首页 > 文章中心 > 重金属污染的措施

重金属污染的措施

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇重金属污染的措施范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

重金属污染的措施

重金属污染的措施范文第1篇

【关键词】化工行业;水体及土壤污染;重金属污染

随着化学工业的飞速发展,人们对金属矿产品的需求也呈现日益增长的趋势。小到餐厅厨房的炊具以及珠宝首饰,大到核工业的核能物质。而由金属污染引发的环境问题日趋严重,其对生态系统中水体及土壤的破坏基本上难以修复,并且人为的改造和维护也很难进行。尤其是前段时间的“牛奶河”事件再一次为我们敲响了环境保护的警钟以及让我们清楚地看到化工行业引起的水体及土壤重金属污染的现状和不争的事实。

一、重金属污染的种类及来源

所谓重金属污染,是指由重金属及其化合物引起的环境污染。尤其是由化工行业引起的水体及土壤重金属污染具有永久性以及明显的累积效应。如下图为重金属在水体及土壤中的迁移转化机理[1]。

1.1 水重金属污染

重金属在水体中积累到一定的限度就会对水体-水生植物-水生动物系统产生严重危害,并可能通过食物链直接或间接地影响到人类的自身健康[2]。对水质产生污染的重金属主要有Cd、Pb、As、Hg、Cr和Co等。其中以Hg的毒性最大,Cd次之。此外,As由于其毒性可将其归为重金属污染。

1.2 土壤重金属污染

土壤重金属污染是指由于人类活动将重金属带入到土壤中,致使土壤中重金属含量明显高于背景含量、并可能造成现存的或潜在的土壤质量退化、生态与环境恶化的现象[1]。污染土壤的重金属包括生物毒性显著的元素如Cd、Pb、Hg、Cr、As,以及有一定毒性的元素如Cu、Zn、Ni。

1.3 重金属污染的来源

重金属的污染主要来源化学工业污染,污染源主要有冶炼、化工、电镀、电子、制革等行业排放的“三废”等以及民用固体废弃物不合理填埋堆放和大量化肥、农药的施用,使得各种重金属污染物以单质或离子形态进入水体、土壤以及人体[2]。

二、重金属污染的防治措施

2.1水体重金属污染的防治对策

2.1.1 控制水体重金属污染源

控制重金属污染源,预防水体的污染。一方面要加强水资源的管理力度;另一方面要严格控制各种污水的排放源头以及监督、管理和控制有关工业部门和改革其生产工艺[3]。

2.1.2 水体重金属污染的工程治理

目前常用的治理水体重金属污染的工程工程措施主要有三类,即物理处理法、化学处理法及生物处理法[3]。

2.1.2.1 物理和化学方法

物理和化学方法属于传统处理重金属污染水体的的措施,包括沉淀法、螯合树脂法、高分子捕集剂法、天然沸石吸附法、膜技术、活性炭吸附工艺以及离子交换法等[4]。物理和化学方法具有净化效率高、周期较短等优点;但存在选择性小、流程长、操作麻烦以及处理费用高等缺点。

2.1.2.2 生物处理法

生物处理法相对常规水处理法有投资小、成本低以及工艺简单等优点而得到广泛应用。国外,Groudeva等[5](2001) 对用生物修复水体的重金属污染作了最新的综述。总之,水体有害重金属的生物修复技术有着广泛、低廉的原材料及很好的前景。

2.2 土壤重金属污染的防治对策

土壤受重金属污染后,蓄积在土壤中的有害重金属能迁移到水、空气和植物中难以消除[6]。因此,土壤受重金属污染应以“预防为主”。

2.2.1 综合防护措施

控制和消除土壤的重金属污染源,同时采取消除土壤中的重金属污染物或控制重金属污染物迁移转化的措施,使其不能进入食物链[6]。

2.2.2 生物防治

土壤污染物质可通过生物降解或植物吸收而净化土壤。如羊齿铁角蕨植物对土壤中Cd的吸收率可达10%,多年可使土壤Cd含量降低50% [7]。

2.2.3 施加抑制剂

土壤施加某种抑制剂,可改变重金属在土壤中的迁移转化,减少作物吸收,如使用石灰可增加土壤PH,使Cu、Zn、Hg、Cd等金属或氢氧化物沉淀。研究表明,施用石灰后稻米含Cd量可降低30%[6]。

三、结论

随着水体及土壤重金属污染的日益严重化以及重金属污染物进入生态系统后造成难以修复的危害,其正越来越为人们所了解和重视。目前重金属污染的治理方法以物理化学方法为主,生物修复技术作为经济、高效和环保的治理技术在治理和防治重金属污染方面将发挥更大作用。新型高效的水体及土壤重金属污染防治措施有待优化及创新。

【参考文献】

[1]孙铁珩,周启星,李培军,等.污染生态学[M].北京:科学出版社,2001.

[2]邓志瑞,余瑞云,余采薇,等.重金属污染与人体健康[J].环境保护,1991(12):26-27.

[3]贾燕,.重金属废水处理技术的概况及前景展望[J].中国西部科技(学术版),2007 (4):10-13.

[4]张剑波,冯金敏.离子吸附技术在废水处理中的应用和发展[J].环境污染治理技术与设备,2000(1):46-51.

[5]Groudeva, Guthrie EA, Walton BT. Bioremediationin the rhizosphere[J]. Environ Sci Thechnol,1993,27:2630-2636.

