前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇重金属污染的现状范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:重金属土壤污染土壤修复
Abstract: this paper analyzes the heavy metal pollution of soil bioremediation technology research status, and the future prospect.
Keywords: heavy metal pollution of soil soil repair
中图分类号: Q938.1+3 文献标识码:A文章编号:
土壤中的重金属污染有长期性、不可逆性和隐蔽性的特点。当有害重金属累积到一定数量,不仅会使土壤发生退化,降低农作物的品质和产量,还会通过淋洗、径流作用污染到地表水甚至地下水,甚至可能因为人类吃到了直接受到毒害的植物而危害到身体。一直以来,国内外的技术人员都在积极研究对受重金属污染土壤的修复技术,并取得了不错的成绩。本文将具体介绍几种修复技术并展望其未来的发展。
一、重金属污染土壤修复技术的研究现状分析
(一)工程措施。主要分为深耕翻土、换土和客土。土壤仅受轻度污染时采用深耕翻土的方法, 而治理重污染区时则采用客土或者换土的方法。工程措施对于修复土壤的重金属污染有很好的效果, 它的优点在于稳定和彻底, 但也存在实施工程较大、投资费用较高, 且容易破坏土体结构使土壤肥力下降等问题。
(二)物理修复技术。主要分为电热修复、土壤淋洗、电动修复等。针对面积小且污染重的土壤进行修复, 适应性广,也是一种治本的措施, 但在操作中可能发生二次污染破坏土壤结构并导致肥力下降。
1、电热修复。电热修复是指通过高频电压产生热能和电磁波,加热土壤, 将土壤颗粒中的污染物解吸出来, 并从土壤内分离出易挥发的重金属,达到修复的效果。主要针对修复土壤被Se或Hg等重金属污染的情况。此外,也可以将土壤置于高温高压中,使之变成玻璃态物质, 最终从根本上修复了土壤中重金属的污染。
2、土壤淋洗。淋洗法是指用淋洗液冲洗受到污染的土壤,将吸附在土壤颗粒中的重金属变成金属试剂络合物或溶解性离子,再收集淋洗液并回收重金属。此法适用于轻质土壤,修复效果相对较好, 但其花费也相对较高。
3、电动修复。电动修复是指在电场的作用下, 用电迁移、电泳或电渗透的方式, 将污染物从土壤中带至电极的两端, 通过工程化的收集系统对其进行集中清理。目前该技术因其良好的修复效果已被发展进入商业化的阶段。
(三)化学修复。化学修复是指将天然矿物、有机质、固化剂以及化学试剂等物质加入土壤, 改变其Eh、PH值等理化性质, 并通过氧化还原、吸附、沉淀、抑制、络合螯合及拮抗等作用降低重金属本身的生物有效性。
(四)生物修复。生物修复是一种通过生物技术来修复土壤的新方法。主要利用生物去削减、净化重金属或降低其毒性。此法效果好又易于操作, 因而越来越受到人们的青睐, 成为几年来污染土壤修复研究中的热点。
1、植物修复技术。这是一种通过自然生长和遗传作用来培育植物对受重金属污染的土壤进行修复的技术。根据机理和作用过程的不同, 此修复技术又可分为植物提取、植物稳定和植物挥发三种类型。
⑴植物提取。用重金属超积累植物把从土壤中吸收到的重金属污染物转移到地上的部分, 再收割地上部分并对其进行集中处理,从而降低土壤中的重金属含量,并达到可以接受的水平。
⑵植物稳定。用超累积植物或耐重金属植物使重金属的活性降低, 减少了重金属通过空气扩散而污染环境或是被淋洗入地下水中的可能性。
2、微生物修复技术。通过土壤中存在的某些微生物能氧化、沉淀、吸收或还原金属物质, 从而降低了土壤中金属的毒性。此外, 存在于微生物细胞中的金属硫蛋白对Cu、Hg、Cd、Zn等重金属有强烈的亲和性,而且它对重金属也有富集作用最终能抑制毒性的扩散。但微生物只能对小范围污染的土壤进行修复,因此其能力有限。
