前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇开关电源原理设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:开关电源;TOP249Y;脉宽调制;TOPSwitch
1引言
随着PWM技术的不断发展和完善,开关电源得到了广泛的应用,以往开关电源的设计通常采用控制电路与功率管相分离的拓扑结构,但这种方案存在成本高、系统可靠性低等问题。美国功率集成公司POWERIntegrationInc开发的TOPSwitch系列新型智能高频开关电源集成芯片解决了这些问题,该系列芯片将自启动电路、功率开关管、PWM控制电路及保护电路等集成在一起,从而提高了电源的效率,简化了开关电源的设计和新产品的开发,使开关电源发展到一个新的时代。文中介绍了一种用TOPSwitch的第三代产品TOP249Y开发变频器用多路输出开关电源的设计方法。
2TOP249Y引脚功能和内部结构
2.1TOP249Y的管脚功能
TOP249Y采用TO-220-7C封装形式,其外形如图1所示。它有六个管脚,依次为控制端C、线路检测端L、极限电源设定端X、源极S、开关频率选择端F和漏极D。各管脚的具体功能如下:
控制端C:误差放大电路和反馈电流的输入端。在正常工作时,利用控制电流IC的大小可调节占空比,并可由内部并联调整器提供内部偏流。系统关闭时,利用该端可激发输入电流,同时该端也是旁路、自动重启和补偿电容的连接点。
线路检测端L:输入电压的欠压与过压检测端,同时具有远程遥控功能。TOP249Y的欠压电流IUV为50μA,过压电流Iav为225μA。若L端与输入端接入的电阻R1为1MΩ,则欠压保护值为50VDC,过压保护值为225VDC。
极限电流设定端X:外部电流设定调整端。若在X端与源极之间接入不同的电阻,则开关电流可限定在不同的数值,随着接入电阻阻值的增大,开关允许流过的电流将变小。
源极S:连接内部MOSFET的源极,是初级电路的公共点和电源回流基准点。
开关频率选择端F:当F端接到源极时,其开关频率为132kHz,而当F端接到控制端时,其开关频率变为原频率的一半,即66kHz。
漏极D:连接内部MOSFET的漏极,在启动时可通过内部高压开关电流提供内部偏置电流。
2.2TOP249Y的内部结构
TOP249Y的内部工作原理框图如图2所示,该电路主要由控制电压源、带隙基准电压源、振荡器、并联调整器/误差放大器、脉宽调制器(PWM)、门驱动级和输出级、过流保护电路、过热保护电路、关断/自动重起动电路及高压电流源等部分组成。
3基于TOP249Y的开关电源设计
笔者利用TOP249Y设计了一种新型多路输出开关电源,其三路输出分别为5V/10A、12.5V/4A、7V/10A,电路原理如图3所示。该电源设计的要求为:输入电压范围为交流110V~240V,输出总功率为180W。由此可见,选择TOP249Y能够满足要求。
3.1控制电路设计
该电路将X与S端短接可将TOP249Y的极限电流设置为内部最大值;而将F端与S端短接可将TOP249Y设为全频工作方式,开关频率为132kHz。
图2
在线路检测端L与直流输入Ui端连接一2MΩ的电阻R1可进行线路检测,由于TOP249Y的欠压电流IUV为50μA,过压电流Iav为225μA,因此其欠压保护工作电压为100V,过压保护工作电压为450V,即TOP249Y在本电路中的直流电压范围为100~450V,一旦超出了该电压范围,TOP249Y将自动关闭。
3.2稳压反馈电路设计