重金属污染的措施范文第2篇

关键词:铜陵市 重金属污染 研究进展

中图分类号:X5 文献标识码:A 文章编号:1672-3791(2013)07(c)-0137-03

随着我国工业化的不断加速,开发利用的重金属种类、数量和方式越来越多,涉及重金属的行业越来越多,再加上一些污染企业的违法开采、超标排污等问题突出,使重金属污染呈蔓延趋势,污染事件出现高发态势,表现出长期积累和近期集中爆发、历史遗留问题和新出现问题相交织的特点[1]。2011年2月,国务院批复了《重金属污染综合防治“十二五”规划》。体现了我国对重金属污染防治的高度重视。

铜陵市是一个有着三千多年开采历史的极具特色的有色多金属矿区,是我国重要的有色金属工业基地,有着悠久的采冶铜历史[2]。目前已形成以采、选、炼、加工为一体的“铜”产业链,对推动铜陵地区社会经济发展发挥了巨大作用.但也带来了一系列的重金属环境污染和生态破坏问题,对公众身体健康构成了潜在或现实的危害。铜陵县、铜官山区是国家60个重金属砷控制区之一,46家企业被列为环保部重点监控企业,重金属污染防治任务十分艰巨[3]。

1 铜陵重金属污染研究分布

目前有关铜陵重金属污染的研究,主要集中在矿区土壤、尾矿库、水及水体沉积物污染、大气沉降物及城区表土与灰尘和潜在生态风险的评估。

1.1 矿区土壤

土壤中的重金属,在自然情况下,主要来源于成土母岩和残落的生物物质。但是近代以来,工农业的快速发展,人类活动加剧了土壤重金属的污染,污染程度越来越重,范围越来越广。胡圆圆等[4]对铜陵铜官山铜矿区土壤重金属含量进行了研究。研究结果表明,铜官山铜矿区土壤Cu、Zn、As、Hg平均含量高于铜陵市土壤背景值,土壤已受Cu、Zn、As重污染,受Hg轻污染。

杨西飞[5]运用Matlab软件模糊推理系统(FIS)对铜陵矿区农田表层土壤重金属污染进行了评价,发现该矿区农田表层土壤普遍受到了重金属不同程度的污染,其中Cd污染最严重,其次是Cu,其它各元素依次为Pb>As>Zn>Hg。土壤中Hg、Cd、Cu和Pb元素在表层明显富集,各元素总量在不同深度均明显高于土壤自然背景值,Hg、Cd、Cu、Pb和Zn在垂向上呈递减趋势,且在横向上主要以洋河、顺安河和新桥河为中心向四周递减。不同形态重金属在总量中的百分含量随深度变化明显不同。

王嘉[6]对铜陵的两个矿区(狮子山区朝山金矿主井和铜陵县顺安镇新桥矿业公司主井)土壤重金属污染问题进行了较详细的研究,运用内梅罗指数法和地质累积指数法对研究区进行了现状评价,研究表明,As和Cd为严重超标污染物;As的致癌风险和非致癌风险都大,Cr的致癌风险最大;Cd、Hg、As对生态危害的潜在风险很大;所研究的两矿区均存在很高的致癌风险和生态风险,朝山金矿区相对更高些。

白晓宇等[7]运用地统计学分析手段对铜陵矿区土壤中若干重金属元素进行空间变异分析及空间插值和污染分析,结果表明,As、Cd、Pb、Zn元素的变异函数表现为各向异性,其方向性可能主要受矿床分布控制;Hg元素因受小尺度因子影响较大而呈现块金效应较大。As元素污染的主要是由于铜矿、铅锌矿、褐铁矿矿床及其开发;Cd元素的污染与铅锌矿床及其开发,以及农业污灌有关;Pb、Zn元素的污染与铅锌矿床及其开发密切相关。

1.2 尾矿库

铜陵市是安徽省境内重要的铜生产基地。在铜矿生产的同时,产出了大量尾矿堆存于附近的尾砂库中。尾矿库多建于山间谷地、河流上游地区,其下游是经济、农业发达地区。近几年来,随着经济发展和城市的扩容,部分郊区的尾矿库已经进入市区,尾矿库的环境效应及其安全性令人关注。徐晓春等[8]对安徽铜陵林冲尾矿库复垦土壤采样检测的结果表明复垦土壤中Cu的污染极其严重,As、Zn、Pb的污染较轻。徐晓春[9]还对铜陵凤凰山矿林冲尾矿库中重金属元素的空间分布特征及相关土壤、水系沉积物和植物中重金属元素含量变化进行了研究,发现长期堆存的尾矿会发生元素的次生淋滤与富集。

惠勇[10]等对铜陵市凤凰山尾矿库三个不同凤丹种植地进行了研究,结果表明,尾矿土壤中的Cu、Zn、Cd含量均较高,其中Cu、Cd的含量分别是国家土壤环境质量二级标准的1.04~1.30倍和6.58~9.34倍。矿区近年来种植的作物对重金属的吸收富集作用不明显。

王少华[11]等采集了铜陵市杨山冲尾矿库、尾矿库周边及较远距离土壤、水、植物样品,测定了其中的重金属含量,发现所采集的土壤、水和植物中都存在不同程度的As,Hg,Cu,Zn和Pb等元素的富集现象,且不同元素之间的富集程度也有所差异;重金属元素含量随着远离尾矿库,有逐渐递减的趋势。周元祥[12]等对杨山冲尾矿库尾砂重金属元素的迁移规律进行了研究,发现在自然风化条件下,Cu、As、Hg、Cd和Pb的淋滤迁移速度相对较快,Zn略慢;Zn、Pb、Hg和Cd在50~60 cm深处会发生二次富集;风化后尾砂中Cu、Pb、As和Hg以残渣态为主要赋存形式,其次为铁锰氧化态,其中Zn和Cd以铁锰氧化态含量在表层最高。

1.3 水及水体沉积物

水体及沉积物因其独特的环境特点,往往会成为重金属元素的“源”和“汇”,学者们也因此对其进行了众多研究。张敏[13]等通过测定长江铜陵段枯、丰水期江水中Cu、Pb、Zn和Cd不同形态的含量,分析了四种金属在江水中的存在形态分布,不同水期含量变化,水中悬浮物对金属吸附能力大小,以及近20年来含量的变化情况。发现长江铜陵段江水中各重金属总量丰水期时大于枯水期,重金属各形态含量之间均有差异。与近20年江水中的重金属背景值比较,长江铜陵段重金属含量有普遍升高的趋势。

徐晓春[14]等对相思河的重金属污染情况进行了调查和研究,采用潜在危害指数法对沉积物中重金属进行了评价。研究表明,相思河中下游受到的重金属污染明显比上游严重,Cu和Cd的富集系数和生态危害高。

李如忠[15]等对惠溪河滨岸带土壤重金属形态分布及风险评估进行了研究,研究表明,惠溪河滨岸带土壤中Cd和As达到极高风险等级,Cu为中等风险等级;根据综合污染及潜在生态风险贡献率水平,初步判定As和Cd为惠溪河滨岸土壤重金属污染治理和修复的优先控制对象。

