IBM正在转型为一家认知计算和云平台的公司。其中在医学人工智能的优势也越来越明显。
IBM Watson首先进入的领域是复杂的癌症诊断和治疗领域,这也是目前全世界医学界聚焦的重点。Watson的第一步商业化运作就是通过和纪念斯隆・凯特琳癌症中心进行合作,共同训练IBM Watson肿瘤解决方案(Watson for Oncology)。癌症专家在Watson上输入了纪念斯隆・凯特琳癌症中心的大量病历研究信息进行训练。在此期间,该系统的登入时间共计1.5万小时,一支由医生和研究人员组成的团队一起上传了数千份病人的病历,近500份医学期刊和教科书,1500万页的医学文献,把Watson训练成了一位杰出的“肿瘤医学专家”。随后该系统被Watson Health部署到了许多顶尖的医疗机构,如克利夫兰诊所和MD安德森癌症中心,提供基于证据的医疗决策系统。
相继攻克肺癌、乳腺癌、结肠癌、直肠癌后,2015年7月IBM Watson for Oncology成为IBM Watson health的首批商用项目之一,正式将上述四个癌种的肿瘤解决方案进入商用。2016年8月IBM宣布已经完成了对胃癌辅助治疗的训练,并正式推出使用。此外沃森还在2016年11月训练完上线了宫颈癌的服务。
目前IBM Watson肿瘤解决方案已经进入中国。2016年12月,浙江省中医院联合思创医惠、杭州认知三方共同宣布成立沃森联合会诊中心,三方将合作开展IBM Watson for Oncology服务内容的长期合作,这是自IBM Watson for Oncology引入中国以来,首家正式宣布对外提供服务的Watson联合会诊中心,意味着中国医疗行业将开启一个新型人工智能辅助诊疗时代。目前Watson可以为肺癌、乳腺癌、直肠癌、结肠癌、胃癌和宫颈癌6种癌症提供咨询服务,2017年将会扩展到8-12个癌种。在医生完成癌症类型、病人年龄、性别、体重、疾病特征和治疗情况等信息输入后,沃森能够在几秒钟内反馈多条治疗建议。
此外,IBM Watson还与辉瑞达成了一项新协议,会将前者的超级计算能力用于癌症药物研发。辉瑞将用上Watson for Drug Discovery的机器学习、自然语言处理及其它认知推理能力,用于免疫肿瘤学(Immuno-oncology)中的新药物识别,联合疗法和患者选择策略。由于免疫肿瘤学的未来在于针对独特肿瘤特征的组合,这会改变癌症治疗方式。而在药物研发中利用Watson的认知能力,可以更快地为患者带来可能的新免疫肿瘤治疗。
毫无疑问,人工智能将会成为未来IBM的成长引擎。沃森目前已经不仅仅满足于涉及糖尿病等慢病、大健康、医疗影像、体外检测、精准医疗、机器人、疾病研究治疗这几个领域,未来,沃森的触角还会伸到医疗的其他行业,为整个医疗行业服务。
中国版小小“沃森”不断面世
与IBM Watson十年的发展轨迹不同,中国在医学人工智能领域的发展属于追赶者。由于中国没有统一的医疗数据格式以及数据孤岛的隔离,中国在医学人工智能I域投放的资源相对要少很多。不过这并不妨碍国人对其发展的热情。在智能影像识别和诊断方面,中国已经出现了若干版本的小小“沃森”,他们的功能虽然没有IBM Watson那么强大,但也在各个领域显示出独特的应用价值。
浙江德尚韵兴图像科技有限公司是由浙江大学知名专家和珠海和佳医疗设备股份有限公司共同投资成立一家高科技公司。浙江德尚韵兴利用深度学习处理超声影像,同时加入旋转不变性等现代数学的概念,形成了“DE-超声机器人”。该机器人算法借助计算机视觉技术,可以对甲状腺B超快速扫描分析,圈出结节区域,并给出良性与恶性的判断,大大节省了医生的诊断时间。一般来说,人类医生的准确率为60%-70%,而当下算法的准确率已经达到85%。
据悉,人体甲状腺结节已成常见病,如果不加重视,甲状腺结节可能会发生恶变,进而发展成癌症,危及生命。但由于个体化差异,目前三甲医院甲状腺结节的诊断准确率平均也只有60%,如果不做活检,不同医生对同一张片子可能会做出不同判断。而超声机器人的出现,不仅能辅助医生做出精准判断,还能缩短病人就医时间,提升医疗效率。目前“DE-超声机器人”已经在浙江大学第一附属医院、中国电子科技集团公司第五十五所职工医院和杭州下城区社区医院临床应用,一年病例达到8万多,准确率达86%以上。