反馈回路的形式由输出电压的精度决定,本电源采用“光耦+TL431”,它可以将输出电压变化控制在±1%以内,反馈电压由5V/12A输出端取样。电压反馈信号U0通过电阻分压器R9、R11获得取样电压后,将与TL431中的2.5V基准电压进行比较并输出误差电压,然后通过光耦改变TOP249Y的控制端电流IC,再通过改变占空比来调节输出电压U0使其保持不变。光耦的另一作用是对冷地和热地进行隔离。反馈绕组的输出电压经D2、C2整流滤波后,可给光耦中的接收管提供电压。R4、C4构成的尖峰电压经滤波后可使偏置电压即使在负载较重时,也能保持稳定,调节电阻R6可改变输出电压的大小。
3.3高频变压器设计
由于该电源的输出功率较大,因此高频变压器的漏感应尽量小,一般应选用能够满足132kHz开关频率的锰锌铁氧体,为便于绕制,磁芯形状可选用EI或EE型,变压器的初、次级绕组应相间绕制。
高频变压器的设计由于要考虑大量的相互关联变量,因此计算较为复杂,为减轻设计者的工作量,美国功率公司为TOPSwitch开关电源的高频变压器设计制作了一套EXCEL电子表格,设计者可以方便地应用电子表格设计高频变压器。
3.4次级输出电路设计
输出整流滤波电路由整流二极管和滤波电容构成。整流二极管选用肖特基二极管可降低损耗并消除输出电压的纹波,但肖特基二极管应加上功率较大的散热器;电容器一般应选择低ESR等效串联阻抗的电容。为提高输出电压的滤波效果,滤除开关所产生的噪声,在整流滤波环节的后面通常应再加一级LCC滤波环节。
3.5保护电路设计
本电源除了电源控制电路TOP249Y本身所具备的欠压、过压、过热、过流等保护措施外,其控制电路也应有一定的保护措施。用D3、R12、Q1可构成一个5.5V的过压检测保护电路。这样,当5V输出电压超过5.5V时,D3击穿使Q1导通,从而使光耦电流增大,进而增大了控制电路TOP249Y的控制端电流IC,最后通过内部调节即可使输出电压下降到安全值。
图3
为防止在开关周期内,TOP249Y关断时漏感产生的尖峰电压使TOP249Y损坏,电路中设计了由箝压齐纳管VR1、阻断二极管D1、电容C5、电阻R2、R3组成的缓冲保护网络。该网络在正常工作时,VR1上的损耗很小,漏磁能量主要由R2和R3承担;而在启动或过载时,VR1即会限制内部MOSFET的漏极电压,以使其总是处于700V以下。
4电源性能测试及结果分析
根据以上设计方法,笔者对采用TOP249Y设计的多路输出开关电源的性能进行了测试。实测结果表明,该电源工作在满载状态时,电源工作的最大占空比约为0.4,电源的效率约为90%,纹波电压控制、电压调节精度及电源工作效率都超过了以往采用控制电路与功率开关管相分立的拓扑结构形式的开关电源。
关键词 电源管理系统;PMS;安全生产
中图分类号 TP3 文献标识码 A 文章编号 1674-6708(2016)172-0211-03
流花11-1油田位于南中国海珠江口外海海域,距香港东南约220km,水深约310m左右。平台电站由3台进口小功率机组和一台大功率国产机组并网供电,对运维人员来说,保持电站平稳运转具有很大的挑战性。
流花11-1FPS电站电源管理系统(PMS)由发电机组PLC控制系统,与VSD PLC系统,钻机SCR PLC和集成在FPS生产控制系统(FCS)的电源管理PLC组成,实现对平台现有电源管理功能。
电站电源管理系统(PMS)要切实保障油田电站正常生产和生活用电的需求,所以必须满足以下条件:
1)确保人身安全和设备安全。
2)确保持续供电和可靠性供电。
3)确保电能质量和减少能源浪费。
4)尽可能做到节能减排,提高能源效率。
油田电站安全可靠运行、提供优质电能和提高电能经济性,是PMS系统建设和运营的一项最基本任务。
1 设计原则
流花11-1FPS电站PMS系统按照以下原则进行设计:
1)符合国家标准、行业标准和相关规定,严格按照国家或者国际及行业最新规范和标准要求
2)性价比高,系统具有较高的性能价格比,使管道以最低的运行成本、最优的工况正常运行。
3)技术先进,功能强大,系统采用罗克韦尔自动化公司软硬件产品进行开发,其产品在工业应用中已被证明是成熟的产品。系统具有强大的人机对话能力,能满足各种现场复杂环境下的连续监控的功能。