二、对重金属污染土壤修复技术未来发展的展望
防止污染最根本的措施是控制并消除污染土壤的源头。所谓控制污染源,是指控制土壤中进入污染物的速度和数量,并通过自身的自然净化作用消化污染物,消除土壤污染。其具体措施包括:①推广闭路循环和无毒工艺,减少甚至消除排放污染物的行为,回收处理工业“三废”,变害为利;②加强对污灌区中用于灌溉的污水的水质监测,掌握水中污染物的含量、成分及动态,消除含有高残留污染物且不易降解的污染物随水流入土壤中的情况;③建立监测网络,对辖区内土壤环境的质量定期进行检测,并建立档案,按优先次序开展调查研究并制定实施相应对策。
在过去的20 年里,我国对重金属污染土壤修复技术的研究工程越来越重视,政府也一直致力于制定相应的策略来修复受到污染的土壤,但由于其高额的支出而难以被大规模应用在改良污染土壤的工作中。此外,实施中还常常因为措施不当而破坏了土壤结构,降低了生物活性,最终导致土壤肥力退化。鉴于我国国土宽广,土壤类型复杂多样,在对土壤污染现状进行调查时,要着重制定重金属在土壤中含量限额的环境质量标准,积极出台有关的土壤污染防止法,实施土壤污染的防治规划及具体措施,修订并贯彻开展污灌水质、粉煤灰及其余废弃物在农田中施用的标准等相关的基础研究。总之,当前我们迫切需要紧密结合土壤学、农业、遗传学、化学、微生物学、植物学、环境和生态学、微生物学等多种学科, 研究开发修复污染土壤的应用技术,加快对重金属污染土壤进行修复的步伐。
参考文献:
关键词:铜陵市 重金属污染 研究进展
中图分类号:X5 文献标识码:A 文章编号:1672-3791(2013)07(c)-0137-03
随着我国工业化的不断加速,开发利用的重金属种类、数量和方式越来越多,涉及重金属的行业越来越多,再加上一些污染企业的违法开采、超标排污等问题突出,使重金属污染呈蔓延趋势,污染事件出现高发态势,表现出长期积累和近期集中爆发、历史遗留问题和新出现问题相交织的特点[1]。2011年2月,国务院批复了《重金属污染综合防治“十二五”规划》。体现了我国对重金属污染防治的高度重视。
铜陵市是一个有着三千多年开采历史的极具特色的有色多金属矿区,是我国重要的有色金属工业基地,有着悠久的采冶铜历史[2]。目前已形成以采、选、炼、加工为一体的“铜”产业链,对推动铜陵地区社会经济发展发挥了巨大作用.但也带来了一系列的重金属环境污染和生态破坏问题,对公众身体健康构成了潜在或现实的危害。铜陵县、铜官山区是国家60个重金属砷控制区之一,46家企业被列为环保部重点监控企业,重金属污染防治任务十分艰巨[3]。
1 铜陵重金属污染研究分布
目前有关铜陵重金属污染的研究,主要集中在矿区土壤、尾矿库、水及水体沉积物污染、大气沉降物及城区表土与灰尘和潜在生态风险的评估。
1.1 矿区土壤
土壤中的重金属,在自然情况下,主要来源于成土母岩和残落的生物物质。但是近代以来,工农业的快速发展,人类活动加剧了土壤重金属的污染,污染程度越来越重,范围越来越广。胡圆圆等[4]对铜陵铜官山铜矿区土壤重金属含量进行了研究。研究结果表明,铜官山铜矿区土壤Cu、Zn、As、Hg平均含量高于铜陵市土壤背景值,土壤已受Cu、Zn、As重污染,受Hg轻污染。
杨西飞[5]运用Matlab软件模糊推理系统(FIS)对铜陵矿区农田表层土壤重金属污染进行了评价,发现该矿区农田表层土壤普遍受到了重金属不同程度的污染,其中Cd污染最严重,其次是Cu,其它各元素依次为Pb>As>Zn>Hg。土壤中Hg、Cd、Cu和Pb元素在表层明显富集,各元素总量在不同深度均明显高于土壤自然背景值,Hg、Cd、Cu、Pb和Zn在垂向上呈递减趋势,且在横向上主要以洋河、顺安河和新桥河为中心向四周递减。不同形态重金属在总量中的百分含量随深度变化明显不同。