2017年2月,中山大学中山眼科中心刘奕志教授领衔中山大学联合西安电子科技大学的研究团队,利用深度学习算法,建立了“CC-Cruiser先天性白内障人工智能平台”。该人工智能程序模拟人脑,对大量的先天性白内障图片进行分析和深度学习,不断反馈提高诊断的准确性。将该程序嵌入云平台后,通过云平台上传图片,即可获得先天性白内障的诊断、风险评估和治疗方案。
据悉,先天性白内障是一种严重威胁儿童视力的疑难罕见病。中山眼科中心有全球最大的先天性白内障队列(队列人数近2000名),基于该队列开展了一系列严谨的研究,积累了大量高质量的先天性白内障临床数据。中山大学眼科中心于2017年4月设立“人工智能应用门诊”,由人工智能云平台辅助临床医师进行诊疗。在人工智能门诊就诊的患者,除接受常规诊疗外,其检查数据即时同步到CC-Cruiser云平台,同时享受由人工智能机器人提供的“专家级”诊疗。目前CC-Cruiser已在3家协作医院完成临床试点应用,并取得理想效果。此外,中山眼科中心已经连接了、新疆、云南、青海等边远省区上百家基层医院,每天有大量眼科检查数据上传云平台请求专家协助诊断。在医学人工智能应用场景下,病例以及图像数据将首先通过人工智能程序进行初审,再由专家复核,效率将提升70%以上,极大提高了专家协诊效率。
2017年5月,丁香园、中南大学湘雅二医院和大拿科技共同宣布就皮肤病人工智能辅助诊断达成独家战略合作,并了国内首个“皮肤病人工智能辅助诊断系统”。资料显示,系统性红斑狼疮是一种慢性自身免疫性疾病,属于风湿性疾病中的弥漫性结缔组织病,可引起全身多个脏器受累,包括皮肤、关节、肾脏、血液等。如何精准诊断系统性红斑狼疮,一直是困扰各国科学家的世界医学难题。
目前三方合作研发出的是红斑狼疮人工智能辅助诊断模型,该模型对红斑狼疮各种亚型及其鉴别诊断疾病能进行有效区分,识别准确率超过85%。据悉,该系统一方面是面向皮肤科医生,医生通过APP,把图像传到系统以后,系统提示最有可能的皮肤病类型,然后建立皮肤病电子百科全书,通过百科全书再去学习,辅助临床诊断;另一方面是面向患者,系统提供图片鉴别和导诊意见。据悉,该系统第一期主要实现以红斑狼疮为代表的皮肤病人工智能辅助诊断,下一步将“渗透”到其他医疗机构,并将开放患者端服务。
医学人工智能真正落地
需要全产业链配合
专家指出,要真正实现医疗产业的人工智能化,仅靠单方面的力量难以实现,这需要依托全产业链包括医疗主管部门、医疗机构的参与和信息化服务商等各个环节的共同努力。
比如像前文所述的甲状腺结节、红斑狼疮、先天性白内障的诊断,都要依靠形态学的图像数据,这些在皮肤病和病理科特别常见,所以人工智能的优势在此可以得到充分体现。训练一个好的皮肤科医生可能要十年,把人工智能引进后,可以大大缩短时间。但是医学人工智能研发成本高、数据获取难、尚未深入诊疗核心等成为阻碍其真正落地的因素。
人工智能技术形成产品,最重要是要有大量高质量的数据。深度学习靠的是“吃透”大量样本。但目前大部分医疗机构并不愿公开数据。比如前文介绍的德尚韵兴,为了收集数据,尝试通过多个渠道,有社区检查,有付费志愿者,也有试点医院。最后该公司收集了两三万张超声图像,不嗟厥淙胂低持胁疟Vち苏锒献既仿试85%以上。该公司负责人也评价到,如果样本量能提高一倍,诊断准确率还有较大的提升空间。
在获取高质量的医疗数据方面,国内医院在过去信息化程度不高,数据虽然多,但相对杂乱,使用难度大。如何找到合适的切入点,并快速获取数据会是一个很高的门槛。同时,医院信息孤岛现象长期存在,各个医疗机构的数据尚未实现互联互通。这一局面则逐步从政策层面迎来破冰。去年6月,国务院公布了《关于促进和规范健康医疗大数据应用发展的指导意见》,明确指出健康医疗大数据是国家重要的基础性战略资源,需要规范和推动健康医疗大数据融合共享、开放应用。但该政策的真正落地依然需要时间。
随着医疗信息化的进展,紧跟着而来的,就是医疗大数据的运用。多年来,我国医疗机构大都各自为政,即便是一个医院内部也很难做到信息共享,如今,国家力推健康医疗大数据的共享和应用。
国务院办公厅《关于促进和规范健康医疗大数据应用发展的指导意见》指出,数据不能只是躺在某个医院的信息系统中,各家医疗卫生机构的数据应该汇聚到一块;数据也不能只是在健康医疗行业中实现聚合,应该打破卫生计生、工信、民政、公安、社保、环保、食药品监管等部门的壁垒,做到跨部门的数据互联共享;数据还不能只是在公共部门内流转,还应该探索推进“可穿戴设备、智能健康电子产品、健康医疗移动应用等产生的数据资源规范接入人口健康信息平台”。
那么未来,医疗大数据能怎么玩,又将在哪些领域发挥其作用呢?