4)系统安全、稳定、可靠。PMS系统的PLC控制器、控制电源、I/O系统、HMI等都采用冗余的架构,重复利用率可达到99.99%,当某一节点发生故障时,可自动进行切换,电站系统安全、稳定、可靠的运行。
5)可扩展性强,硬件是模块化的,允许将来在容量和功能上的扩展。
2 硬件架构(图1)
流花11-1FPS电站PMS系统控制系统硬件采用A-BPLC的ControlLogix系统,ControlLogix系统封装外形小,不仅可提供离散、驱动、过程和安全控制,还具有可靠的通信功能和最先进的I/O,系统采用模块化结构,使开发者能高效的进行设计、构建和修改,从而大幅节省培训和工程设计成本。
2.1 过程信号采集
系统输入信号:
1)发电机输出功率。
2)发电机组出线断路器状态。
3)4160V A/B段母线频率。
4)ESP,生产管汇及测试管汇运行优先权数据。
5)钻/修井工况时,SCR系统斜率控制和相位控制。系统输出参数:
1)以百分比柱状图形显示的发电机功率。
2)VSD/ESP运行功率。
3)发电机组接入和停机提示信号。
4)系统错误,事件及故障报警信号及打印。
5)钻机SCR系统模拟相控信号。
6)ESP/VSD 速度降低至预设低频信号。
2.2 软硬件配置
PMS系统的硬件要求配置如下:
1)ControlLogix系统采用双环ControlNet网络。
2)CPU采用冗余配置。
3)各控制子站的交换机网络采用冗余环网架构。
4)由不间断电源供电(即UPS),信号电源采用独立的DV24V电源供电。
5)DO信号输出的继电器需确保可靠性。
6)HMI服务器由主服务器和备用服务器构成。
7)PLC程序基于RSLogix5000开发,上位机基于FactoryTalk View Studio开发。
3 系统功能(图2)
3.1 电源管理及负荷分配
PMS系统与5台机组通过以太网通讯交换数据,包括有功功率、无功功率、频率、电压等。并根据不同的在线发电机配置,PMS系统可与发电机的调速器和AVR协调工作,并实现以下功能。
1)有功功率和无功功率分配控制:在电站中发生负荷波动时,为了防止个别发电机的频率和电压可能会接近其PQ图的边界,此时PMS系统将分配各发电机组之间的出力,以提高系统在扰动下的稳定性。
2)功率需量和功率因数控制:PMS系统会实时各发电机相对于母线的输入/输出功率,并计算功率差额。然后根据功率因数的范围,在满足发电机基本出力的前提下,调整AVR控制无功功率输出,以维持系统的功率因数在合理范围内。
3)母线频率和电压控制:当电站负荷发生变化时,系统调整发电机输出的有功功率和无功功率,以维系电站的频率和电压稳定。
3.2 负荷优先脱扣
PMS系统会实时监测电站电气设备的状态,如发电机的出力、负载消耗的功率以及断路器的状态。当系统检测到发电机断路器跳闸,则会根据预计算的能量平衡结果,如果超过了电站所能承受的最大出力,则切除部分负荷,以确保电站发电机平稳运行。
优先脱扣系统可设置多个优先级,由运行人员预先定义。在系统中针对不同的优先脱扣触发条件,形成一个优先级别卸载表,当优先脱扣触发后,将系统计算得到的卸载级别与优先级别表对比后,发出卸载指令,卸载时间在80ms以内。
3.3 重载启动时负荷的保证及分配
一些重载设备(大负载)都可在HMI上设定额定负载及启动冲击系数。系统根据机组剩余功率、要启动的重载设备额定功率及启动冲击系数,实时计算发电机功率余量,以判断此重载能否启动。重载启动后,机组按照前述负荷分配模式自动分配负荷。
3.4 断路器的控制及自动同步控制
断路器与控制系统之间通过硬接线,连接断路器状态、手车位置、分合闸指令等信号,实现包含基本的状态监视、控制等功能。当进行发电机并车时,系统会判断逻辑条件,发出发电机断路器合闸指令,并最终由同期装置完成并车。