王岚[16]等对长江水系表层沉积物重金属污染特征及生态风险性评价的研究中表明,安徽顺安河位点为极强生态危害范畴。

叶宏萌[17]对铜陵矿区的新桥至顺安河沉积物中五种重金属的全量和形态进行了研究,并结合环境条件分析了它们的横向和纵向迁移变化特征,研究表明该区域沉积物重金属中Cu、Zn、Pb、Cd的均值皆远超长江下游沉积物背景值,其中以Cu和Cd最显著。对重金属横向迁移分析发现,矿山重金属会随着沉积物的距离增加而显著降低,新桥河沉积物的迁移变化显著高于顺安河沉积物。在迁移过程中,Cu、Zn、Cr残渣态逐步增加,毒性减弱,Pb、Cd的活性态比例增大。重金属的纵向迁移分析结果表明,离矿山的位置远近对沉积柱金属的总量和形态起决定作用,矿区下游河流沉积物既受尾矿的影响,也受河流流域物质本身的影响。

1.4 大气沉降物及城区表土与灰尘

随着城市化进程的加快,而带来的交通污染以及其他方面的污染使得大气环境质量越来越差,大气环境污染问题越来越引起人们的注意。李如忠[18]利用美国国家环保局(US EPA)推荐的健康风险评价模型对铜陵市区表土与灰尘重金属污染健康风险进行了研究。研究表明,铜陵城区土壤和地表灰尘已遭受较为严重的重金属污染;不同功能用地的致癌风险均显著超过US EPA推荐的可接受风险阈值范围和国际辐射防护委员会(ICRP)推荐的最大可接受风险值;铜陵市表土与地表灰尘已对公众身体健康构成危害;其中主导致癌与非致癌风险效应的主要污染因子是As,主要暴露途径是手-口摄入途径。

吴开明[19]用藓袋法对铜陵市大气重金属污染进行了研究,发现铜陵市Cu污染最严重,有色金属冶炼工业是铜陵市最主要的污染源,交通运输对大气重金属污染也日趋严重。

殷汉琴[20]对铜陵市大气降尘中铜元素的污染特征进行了研究,采用富集因子法定性地判断各采样点铜元素的来源,研究表明,铜陵市大气降尘中铜元素污染严重并且形成了以铜开采和冶炼企业为中心的污染区域。研究发现铜矿石的开采和冶炼对大气降尘中的铜元素污染贡献较大, 是主要的污染源。

2 重金属污染修复技术与控制措施研究

重金属在土壤、水体、大气、生物体中广泛分布。由于大气和生物体中重金属的特殊性及其主要直接或间接来源于土壤和水体,所以对于重金属的污染修复技术主要集中在对土壤和水体中的重金属污染进行修复。

重金属在土壤中不易随水淋溶,不能被微生物分解,具有明显的生物富集作用且土壤污染具有较长潜伏期;由于土壤、污染物及地域的复杂性,土壤一旦受到污染,其治理不仅见效慢、费用高,而且受到多种因素的制约。目前,治理土壤重金属污染的途径主要有两种:(1)改变重金属在土壤中的存在形态、使其固定,降低其在环境中的迁移性和生物可利用性;(2)从土壤中去除重金属[21]。围绕这两种途径展开的土壤重金属治理措施有物理及物化措施、化学措施、农业生态措施、生物修复等[21~23]。

王华等[24]对我国底泥重金属污染防治研究做了相应综述,提出目前我国底泥重金属污染治理的常用方法有工程治理方法、生物治理方法和化学治理方法。

重金属污染物进入水生生态系统后对水生植物和动物均产生影响,并通过食物链发生富集,引起人体病变,危害人类。目前水体重金属污染治理修复方法主要有物理方法、化学方法、物理化学方法、集成技术、生物方法等[25]。

为控制铜陵市重金属污染、提高环境质量,铜陵市环保局组织编制了《铜陵市重金属污染综合防治“十二五”规划》,该规划以国家《重金属污染综合防治“十二五”规划》为指导,落实源头预防、过程阻断、清洁生产、末端治理的全过程综合防治理念,提出了一系列重金属污染防治措施,以求能遏制重金属污染趋势,改善区域环境质量,保护人民身体健康和环境权益。

3 结语

对铜陵市重金属污染研究情况进行了介绍,对重金属污染防治措施与修复技术经行了总结。根据目前研究结果表明,铜陵市重金属污染已比较严重。Cd、As、Cu和Pb为主要的污染元素,Hg虽然含量较低,但因为其毒性较大,亦当引起足够的重视。矿石的开采和冶炼以及尾矿的堆积成为铜陵市重金属污染的主要来源,所以首先应控制源头,治理矿石的开采和冶炼,清理尾矿的堆积。由于植被等生物体对重金属具有良好的吸附阻拦作用,可在采矿厂四周设置重金属吸收强防护带,阻止污染向更远扩散。对于已经受到污染的土壤,可以采用生物方法、物理或化学方法去除。

健全重金属污染防治法律体系、做好污染综合防治规划和强化行政管理是防治重金属污染的重要管理手段。《铜陵市重金属污染综合防治“十二五”规划》的提出对铜陵市重金属污染防治具有重要的指导和实践意义。健全重金属污染防治法律体系,实施清洁生产,监督实施环境影响评价验收工作,开发研究重金属污染防治技术等是目前重金属污染防治的重要任务。

参考文献

[1]罗吉.我国重金属污染防治立法现状及改进对策[J].环境保护,2012(18):24-26.

[2]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥工业大学博士学位论文,2005.

[3]铜陵市重金属污染综合防治“十二五”规划[R].

[4]胡园园,陈发扬,杨霞,等.铜陵铜官山矿区土壤重金属污染状况研究[J].资源开发与市场,2009,25(4):342-344.

[5]杨西飞.铜陵矿区农田土壤及水稻的重金属污染现状研究[D].合肥:合肥工业大学,2007.

[6]王嘉.铜陵矿区土壤重金属污染现状评价与风险评估[D].合肥工业大学,2010.

[7]白晓宇,袁峰,李湘凌,等.铜陵矿区土壤重金属元素的空间变异及污染分析[J].地学前缘,2008,15(5):256-263.

[8]陈莉薇,徐晓春,黄界颖,等.铜陵林冲尾矿库复垦土壤重金属含量及污染评价[J].合肥工业大学学报:自然科学版,2011,34(10):1540-1544.