领域一:临床决策支持系统
临床决策支持系统可提高工作效率和诊疗质量。临床决策支持系统分析医生输入条目,比较其与医学指引不同地方,提醒医生防止潜在的错误,如药物不良反应。医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引起的医疗事故。大数据分析技术将使临床决策支持系统更智能,如可以使用图像分析和识别技术,识别医疗影像(X光、CT、MRI)数据,或者挖掘医疗文献数据建立医疗专家数据库,从而给医生提出诊疗建议。
领域二:医疗保险行业
在社保面临收支压力的困境下,商业健康保险规模出现了40%以上的行业增速。在传统医疗环境痛点多、互联网对医疗领域逐渐渗透、以及传感器等硬件技术进步的大环境下,移动医疗行业蓬勃发展。而商业保险和移动医疗企业需基于核心的医疗大数据,才能最终实现为个人提供服务,商业企业的崛起正在加速医疗大数据形成闭环。
领域三:远程病人监控系统
根据统计,中国各类慢性病患者超过3亿人,尤其是我国进入老龄化时代以后,将存在非常大的照护缺口,远程病人监护系统对治疗慢性病患者非常有用。远程病人监护系统包括家用心脏监测设备、血糖仪,甚至还包括芯片药片,芯片药片被患者摄入后,实时传送数据到电子病历数据库。更多的好处是,通过对远程监控系统产生的数据的分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。
领域四:医疗护理系统
通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。研究表明,对同一病人来说,医疗服务提供方不同,医疗护理方法和效果不同,成本上也存在很大差异。医疗护理系统实现CER,将有可能减少过度治疗(比如避免那些副作用比疗效明显的治疗方式),以及治疗不足。
领域五:疾病预防
在病人档案方面应用高级分析可以确定哪些人是某类疾病的易感人群。举例说,应用高级分析可以帮助识别哪些病人有患糖尿病的高风险,使他们尽早接受预防性保健方案。这些方法也可以帮患者从已经存在的疾病管理方案中找到最好的治疗方案。
领域六:医药公司药物研发
大数据和先进的分析方法可以让制药企业的药物预测建模更为精准,加速药物开发过程。医药公司在新药物的研发阶段,可以通过数据建模和分析,加上数以百万计的患者诊疗记录,创新商业模式,设计更好的药物治疗方案。
领域七:人工智能的运用
大数据和人工智能正在彻底改变医疗的现状。人工智能充分利用了智能医疗搜索引擎,从海量数据中不断学习新技术及案例,以辅助医生做出最合理的诊疗方案。如何收集到有效数据,互联网网上医院或许是一大突破口。
目前,四川大学华西妇女儿童医院、武汉市中心医院、浙大一院等著名医疗机构已经建立起了互联网医院,患者可以在网络上轻松完成分诊咨询、远程门诊、线上付费、检查预约、住院床位预约、药物配送、慢病随访等互联网医疗服务。而在人工智能的运用上,浙江省属于“第一个吃螃蟹的人”:早在2016年底,浙江省中医院成立了“浙江省中医院沃森联合会诊中心”,随后2017年3月25日,浙江大学也正式对外宣布成立医疗人工智能研究中心。由此可见,随着大数据的开发,人工智能会越来越火爆。
医疗大数据面临的隐私挑战
医疗健康大数据的共享和用是政府管理、商业发展和技术创新的需要,但也给个人隐私安全带来了威胁,使得医疗领域的大数据共享变成了双刃剑。这样的情况在发达国家表现尤为明显。
《白皮书》首次摸清了北京人工智能产业底数。综合清科、WIND、IT桔子、蓝海巨浪等公开数据及投资机构定向采集数据,由课题组整理,截至2018年5月8日,全国人工智能企业4040家,北京市人工智能企业1070家,占比26% ;全国拿过风险投资的人工智能公司合计1237家,北京市拿过风险投资的人工智能企业431家,占比35%。从融资阶段看,北京人工智能企业一半以上仍处于初创期,在A轮之前的企业占比达56.97%,具有创新发展潜力。从企业成立时间看,北京人工智能企业2015-2016年呈现出爆发性增长,人工智能快速增长特征明显。从区域看,60.96%的人工智能企业注册在海淀区。中关村成为我国人工智能创新高地。
同时,《白皮书》不仅绘制了北京人工智能全产业链图,而且针对智慧医疗、智能家居、智慧城市、智慧零售和无人驾驶等5个特色鲜明的领域绘制了分领域产业链图。《白皮书》总结了北京人工智能产业在政策、人才、创新、软件研发、专利等5个方面的优势,以及在原始创新、高端芯片等4个方面面临的挑战,并给出了大力发展核心技术、超前布局原始创新等6项策略。北京将以建设全国科技创新中心为契机,抓住新机遇,施展新作为,将北京打造成引领全球人工智能产业发展的高地。
本文从几个角度介绍这部白皮书:
一些关键数据:北京人工智能产业发展情况。
AI在医疗、自动驾驶、零售等重点领域与实体经济融合。
北京发展人工智能产业还有哪些策略?