3.5 备用发电机组自启动控制
当在线机组发生故障停机,或过载,过流,过压,低频等极限情况时,处于备用状态的机组自动启动。
3.6 电站监控和报警系统
系统监视整个电站主要电气设备的状态和运行参数,当出现报警时,会有多种报警提醒方式,包括蜂鸣器,指示灯,旋转报警灯,同时HMI上会有详细的报警信息文字。
4 关键技术问题介绍
4.1 发电机转速控制技术
发电机的调速系统中调频器的作用在于,当发电机的负荷发生改变时,手动或者自动的操作调频器,使发电机的静态特性发生改变。如果负荷变动时,调速系统使原动机的转速保持不变,则称之为无差调节(Isoch);而如果负荷变动时,原动机的转速随着负荷增大而降低,则称之为有差调节(Droop)。多台发电机并列运行时,为了实现对其调节的有效性及避免系统震荡,都会采用单机Droop模式运行,调速系统完成部分调速任务,剩下的由机组控制系统来实现转速无差调整。
4.2 发电机频率调整策略
区域发电机组频率调节时,可分为按频率偏差调整、按交换频率偏差调整和按频率和交换功率偏差调整三种。按频率偏差调整时,只能保证系统频率不变,不能控制联络线上流通的功率;按交换功率偏差调整时,只能保证联络线上的交换功率不变,而不能控制系统的频率。只有按频率和交换功率偏差调整时,才可以保证区域范围内功率的就地平衡。在PMS系统,对影响发电机频率的各个调整因素进行逻辑排序,当发电机的频率和对电站的有功贡献发生偏差时,便对其进行相应调整。
5 结论
流花11-1FPS电站PMS系统自投入运行以来,系统运行效果良好,给整个电站提供了完整的安稳策略,极大地减少了故障停产的损失,取得了显著的经济效益,为整个油田安全稳定生产提供了可靠的保障。
参考文献
[1]高健.浅谈海上电网优先脱扣系统控制方法[J].通讯世界,2016(1):174-175.
[2]刘新天.电源管理系统设计及参数估计策略研究[D].合肥:中国科学技术大学,2011.
关键词:继电保护装置;工作原理;故障分析;验证
本文从开关电源的原理入手,以测试的角度,对两种有故障的电源模块通过试验再现其故障现象,并分析了其故障原因,最后对改进后的开关电源进行了对比验证。
1开关电源工作原理
用半导体功率器件作为开关,将一种电源形态转变为另一形态,用闭环控制稳定输出,并有保护环节的模块,叫做开关电源。
高压交流电进入电源,首先经滤波器滤波,再经全桥整流电路,将高压交流电整流为高压直流电;然后由开关电路将高压直流电调制为高压脉动直流;随后把得到的脉动直流电,送到高频开关变压器进行降压,最后经低压滤波电路进行整流和滤波就得到了适合装置使用的低压直流电。
电源工作原理框图如图1所示。
图1开关电源原理图
2故障现象分析
由于继电保护用开关电源功能要求较多,需考虑时序、保护等因素,因此开关电源设计中的故障风险较高。另外供电保护装置又较民用电器工作条件苛刻,影响继电保护开关电源的安全运行。本文着重分析了两种因设计缺陷而造成故障的开关电源。
2.1输入电源波动,开关电源停止工作
1)故障现象:外部输入电源瞬时性故障,随后输入电压恢复正常,开关电源停止工作一直无输出电压,需手动断电、上电才能恢复。
2)故障再现:用继电保护试验仪,控制输入电压中断时间,通过便携式波形记录仪记录输入电压和输出电压的变化。控制输入电压中断时间长短,发现输出存在如下三种情况:
a)输入电源中断一段时间(约100~200ms)后恢复,此后输入电压恢复正常,开关电源不能恢复工作。(此过程为故障情况),具体时序图见图2所示。
图2输入电源中断一段时间后恢复
b)输入电压长时中断(大于250ms)后恢复,+5V、+24V输出电压均消失,此过程与开关电源的正常启动过程相同。具体时序图见图3所示。