[9]徐晓春,王军,李援,等.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J].岩石矿物学杂志,2003,22(4):433-436.

[10]惠勇,张凤美,王友保,等.铜陵市凤凰山尾矿区重金属污染研究[J].安徽农业科学,2011,39(23):1426-1426.

[11]王少华,杨劫,刘苏明.铜陵狮子山杨山冲尾矿库重金属元素释放的环境效应[J].高校地质学报,2011,17(1):93-100.

[12]周元祥,岳书仓,周涛发.安徽铜陵杨山冲尾矿库尾砂重金属元素的迁移规律[J].环境科学研究,2010(4):497-503.

[13]张敏,王德淑.长江铜陵段表层水中重金属含量及存在形态分布研究[J].安全与环境学报,2003,3(6):61-64.

[14]徐晓春,牛杏杏,王美琴,等.铜陵相思河重金属污染的潜在生态危害评价[J].合肥工业大学学报:自然科学版,2011(1):128-131.

[15]李如忠,徐晶晶,姜艳敏,等.铜陵市惠溪河滨岸带土壤重金属形态分布及风险评估[J].环境科学研究,2013,26(1):88-96.

[16]王岚,王亚平,许春雪,等.长江水系表层沉积物重金属污染特征及生态风险性评价[J].环境科学,2012,33(8):2599-2606.

[17]叶宏萌,袁旭音,赵静.铜陵矿区河流沉积物重金属的迁移及环境效应[J].中国环境科学,2012,32(10):1853-1859.

[18]李如忠,潘成荣,陈婧,等.铜陵市区表土与灰尘重金属污染健康风险评估[J].中国环境科学,2012,32(12):2261-2270.

[19]吴明开,曹同,张小平.藓袋法监测铜陵市大气重金属污染的研究[J].激光生物学报,2008,17(4):554-558.

[20]殷汉琴,周涛发,张鑫,等.铜陵市大气降尘中铜元素的污染特征[J].吉林大学学报:地球科学版,2009,39(4):734-738.

[21]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997(3):72-76.

[22]佟洪金,涂仕华,赵秀兰.土壤重金属污染的治理措施[J].西南农业学报,2003 (S1):37-41.

[23]顾红,李建东,赵煊赫.土壤重金属污染防治技术研究进展[J].中国农学通报, 2005,21(8):397-408.

重金属污染的措施范文第3篇

[关键词] 土壤重金属污染现状 防治措施

[中图分类号] X53 [文献标识码] A [文章编号] 1003-1650(2017)05-0287-01

陆良县隶属于云南曲靖,陆良县位于云南省东部,素有“滇东明珠”之称。我县土地面积广阔,农业粮食的播种面积901050亩,轻重工作发展迅速,经济实力雄厚。但是由于工业的发展和其他因素的影响,导致了我县的环境遭到了严重污染,尤其是土壤的重金属含量过高,严重阻碍了我县农业经济发展。针对这样一个状况,我农业综合服务中心相关负责人组织工作小组,制定了工作重点,积极寻求土壤重金属的污染成因、污染特点、污染危害,然后探讨了土壤重金属污染的预防和治理方式,科学合理的保护土壤,缓解重金属污染,促进农业健康发展。

1 土壤重金属污染现状

1.1 金属汞污染

土壤中汞的来源包括土壤母质、大气中汞的干湿沉降、工业污染源、农业污染源、含汞废弃物。其中农业污染主要是含汞农药的使用、含汞废水、废气、废渣的排放而污染土壤所致。较低含量的金属汞一般不会造成土壤污染,但是在土壤微生物作用下, 汞金属转化为具有剧烈毒性的甲基汞, 也称汞的甲基化。金属汞污染对农作物的危害随着作物的种类不同而有不同。

1.2 重金属镉污染

在我国的重金属土壤污染中,镉污染是危害性最大的,镉污染土壤特点有色金属矿产开发、冶炼及其他工业生产排出的废气、废水和废渣都会造成镉污染。而耕地大量使用的磷肥中也有相当高的镉含量,因此当这些磷肥进入土壤,也加重了土壤中的镉浓度。此外,城市污泥和垃圾的焚烧也可导致土壤中镉含量增高,由于土壤对镉有很强的吸着力, 因而镉易在土壤中造成蓄积。

1.3 重金属铅污染

铅是土壤污染较普遍的元素。污染源主要来自铅化工业的发展产生的废气、废水、废渣, 汽油燃烧后的尾气中含大量铅, 矿山开采、 金属冶炼、 煤的燃烧、大量含铅化肥使用、蓄电池的丢弃等也是重要的污染源。

1.4 重金属砷污染

土壤砷污染主要来自大气降尘、 尾矿与含砷农药, 燃煤是大气中砷的主要来源。砷中毒可影响作物生长发育, 砷对植物危害的最初症状是叶片卷曲枯萎, 进一步是根系发育受阻, 最后是植物根、 茎、 叶全部枯死。

总的来说,土壤重金属污染对植物的影响主要是对其生理生态过程、植物的产量和质置方面,如果污染过于严重的话,就会直接导致植物根系坏死,植物得不到应有的土壤营养,生长寿命大大缩减,甚至于直接死掉。

2 土壤重金属污染的预防措施

2.1 加大环境监管和治理力度

土壤重金属污染的情况越来越严重,造成了严重的危害,因此,政府必须引起高度重视,加大对土壤重金属含量的监测。首先政府部门应该组织一批专业的技术人才,采用先进的监测技术和设备,对我县的土壤进行动态监测,全面掌握重金属污染的类型、污染的程度,充分了解土壤中金属成分、含量的变化,统计监测信息,将土地进行重金属筛选,根据土壤污染的具体情况,恰当的选择土壤修复技术,为治理更大范围的重金属污染区积累经验;其次要坚强环保部门对环境的监管力度,杜绝重金属污染的来源,督促相关工业园区引进净化设备,含重金属元素的废弃物进行净化处理,减少排出量,同时严格控制城市生产生活废水直接进入农田,从根本上防止重金属对土壤的污染。