国内外人工智能行业发展的情况。
北京人工智能产业发展白皮书(2018年)目录
第一章 国内外人工智能行业发展概况
1.1 人工智能产业进入快速发展期
1.2 人工智能成为国家战略制高点
1.3 IT 巨头抢滩人工智能产业
1.4 人才是人工智能竞争关键要素
1.5 人工智能专利的中国机会
第二章 北京人工智能产业发展情况
2.1 北京人工智能产业发展概述
2.2 北京人工智能产业发展特点
2.2.1 北京重视人工智能产业发展,多重政策支持
2.2.2 北京有优质学术和人才资源,研发优势明显
2.2.3 北京人工智能创新创业活跃,资本推动创新
2.2.4 北京人工智能软件优势突出,位居全国先列
2.2.5 北京重视人工智能专利保护,数量列居前位
2.3 北京人工智能产业发展面临的挑战
第三章 北京人工智能与实体经济融合重点领域介绍
3.1 智慧医疗产业
3.2 智能家居产业
3.3 智慧零售产业
3.4 无人驾驶产业
3.5 智慧城市产业
3.6 人工智能专利概况
第四章 北京人工智能产业发展策略
4.1 大力发展核心技术,超前布局形成原始创新重大突破
4.2 重点支持人工智能新兴产业,形成高端产业集群优势
4.3 推动人工智能广泛应用,建设智能社会和智慧城市
4.4 加快推动产业智能化升级,发展科技服务业
4.5 建设多层次培养体系,吸引人工智能尖端人才
4.6 构建公共平台和服务体系,完善行业生态体系
附录 27
(一)北京部分重点领域人工智能企业名单
(二)人工智能重点投资机构名单
物联网、软件与信息安全“十二五”规划正式出炉
12月8日,工业与信息化部正式印发了物联网、信息安全和软件与信息技术服务产业“十二五”规划,在总结“十一五”信息安全产业发展现状、分析面临形势的基础上,规划明确了“十二五”的发展思路和目标,确定了发展重点和重大工程,提出了相关政策措施。
对行业及重点公司的影响
软件行业
根据十二五规划纲要,软件行业方面,我们认为,“十二五”规划中,软件与信息技术行业的支持力度将不会低于以往,以软件产业为代表的现代服务业将在未来成为我国的支柱产业之一,行业未来增长的前景比较广阔。
我们建议投资者关注软件收入占比较大的软件业龙头公司,如用友软件,广联达等,另外的主线是下游行业对信息化的需求持续且旺盛的细分行业龙头企业,如POS机行业的龙头―新国都;电子取证行业的龙头―美亚柏科;非结构化信息搜索行业的龙头―拓尔思;商业智能技术提供商―东方国信等。建议投资者予以关注。
物联网领域
根据十二五规划纲要,在物联网行业,政府要求在2015年前,在核心技术研发与产业化、关键标准研究与制定、产业链条建立与完善、重大应用示范与推广等方面取得显著成效,培育和发展10个产业聚集区,100家以上骨干企业,提出了9大重点领域应用示范工程,分别是:智能化工业,农业,物流,交通,电网,环保,安防,医疗,家居。
我们认为,计算机软硬件行业中,目前已经在这些领域中确立领先地位的公司将在未来3年的大规模投资期中获得快速增长的发展机遇,分别是专注于智能交通的银江股份和赛为智能,智能电网的核心元器件提供商―东软载波,智能医疗的领先者―东软集团和卫宁软件,智能农业的溯源感知产品提供―商远望谷,智能安防的设备提供商―海康威视和大华股份,智能家居的先行者―安居宝,城市管理的细分行业龙头―数字政通,智能环保领域的专家―同方股份。建议投资者予以关注。