c)输入电压短暂中断(小于70ms)后恢复,+5V输出电压未消失,而+24V输出电压也未消失,对开关电源正常工作没有影响。具体时序图见图4所示。输入电压消失时间短暂,由于输出电压未出现欠压过程,电源欠压保护也不会动作。
图3输入电源长时中断后恢复
图4输入电源短时中断后恢复
3)故障分析:要分析此故障,应先了解该开关电源的正常启动逻辑和输出电压保护逻辑。
输入工作电压,输出电压+5V主回路建立,然后由于输出电压时序要求,经延时约50ms,+24V输出电压建立。
输出电压欠压保护逻辑为:当输出电压任何一路降到20%Un以下时,欠压保护动作,且不能自恢复。
更改逻辑前,因输入电压快速通断而引起的电源欠压保护误动作,其根本原因是延时电路没有依据输入电压的变化及时复位,使得上电时的假欠压信号得不到屏蔽,从而产生误动作,如图2所示。
4)解决措施:采取的措施是在保护环节上增加输入电压检测电路,并在延时电容上并接一个电子开关,只要输入电压低于定值(开关电源停止工作前的值),该电子开关便闭合,延时电路复位,若输入电压重新上升至该设定值,给保护电路供电的延时电路重新开始延时,电源重启动时的假欠压信号被屏蔽,彻底解决了由于输入电压快速波动所产生的电源误保护。从而避免了图2的情况,直接快速进入重新上电逻辑,此时的输出电压建立过程见图3所示。逻辑回路见图5所示。
图5增加放电回路后原理图
5)试验验证:用继电保护试验仪状态序列模拟输入电源中断,用便携式波形记录仪记录输出电压随输入电压的变化波形。调整输入电压中断时间,发现调整后的电源仅出现b)、c)两种情况,不再出现a)即故障情况。
2.2启动电流过大,导致供电电源过载告警
1)故障现象:电源模块稳态工作电压为220V,额定功率为20.8W,额定输出时输入电流约为130mA。当开关电源输入电压缓慢增大时,导致输入电流激增,引起供电电源过载告警。
2)故障分析:经查发现输入电压为60V时,电源启动,此时启动瞬态电流约为200mA,稳态电流为600mA,启动时稳态电流和瞬态电流将为600±200mA,造成输出电流激增。而由于条件限制,此电源模块的供电电源输出仅为500mA,因此造成供电电源过载。
由于开关电源工作需要一定的功率,设计中由于未考虑到电源启动时,输出回路的启动需要一定的功率,而启动电压比较低,所以功率的突增,必然带来开关电源启动瞬态电流的激增,电流的激增对供电电源有较大的冲击。
3)解决措施:启动需要的功率一定,如果要减小启动电流,可以考虑增加启动电压的门槛。将开关电源的启动电压提高到130~140V。
4)试验验证:调整开关电源的启动电压后,通过试验仪模拟输入电压缓慢启动。当开关电源在满载情况下,试验中缓慢上升输入电压(上升速率5V/s或10V/s),从0~130V启动,启动时稳态电流降低到200~220mA,稳态电流大约为200±100mA,因而启动时稳态电流和瞬态电流将为400±100mA,启动电流较改进前减小300mA,不会对供电电源造成太大的冲击。可有效避免输入电压瞬间降低时,给整个供电回路造成较大的电流冲击。
3结束语
从以上问题分析可知,开关电源设计时,需要关注电能变换的各个环节,开关电源的输出电压建立和消失时序和电源的保护功能,是紧密联系的,当其中的某一环节存在缺陷时,开关电源就不能正常工作。因此在开关电源设计前,应重点进行两种工作:
1)考虑诸如此类的问题,如启动功率一定时,启动电压门槛过低,会产生输出电流瞬态突增的现象。
关键词:PWM;OP227Y;开关电源;高频变压器
Design of Pulse witch Power upply Based on OP227Y
ZANG Yuanmin,U Wanqiang
(College of Electrical and Information Engineering,Xuchang University,Xuchang,461000,China)[J12/3]