2.2 扩大土壤重金属污染宣传

重金属污染已经成为我县首要的土壤污染类型,必须提高人们的防范意思。我们可以利用先进的技术,通过互联网平台、以手机为载体,传统的书籍报刊等多种形式和途径,深入开展农产品产地土壤重金属污染防治的宣传工作,广泛动员和组织社会各界力量积极参与农产品产地土壤重金属污染防治工作,在全社会形成一种良好的社会风气,提高人们对土壤重金属污染的关注,让人们了解土壤重金属污染的严重危害性,自觉进行 土壤保护。

2.3 加强技术培育

将土壤重金属污染的专业技术人员组织起来,成立土壤重金属防治小组,深入我县各地区,对土壤重金属污染进行调查研究,为了更好的开展工作,一要积极开展技术培训,不断提高其整体业务素质,特别是基层机构人员的知识结构、技能和业务素质,提高他们的专业水平,同时我们还要根据污染情况,有针对性的开设培训内容,更好的服务于我县的土壤治理工作中。

2.4 客土深翻,缓解污染

重金属的土壤污染,阻碍作物的生长发育,必须在短时间内根除,才能进行的正常的农运活动。因此我们可以在污染地区彻底挖去污染土层,换上新土,以根除污染物,也可以进行土壤的耕翻土层,采用深耕,将上下土层翻动混合,使表层土壤污染物含量减低。

2.5 施用化学改良剂,

根据土壤重金属污染的类型,向土壤中施用石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂,加速有机物的分解,使重金属固定在土壤中,降低重金属在土壤及土壤植物体的迁移能力,使其转化成为难溶的化合物,减少农作物的吸收,以减轻土壤中重金属的毒害。

土壤重金属污染的防治是环境监测的重要任务,是保障我县广大人民群众身体健康的根本,是促进经济快速发展的主要推力。采取科学有效的土壤污染防治措施,能够有效改善土壤结构,提高土壤肥力,降低土壤环境的污染。在未来的环境监测和农业生产中,政府和人民更应该携起手,爱护我们共有的生存土地,让重金属污染事件不再发生,远离人民群众,实现环境友好型的生存环境。

参考文献

[1]高锦卿,土壤重金属污染及防治措施[J].现代农业科技,2013年04期

重金属污染的措施范文第4篇

关键词 土壤;重金属污染;现状;修复技术

中图分类号 X53 文献标识码 A 文章编号 1007-5739(2013)09-0229-03

重金属是指比重大于5.0 g/cm3的金属元素,包括Cu、Zn、Ni、Pb、Cr、Cd、Hg、As、Fe、Mn、Mo、Co等。通常自然界中重金属元素的背景值很低,其暴露不会对周围环境造成影响。但由于工业生产规模扩大,城镇化迅速发展,在农业生产中,污水灌溉和化肥、农药的使用量加大,导致土壤系统中重金属不断累积,明显高于其背景值,从而恶化了生态环境的质量,并通过食物链直接危害人体健康。据统计,全世界平均每年排放Hg约1.5万t,Cu 340万t,Pb 500万t,Mn 1500万t,Ni 100万t[1]。随着重金属污染问题的日益突出,土壤污染防治工作已在“十一五”期间被提上中国环境保护工作的重要议程,并成为第1个“十二五”国家规划。针对上述情况,笔者结合我国土壤重金属污染的现状,对当前土壤重金属污染的修复技术及其作用机理进行分析,并总结其各自的优势与不足,以期为综合治理土壤重金属污染提供参考依据。

1 我国土壤重金属污染现状

我国面临着相当严峻的土壤重金属污染问题。农业部调查数据显示[2],我国约140万hm2的农业用地采用污水灌溉,受到重金属污染的土地面积占污染总面积的64.8%。据有关资料表明,我国重金属污染的农业土地面积为2 500 hm2左右,导致粮食减产逾1 000万t,并造成1 200万t以上的粮食被重金属污染,将各项经济损失进行合计,至少高于200亿元[3]。污染土地中,严重污染面积占8.4%,中度污染面积占9.7%,轻度污染面积占46.7%。Hg 和Cd 的污染面积最大。如上海农田耕层土壤Hg、Cd含量增加了50%,江西大余县污灌引起的Cd污染面积达5 500 hm2,沈阳张士灌区Cd污染面积达2 533 hm2。我国农田土壤污染除Cd、Hg污染外,Pb、As、Cr和Cu的污染也比较严重。以保定市污水灌区为例,其Zn、Cu、Pb、Cd的检出超标率分别达到100.0%、27.5%、50.0%、87.5%[4]。此外,我国菜地土壤重金属污染也较为严重[5-7]。广州市蔬菜地Pb污染最为普遍,As污染次之;重庆近郊蔬菜基地土壤重金属Hg和Cd出现超标,超标率分别为6.7%和36.7%;珠三角地区近40%菜地重金属污染超标,其中10%属严重超标。近年来,由于工业“三废”、机动车废气和生活垃圾等污染物的排放,我国城市土壤普遍受到不同程度的重金属污染,主要污染元素为Pb、Cd、Hg。且城市土壤中大部分重金属污染含量普遍高于郊区农村土壤,并具有明显的人为富集特点[8]。

2 土壤重金属污染修复技术

2.1 物理修复

物理修复是指通过各种物理过程将污染物从土壤中去除或分离的技术,主要包括土壤淋洗法、工程措施法、电热修复法等。

2.1.1 土壤淋洗法。该方法是应用最多、应用最早、技术最成熟的物理修复方法。采用淋洗液(包括无机溶液清洗剂、复合清洗剂、清水、表面活性剂、有机酸及其盐清洗剂、螯合剂等)对土壤进行淋洗,使固相重金属转化为液相,重金属从土壤中转移到废水,再通过对废水进行回收处理,从而实现土壤的修复。Wasay et al[9]研究发现,EDTA和DTPA能有效地去除土壤中Hg以外的重金属元素,同时也提取出大量土壤营养元素。土壤淋洗法简便、成本低、处理量大、见效快,适用于大面积重度污染土壤治理,尤其是轻质土和砂质土。但这种方法在去除重金属的同时,易造成地下水污染及土壤养分流失。因此,既能提取各种形态重金属又不破坏土壤结构的淋洗液,将为该方法修复重金属污染土壤提供广阔的应用前景。