Abstract:A pulse switch power supply based on OP227Y is introduced in the paper,after analsing its working principle,the whole structure of switch power supply is also designed,the main design content consists of the high frequency trans[CD2]former,the main circuit and the control circuit,then the working principle and the main action of each function module of OP227Y are introduced in the paper,finally the whole circuit of system is designed
Keywords:PWM;OP227Y;switch power supply;high frequency transformer[J12/3]
脉冲电源是各种电源设备中比较特殊的一种,它的电压或电流波形为脉冲状。其实质上是一种通断的直流电源,其基本工作原理是首先经过慢储能,使初级能源具有足够的能量,然后向中间储能和脉冲成形系统放电(或流入能量),能量经过储存、压缩形成脉冲或转化等复杂过程之后,形成脉冲电源。
随着开关电源的发展,电源的小型化、模块化、智能化越来越受到人们的关注。各种电源控制芯片如雨后春笋纷纷涌现,美国电源集成(PI)公司相继推出OP系列芯片,这些芯片集脉冲信号控制电路和功率开关器件MOEF于一体,具有高集成度、最简电路、最佳性能指标等特点,能组成高效率无工频变压器的隔离式开关电源。所以,本文设计基于OP227Y芯片控制的开关电源。
1 总体结构
本文设计的脉冲开关电源总体结构如图1所示。
由图1可知,输入220 V交流电流,先由4个二极管的全桥整流,然后通过OP227Y开关和高频变压器变压,再经过二次整流、电容滤波和电感平波,输出10 W的直流电。高频变压器二次侧有3个绕组,2路输出功率,另一路为反馈回路提供电源。反馈回路从输出端进行电压取样,通过光耦来控制脉冲控制开关的通断,调节输出功率。
关键词: 直流开关电源;开关电源;设计
1 直流稳压电源概述
直流稳压电源在一个典型系统中担当着非常重要的角色。从某种程度上可以看成是系统的心脏。电源的系统的电路提供持续的、稳定的能源,使系统免受外部的干扰,并防止系统对其自身产生的伤害。如果电源内部发生故障,不应造成系统的故障,而确保系统安全可靠运行。因此,人们非常重视系统直流电源的设计或选用。直流稳压电源通常分为线性稳压和开关稳压两种类型。
1.1 线性稳亚电源
线性稳压电源是指起电压调整功能作用的器件始终工作在线性放大区的直流稳压电源,期工作原理如图1。
它由50 工频变压器、整流器、滤波器以及串联调整稳压器组成。
线性稳压电源的优点是具有优良的纹波及动态响应特性。但同时存在以下缺点:输入采用50 工频变压器,体积庞大且和很重;电压调整器件工作在线性放大区内,损耗大,效率低;过载能力差。
线性电源主要应用在对发热和效率要求不高的场合,或者要求成本及设计周期短的情况。线性电源作为板载电源广泛应用于分布电源系统中,特别是当配电电压低于40V时。线性电源的输出电压只能低于输入电压,并且每个线性电源只能产生一路输出。线性电源的效率在百分之三十五到百分之五十之间,损耗以热的形式耗散。
1.2 PWM开关稳压电源
一般将开关稳压电源简称开关电源,开关电源与线性稳压电源不同,它是起电压调整功能作用的器件,始终工作在开关状态。开关电源主要采用脉宽调制技术。
开关电源的优点;
1)功耗小、效率高。电源中开关器件交替地工作在导通-截止和截止-导通的开关状态,转换速度快,这使得开关管的功耗很小,电源的效率可以大幅度提高,可达到百分之九十到百分之九十五。
2)体积小、重量轻。开关电源效率高,损耗小,则可以省去较大体积的散热器;隔离变压用高频变压器取代工频变压器,可大大减小体积,降低重量;因为开关频率高,输出滤波电容的容量和体积大为减小。
3)稳压范围宽。开关电源的输出电压由占空比来调节,输入电压的变化可以通过调节占空比的大小来补偿,这样在工频电网电压变化较大时,它仍然能保证有较稳定的输出电压。
4)电路形式灵活多样。设计者可以发挥各种类型电路的特长,设计出能满足不同的应用场合的开关电源。
开关电源的缺点主要是:存在开关噪声大。在开关电源中,开关器件工作在开关状态,它产生的交流电压和电流会通过电路中的其他元器件产生尖峰干扰和谐振干扰,这些干扰如果不采用一定的措施进行抑制、消除和屏蔽,就会严重影响整机的正常工作。此外,这些干扰还会串入工频电网,使附近的其他电子仪器、设备、和家用电器收到干扰。因此设计开关电源时,必须采取合理的措施来抑制其本身产生的干扰。
PWM开关电源在使用时比线性电源具有更高的效率和灵活等特点。因此,在便携式产品、航空和自动化产品、仪器仪表以及通讯系统等,要求高效率、体积小、重量轻和多组电源电源输出的场合,得到了广泛的应用。但是开关电源的成本高,而且需要开发周期较长。
2 开关电源的设计
2.1 开关电源的工作原理
开关电源主要采用直流斩波技术,即降压变换、升压变换、变压器隔离的DC/DC变换电路理论和PWM控制技术来实现的。具有输入、输出隔离的PWM开关电源工作原理框图,如图2所示。
50Hz单相交流220V电压或三相交流220V/380V电压经EMI防电磁干扰电源滤波器,直接整流滤波;然后再将滤波后的直流电压经变换电路变换为数十千赫或数百千赫的高频方波或准方波电压,通过高频变压器隔离并降压(或升压)后,再经高频整流、滤波电路;最后输出直流电压。通过取样、比较、放大及控制、驱动电路,控制变换器中功率开关管的占空比,便能得到稳定的输出电压。在直流斩波控制中,有定频调宽、定宽调频和调频调宽3种控制方式。定频调宽是保持开关频率(开关周期T)不变,波形如图3所示。
通过改变导通时间高。而定宽调频则是保持导通时间T on不变,通过改变开关频率,来达到改变占空比的一种控制方式。由于调频控制方式的工作频率是不固定的,造成滤波器设计困难,因此,目前绝大部分的开关电源均采用PWM控制。
2.2 开关电源的主要性能指标
开关电源的质量好坏主要由其性能指标来体现。因此,对于设计者或使用者来讲,都必须对其内容有一个较全面的了解。一般性能指标包括电气指标、机械特性、适用环境、可靠性、安全性以及生产成本等。这里仅介绍常见的电气指标。
2.2.1 输入参数
输入参数包括输入电压、交流或直流、频率、相数、输入电流、功率因数以及谐波含量等。
1)输入电压:国内应用的民用交流电源电压三相为380V,单相为220V;国外的电源需要参出口国电压标准。目前开关电源流行采用国际通用电压范围,即单相交流85~265V,这一范围覆盖了全球各种民用电源标准所限定的电压,但对电源的设计提出了较高的要求。输入电压范围的下限影响变压器设计时电压比的计算,而上限决定了主电路元器件的电压等级。输入电压变化范围过宽,使设计中必须留过大裕量而造成浪费,因此变化范围应在满足实际要求的前提下尽量小。
2)输入频率:我国民用和工业用电的频率为50Hz,航空、航天及船舶用的电源经常采用交流400Hz输入,这时的输入电压通常为单相或三相115V。
3)输入相数:三相输入的情况下,整流后直流电压约是单相输入时的1.7倍,当开关电源的功为3~5kW时,可以选单相输入,以降低主电路器件的电压等级,从而可以降低成本;当功率大于5kW时,应选三相输入,以避免引起电网三相间的不平衡,同时也可以减小主电路中的电流,以降低损耗。