2.1.2 工程措施法。该方法是较为经典和传统的土壤重金属污染修复方法,包括深耕翻土、换土、客土等。深耕翻土与污土混合,或者通过换土和客土等手段,可以使土壤中重金属的含量有效降低,从而降低其对植物的毒害。不同的方式适宜于不同污染程度的土壤,重污染区的土壤宜使用换土和客土方法改良,而轻度污染的土壤则适宜于采用深耕翻土的方法进行修复。工程措施法的优势在于效果稳定和彻底,但是也存在一定的不足,如费用高、工程量大、易降低土壤肥力和破坏土壤结构,还有换出的污染土壤也存在二次污染的隐患,应妥善处理。据报道,对1 hm2面积的污染土壤进行客土治理,每1 m深土体需耗费高达800万~2 400万美元[10]。因此,工程措施不是一种理想的污染土壤修复方法。

2.1.3 电热修复法。该方法利用高频电压产生电磁波,再通过电磁波作用而产生热能,从而促使土壤中挥发性重金属得以分离,实现土壤的修复和改良。目前,该方法适用于修复受Hg或Se等可挥发性重金属污染的土壤。有研究表明,采用该法可使砂性土、黏土、壤土中Hg含量分别从15 000、900、225 mg/kg降至107、112、115 μg/kg,回收的Hg蒸气纯度达99%[11-12]。这种方法虽然操作简单、技术成熟,但能耗大、操作费用高,也会影响土壤有机质和水分含量,引起土壤肥力下降,同时重金属蒸气回收时易对大气造成二次污染。

2.2 化学修复

化学修复也是一种原位修复技术,即通过向重金属污染土壤中添加改良剂,以调节和改变土壤的理化性质,使重金属发生沉淀、吸附、拮抗、离子交换、腐殖化和氧化还原等一系列化学反应,降低其在土壤中的迁移性和被植物所吸收的可能性,从而达到治理和修复污染土壤的目的。常用的改良剂有石灰性物质[13-15]、磷酸盐化合物[16-17]、硅酸盐化合物[18]、金属及其氧化物[19-20]、黏土矿物[21-23]、有机质[24-26]等,其作用机理见表1。这种方法虽然简单易行,但其不足在于它只是改变了重金属在土壤中的存在形态,却没有把重金属从土壤中真正分离出来,如果土壤环境发生变化,容易造成其再度活化,引起“二次污染”。

2.3 生物修复

生物修复是利用生物(主要是微生物、植物和动物)的新陈代谢作用吸收去除土壤中的重金属或使重金属形态转化,降低毒性,净化土壤。该方法是运用生物技术治理污染土壤的一种新方法,具体包括微生物修复法、植物修复法、动物修复法等。由于该方法效果好、易于操作,日益受到人们的重视,已成为污染土壤修复研究的热点。

2.3.1 微生物修复。该方法是通过微生物进行作用,将土壤中重金属元素进行沉淀、转移、吸收、氧化还原等,从而对污染土壤进行修复。如柠檬酸菌能够与Cd形成CdHPO4沉淀;无色杆菌、假单胞菌能够使亚砷酸盐氧化成砷酸盐,从而降低As的转移和毒性;还有些微生物能够把剧毒的甲基汞降解为毒性小、可挥发的单质Hg[3]。尽管微生物修复引起极大重视,但大多数技术仍局限在科研和实验室水平,很少有实例报道。但随着分子生物学的发展,一些如细菌表面展示技术、噬菌体抗体库技术、酵母表面展示技术等[27],有望在治理土壤重金属污染中发挥重要作用。

2.3.2 植物修复。植物修复广义上是指利用植物提取、吸收、分解、转化、固定土壤、沉积物、污泥或地表、地下水中有毒有害污染物技术的总称;狭义上是指利用耐性和超富集植物将污染土壤中的重金属浓度降低到可接受的水平。根据其修复过程和机理,植物修复法可分为以下4种:①根部过滤[28],即通过耐性植物根系对重金属的吸收并保持在根部。常用的植物有水生植物、半水生植物以及个别陆生植物,如向日葵、耐盐野草、宽叶香蒲等。该法多应用于修复水体的重金属污染。②植物稳定[29],即利用植物根际的一些特殊物质,使土壤中污染物转化为相对无害物质的方法。常用的植物有印度芥菜、油菜、杨树、苎麻等。该法多应用于治理废弃矿场和重金属污染严重地区。③植物挥发[30],即利用植物吸收土壤中的重金属,并将其转化为可挥发状态,通过植物叶片等部位挥发出去,以降低土壤中重金属的含量。常用的植物有印度芥菜以及湿地上的一些植物。该法多应用于修复污染土壤中含有挥发性的重金属(如Hg、Se等),但易造成大气污染。④植物提取[31],即利用超富集植物从土壤中吸取重金属,并将其转移、贮存到地上部,然后通过收获,从而达到去除污染土壤中重金属的目的。目前,已发现超富集植物有700种以上,且广泛分布于约50科中,并主要集中在十字花科。该法适用面广,对于修复多种重金属污染土壤均有效。

植物修复法成本低,对环境扰动小,能绿化环境,具有良好的社会、经济、环境综合效益,适用于大规模污染土壤的修复,属于真正意义上的绿色修复技术。但该方法也有一定的缺点:一是超富集植物生长缓慢,常受土壤类型、气候、水分、营养等环境条件限制,导致修复污染较严重土壤的周期长;二是修复过程局限在超富集植物根系所能伸展的范围内;三是超富集植物只能积累某一种重金属,而土壤污染大多是重金属的复合污染;四是超富集植物需收割并作为废弃物妥善处置,将对生物多样性存在一定的威胁。

2.3.3 动物修复。动物修复是利用土壤中的某些低等动物(如蚯蚓等)吸收重金属的特性,在一定程度上降低受污染土壤的重金属比例,以达到修复重金属污染土壤的目的。有研究表明[32],蚯蚓在其耐受浓度范围内,对重金属的富集量随着重金属浓度的增加而增加,同时对重金属的选择性受其体内酶的影响。但这种修复方法不足在于低等动物吸收重金属后可能再次释放到土壤中,造成二次污染。

2.4 农业生态修复

农业生态修复是近几年新兴的修复技术,它是通过改变耕作制度、调整作物品种、调控土壤化学环境(包括土壤pH值、水分、氧化还原电位等)、改变土地利用类型、增施有机肥(堆肥、厩肥、植物秸秆等)、控施化肥等措施,以减轻重金属对土壤的危害[33]。我国在这一方面研究较多[34-36],并取得了一定的成效。这种方法具有投资少、无副作用等特点,适用于中轻度污染土壤,但也存在修复周期较长、效果不太显著等不利因素。

3 结语

综上所述,目前重金属污染土壤的修复技术很多,但就单一技术来看,任何一种修复技术都有其局限性,难以达到预期效果,进而无法大力推广。而且土壤重金属污染修复作为一项系统工程,不仅需要土壤学、植物生理学、遗传学、环境工程学、分子生物学等多个学科的共同努力,还需要多种修复技术的综合应用,即将物理修复、化学修复、生物修复科学地结合起来,取长补短,才能达到更好的效果。

4 参考文献

[1] 李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003(1):24-26.