4)输入电流:输入电流通常包含额定输入电流和最大电流2项,是输入开关、接线端子、熔断器和整流桥等元器件的设计依据。
5)输入功率因数和谐波:目前,对保护电网环境、降低谐波污染的要求越来越高,许多国家和地区都已出台相应的标准,对用电装置的输入谐波电流和功率因数做出较严格的规定,因此开关电源的输入谐波电流和功率因数成为重要指标,也是设计中的一个重点之一。目前,单相有源功率因数校正(FPC)技术已经基本成熟,附加的成本也较低,可以很容易地使输入功率因数达到0.99以上,输入总谐波电流小于5%。
2.2.2 输出参数
输出参数包括输出功率、输出电压、输出电流、纹波、稳压精度、稳流精度、输出特性以及效率等。
1)输出电压:通常给出额定值和调节范围2项内容。输出电压上限关系到变压器设计中电压比的计算,过高的上限要求会导致过大的设计裕量和额定点特性变差,因此在满足实际要求的前提下,上限应尽量靠近额定点。相比之下,下限的限制较宽松。
2)输出电流:通常给出额定值和一定条件下的过载倍数,有稳流要求的电源还会指定调节范围。有的电源不允许空载,此时应指定电流下限。
3)稳压、稳流精度:通常以正负误差带的形式给出。影响电源稳压、稳流精度的因素很多,主要有输入电压变化、输出负载变化、温度变化及器件老化等。通常精度可以分成。3项考核:① 输入电压调整率;② 负载调整率;③ 时效偏差。同精度密切相关的因素是基准源精度、检测元件精度、控制电路中运算放大器精度等。④ 电源的输出特性:与应用领域的工艺要求有关,相互之间的差别很大。设计中必须根据输出特性的要求,来确定主电路和控制电路的形式。⑤ 纹波:开关电源的输出电压纹波成分较为复杂,通常按频带可以分为3类: 高频噪声,即远高于开关频率 的尖刺;开关频率纹波,指开关频率 附近的频率成分; 低频纹波,频率低于的 成分,即低频波动。
对纹波有多种量化方法,常用的有纹波系数、峰峰电压值、按3种频率成分分别计量幅值以及衡重法。⑥ 效率:是电源的重要指标,它通常定义为η=Po/Pi×100%。式中,Pi为输入有功功率;Po为输出功率。通常给出在额定输入电压和额定输出电压、额定输出电流条件下的效率。对于开关电源来说,效率提高就意味着损耗功率的下降,从而降低电源温升,提高可靠性,节能的效果明显,所以应尽量提高效率。一般来说,输出电压较高的电源的效率比输出低电压的电源高。
2.2.3 电磁兼容性能指标
电磁兼容也是近年来备受关注的问题。电子装置的大量使用,带来了相互干扰的问题,有时可能导致致命的后果,如在飞行的飞机机舱内使用无线电话或便携式电脑,就有可能干扰机载电子设备而造成飞机失事。电磁兼容性包含2方面的内容:
电磁敏感性、电磁干扰分别指电子装置抵抗外来干扰的能力和自身产生的干扰强度。通过制定标准,使每个装置能够抵抗干扰的强度远远大于各自发出的干扰强度,则这些装置在一起工作时,相互干扰导致工作不正常的可能性就比较小,从而实现电磁兼容。
因此,标准化对电磁兼容问题来说十分重要。各国有关电磁兼容的标准很多,并且都形成了一定的体系,在开关电源设计时应考虑相关标准。
3 开关电源的设计步骤
开关电源的设计一般采用模块化的设计思想,其设计步骤是:
1)首先从明确设计性能指标开始,然后根据常规的设计要求选择一种开关电源的拓扑结构、开关工作频率确定设计的难点,依据输出功率的要求选择半导体器件的型号;
2)变压器和电感线圈的参数计算,磁性材料设计是一个优质的开关电源设计的关键,合理的设计对开关电源的性能指标以及工作可靠性影响极大;
3)设计选择输出整流器和滤波电容;
4)选择功率开关的驱动控制方式,最好选用能实现PWM控制的集成电路芯片,也可利用单片机实现PWM控制;
5)设计反馈调节电路;
6)根据设计要求设计过电压、过电流和紧急保护电路;
7)根据热分析设计散热器;
8)设计实验电路的PCB板和电源的结构,组装、调试,测试所有的性能指标;