[2] 崔德杰,张玉龙.土壤重金属污染现状与修复技术研究[J].土壤通报,2004,35(3):366-370.

[3] 骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.

[4] 谢建治,刘树庆,王立敏,等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-41.

[5] 茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学,2006,10(3):88-91.

[6] 唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查[J].安全与环境学报,2003,3(6):74- 75.

[7] 魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.

[8] 和莉莉,李冬梅,吴钢.我国城市土壤重金属污染研究现状和展望[J].土壤通报,2008,39(5):1210-1216.

[9] WASAY S A,BARRINGTON S,TOKUNAGA anic acids for the in situ remediation of soils polluted by heavy metals:Soil flushing in columns[J].Water,Air,and Soil Pollution,2001(3):301- 314.

[10] CHANEY R L,LI Y M,ANGLE J S,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology,1997(8):279-284.

[11] KAWACHI T,KUBO H.Model experimental study on the migration behavior of heavy metals in electric to kinetic remediation process for contaminated soil[J].Soil Sci Plant Nutr,1999,45(2):259-268.

[12] 刘磊,肖艳波.土壤重金属污染治理与修复方法研究进展[J].长春工程学院学报:自然科学版,2009,10(1):73-78.

[13] CHEN Z S,LEE G J,LIU J C.The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils[J].Chemosphere,2000,41(1-2):235-242.

[14] 廖敏,黄昌勇,谢正苗.施加石灰降低不同母质土壤中镉毒性机理研究[J].农业环境保护,1998,17(3):101-103.

[15] 陈宏,陈玉成,杨学春.石灰对土壤中Hg、Cd、Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.

[16] SEAMAN J C,AREY J S,BERTSCH P M.Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition[J].J Environ Qual,2001,30(2):460-469.

[17] 周世伟,徐明岗.磷酸盐修复重金属污染土壤的研究进展[J].生态学报,2007,27(7):3043- 3050.

[18] DA CUNHA K P V,DO NASCIMENTO C W A,DA SILVA A J.Silicon alleviates the toxicity of cadmium and zinc for maize(Zea mays L)grown on a contaminated soil[J].Journal of Plant Nutrition and Soil Science,2008,171(6):849-853.

[19] GRAFE M,NACHTEGAAL M,SPARKS D L.Formation of metal-arsenate precipitates at the goethite-water interface[J].Environmental Science and Technology,2004,38(24):6561-6570.

[20] KUMPIENE J,ORE S,RENELLA G,et al.Assessment of zerovalent iron for stabilization of chromium,copper,and arsenic in soil[J].Environ-mental Pollution,2006,144(1):62-69.

[21] 娄燕宏,诸葛玉平,顾继光,等.粘土矿物修复土壤重金属污染的研究进展[J].山东农业科学,2008(2):68-72.

[22] 柯家骏,陈淑民,胡向福,等.膨润土粘土矿物吸附重金属的研究[J].重庆环境科学,1993,15(1):4-6.

[23] MAHABADI A A,HAJABBASI M A,KHADEMI H,et al.Soil cadmium stabilization using an Iranian natural zeolite[J].Geoderma,2007(137):388-393.

[24] VACA-PAULIN R,ESTELLER-ALBERICH MV,LUGO-DE LA FUENTE J,et al.Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil[J].Waste Management,2006, 26(1):71-81.

[25] 陈世俭,胡霭堂.有机物质种类对污染土壤铜形态及活性的影响[J].土壤通报,2001,32(1):38-40.

[26] 华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤的改良效应[J].农业环境保护,1998,17(2):55-59,62.

[27] 李宏,江澜.土壤重金属污染的微生物修复研究进展[J].贵州农业科学,2009,37(7):72-74.

[28] DUSHENKOV S,VASUDEV D,KAPULNIK Y,et al.Removal of uranium from water using terrestrial plants[J].Environ Sci Technol,1997, 31(12):3468-3474.

[29] 敖子强,熊继海,王顺发,等.植物稳定技术在金属矿山废弃地修复中的利用[J].广东农业科学,2011(20):139-141,147.

[30] MITCH L,NICOLE P,DEBORAH D,et al.Zinc phytoextraction in Thlaspi caerulescens[J].International Journal of Phytoremediation,2001, 3(1):129-144.

[31] 丁华,吴景贵.土壤重金属污染及修复研究现状[J].安徽农业科学,2011,39(13):7665-7666,7756.

[32] 伏小勇,秦赏,杨柳,等.蚯蚓对土壤中重金属的富集作用研究[J].农业环境科学学报,2009,28(1):78-83.

[33] 刘候俊,韩晓日,李军,等.土壤重金属污染现状与修复[J].环境保护与循环经济,2012(7):4-8.

[34] 蒋玉根.农艺措施对降低污染土壤重金属活性的影响[J].土壤,2002, 34(3):145-147.

重金属污染的措施范文第5篇

关键词:重金属污染;主要原因;修复技术

Abstract: Since the implementation of the policy of reform and opening up, in a market economy environment and conditions, China's socialist modernization construction has made rapid development and progress, increasing international status, people's living standard and quality of life has been greatly improved, China has entered a new era of all-round development. But with the rapid development of economy, the environmental pollution problems have become increasingly prominent, decrease the quality of living environment, not only does harm to people's health, but also brings some serious consequences for the other, gradually become a global hot topic. This paper mainly from the two aspects of the main reasons causing soil heavy metal pollution and soil heavy metal pollution remediation technology were discussed.

Key words: heavy metal pollution; main reason; repair technology

中图分类号:[TU984.11+5]

引言:土壤重金属污染给人们所带来的危害具有长期性、潜在性的特点,近年来随着城镇化进程的不断加快和工业生产的发展,越来越多的有害物质进入到了土壤中,因此我们必须要充分了解土壤中重金属的来源,并积极应用各种各样的土壤重金属污染修复技术,最大限度地缓解土壤重金属污染,给人们创造一个更加健康舒适的生活环境,从根本上提高人们的生活质量。土壤重金属污染作为环境污染的一个重要方面,不仅破坏了生态环境,同时也给人们的正常生产和生活带来了极大的威胁,因此对于这一问题,相关部门和人员必须要给予足够的重视,积极采取有效措施加以解决。

一、造成土壤重金属污染的主要原因

1.工业三废的排放

在我国,矿产冶炼加工、化工、电镀、电池、以及塑料等行业所排放的重金属是造成土壤重金属污染的主要工业源,由于大多数工业企业污染物处理意识淡薄,并没有配备足够的处理设备,就使得工业废水、废气、废渣等不断排放到土壤或者是水体中,造成严重的环境污染,危害人们的身体健康。

2.燃煤释放

当前我国使用范围最广的能源依然是煤炭,不仅是因为我国的煤炭资源储量丰富,同时也是由于其价格相对较低,这就造成煤炭燃烧时向空气中排放大量的有害气体,这些气体经过沉降就会进入到土壤中,对土壤造成污染,进而对人体健康和整个生态系统产生长期效应。

3.垃圾的堆放

如果垃圾堆放的时间较长,就会使其中的重金属进入到土壤中,导致区域土壤的重金属含量大量增加。特别是城市垃圾中含有较多的重金属,在雨水的冲刷之下会将其中的有毒元素释放到土壤中,由于这些有毒元素大多以有效态的形式存在,难以结合成残渣状态,就使得其在土壤中具有较大的迁移能力,进而对地下水造成污染。

4.化肥和农药的使用

化肥和农药是农业生产中必不可少的物资,对于促进农业生产发展具有非常重要的意义,但是如果使用不合理就会使土壤遭受重金属污染。这是因为在化肥和农药中含有较多的重金属元素,而土壤自身的环境容量又相对较低,长期使用会积累超标含量的重金属,进而使农产品受到污染,一旦食用就会对人体造成伤害。

二、土壤重金属污染修复技术

1.工程修复

工程修复主要指的是采用换土、客土、以及深耕翻土等一些措施,有效降低土壤中的重金属含量,从而减少对植物系统的毒害,保障农产品安全。一般,换土法和客土法主要用来治理重污染区,而深耕翻土法则主要用于重金属污染程度较轻的区域。总的来讲,工程修复比较稳定、彻底,但是由于工程量比较大,成本费用较高,还容易对土体机构造成破坏。

2.物理修复技术

主要分为电热修复、土壤淋洗、电动修复等。针对面积小且污染重的土壤进行修复, 适应性广,也是一种治本的措施, 但在操作中可能发生二次污染破坏土壤结构并导致肥力下降。

(1)电热修复。电热修复是指通过高频电压产生热能和电磁波,加热土壤, 将土壤颗粒中的污染物解吸出来, 并从土壤内分离出易挥发的重金属,达到修复的效果。主要针对修复土壤被Se或Hg等重金属污染的情况。此外,也可以将土壤置于高温高压中,使之变成玻璃态物质, 最终从根本上修复了土壤中重金属的污染。

(2)土壤淋洗。淋洗法是指用淋洗液冲洗受到污染的土壤,将吸附在土壤颗粒中的重金属变成金属试剂络合物或溶解性离子,再收集淋洗液并回收重金属。此法适用于轻质土壤,修复效果相对较好, 但其花费也相对较高。

3.化学修复

化学修复即向土壤中施加改良剂,利用改良剂的吸附、拮抗、氧化还原、以及沉淀等作用,有效降低重金属自身的生物有效性。由于不同的改良剂对土壤中的重金属会产生不同的作用,因此这项技术的重点在于要选择最为合适的改良剂,比较常用的改良剂主要有石灰、硅酸盐、磷酸盐、以及碳酸钙等。但是化学修复是在土壤原位上进行的,并不具有永久性,它只是改变了土壤中的重金属形态,而重金属元素依然存留在土壤中,很容易活化再次危害植物。

4.生物修复

生物修复是一种通过生物技术来修复土壤的新方法。主要利用生物去削减、净化重金属或降低其毒性。此法效果好又易于操作, 因而越来越受到人们的青睐, 成为几年来污染土壤修复研究中的热点。

(1)植物修复技术。这是一种通过自然生长和遗传作用来培育植物对受重金属污染的土壤进行修复的技术。根据机理和作用过程的不同, 此修复技术又可分为植物提取、植物稳定和植物挥发三种类型。

①植物提取。用重金属超积累植物把从土壤中吸收到的重金属污染物转移到地上的部分, 再收割地上部分并对其进行集中处理,从而降低土壤中的重金属含量,并达到可以接受的水平。

②植物稳定。用超累积植物或耐重金属植物使重金属的活性降低, 减少了重金属通过空气扩散而污染环境或是被淋洗入地下水中的可能性。

(2)微生物修复技术。通过土壤中存在的某些微生物能氧化、沉淀、吸收或还原金属物质, 从而降低了土壤中金属的毒性。此外, 存在于微生物细胞中的金属硫蛋白对Cu、Hg、Cd、Zn等重金属有强烈的亲和性,而且它对重金属也有富集作用最终能抑制毒性的扩散。但微生物只能对小范围污染的土壤进行修复,因此其能力有限。

三、结束语

科学技术的发展在很大程度上促进了经济的发展和社会的进步,深刻改变了人们的生产和生活方式,具有非常重要的作用。因此,在当前土壤重金属污染日益严重的情况下,我们必须要积极利用各种形式的土壤修复技术来缓解重金属污染、改善土壤质量,为人们创造一个健康安全的生活环境,更好地促进社会主义现代化建设的发展。

参考文献:

[1]王海峰,赵保卫,徐瑾,车海丽. 重金属污染土壤修复技术及其研究进展[J]. 环境科学与管理. 2009(11) .

[2]袁敏,铁柏清,唐美珍. 土壤重金属污染的植物修复及其组合技术的应用[J]. 中南林学院学报. 2007(01).