王嘉[6]对铜陵的两个矿区(狮子山区朝山金矿主井和铜陵县顺安镇新桥矿业公司主井)土壤重金属污染问题进行了较详细的研究,运用内梅罗指数法和地质累积指数法对研究区进行了现状评价,研究表明,As和Cd为严重超标污染物;As的致癌风险和非致癌风险都大,Cr的致癌风险最大;Cd、Hg、As对生态危害的潜在风险很大;所研究的两矿区均存在很高的致癌风险和生态风险,朝山金矿区相对更高些。
白晓宇等[7]运用地统计学分析手段对铜陵矿区土壤中若干重金属元素进行空间变异分析及空间插值和污染分析,结果表明,As、Cd、Pb、Zn元素的变异函数表现为各向异性,其方向性可能主要受矿床分布控制;Hg元素因受小尺度因子影响较大而呈现块金效应较大。As元素污染的主要是由于铜矿、铅锌矿、褐铁矿矿床及其开发;Cd元素的污染与铅锌矿床及其开发,以及农业污灌有关;Pb、Zn元素的污染与铅锌矿床及其开发密切相关。
1.2 尾矿库
铜陵市是安徽省境内重要的铜生产基地。在铜矿生产的同时,产出了大量尾矿堆存于附近的尾砂库中。尾矿库多建于山间谷地、河流上游地区,其下游是经济、农业发达地区。近几年来,随着经济发展和城市的扩容,部分郊区的尾矿库已经进入市区,尾矿库的环境效应及其安全性令人关注。徐晓春等[8]对安徽铜陵林冲尾矿库复垦土壤采样检测的结果表明复垦土壤中Cu的污染极其严重,As、Zn、Pb的污染较轻。徐晓春[9]还对铜陵凤凰山矿林冲尾矿库中重金属元素的空间分布特征及相关土壤、水系沉积物和植物中重金属元素含量变化进行了研究,发现长期堆存的尾矿会发生元素的次生淋滤与富集。
惠勇[10]等对铜陵市凤凰山尾矿库三个不同凤丹种植地进行了研究,结果表明,尾矿土壤中的Cu、Zn、Cd含量均较高,其中Cu、Cd的含量分别是国家土壤环境质量二级标准的1.04~1.30倍和6.58~9.34倍。矿区近年来种植的作物对重金属的吸收富集作用不明显。
王少华[11]等采集了铜陵市杨山冲尾矿库、尾矿库周边及较远距离土壤、水、植物样品,测定了其中的重金属含量,发现所采集的土壤、水和植物中都存在不同程度的As,Hg,Cu,Zn和Pb等元素的富集现象,且不同元素之间的富集程度也有所差异;重金属元素含量随着远离尾矿库,有逐渐递减的趋势。周元祥[12]等对杨山冲尾矿库尾砂重金属元素的迁移规律进行了研究,发现在自然风化条件下,Cu、As、Hg、Cd和Pb的淋滤迁移速度相对较快,Zn略慢;Zn、Pb、Hg和Cd在50~60 cm深处会发生二次富集;风化后尾砂中Cu、Pb、As和Hg以残渣态为主要赋存形式,其次为铁锰氧化态,其中Zn和Cd以铁锰氧化态含量在表层最高。
1.3 水及水体沉积物
水体及沉积物因其独特的环境特点,往往会成为重金属元素的“源”和“汇”,学者们也因此对其进行了众多研究。张敏[13]等通过测定长江铜陵段枯、丰水期江水中Cu、Pb、Zn和Cd不同形态的含量,分析了四种金属在江水中的存在形态分布,不同水期含量变化,水中悬浮物对金属吸附能力大小,以及近20年来含量的变化情况。发现长江铜陵段江水中各重金属总量丰水期时大于枯水期,重金属各形态含量之间均有差异。与近20年江水中的重金属背景值比较,长江铜陵段重金属含量有普遍升高的趋势。
徐晓春[14]等对相思河的重金属污染情况进行了调查和研究,采用潜在危害指数法对沉积物中重金属进行了评价。研究表明,相思河中下游受到的重金属污染明显比上游严重,Cu和Cd的富集系数和生态危害高。
李如忠[15]等对惠溪河滨岸带土壤重金属形态分布及风险评估进行了研究,研究表明,惠溪河滨岸带土壤中Cd和As达到极高风险等级,Cu为中等风险等级;根据综合污染及潜在生态风险贡献率水平,初步判定As和Cd为惠溪河滨岸土壤重金属污染治理和修复的优先控制对象。
王岚[16]等对长江水系表层沉积物重金属污染特征及生态风险性评价的研究中表明,安徽顺安河位点为极强生态危害范畴。
叶宏萌[17]对铜陵矿区的新桥至顺安河沉积物中五种重金属的全量和形态进行了研究,并结合环境条件分析了它们的横向和纵向迁移变化特征,研究表明该区域沉积物重金属中Cu、Zn、Pb、Cd的均值皆远超长江下游沉积物背景值,其中以Cu和Cd最显著。对重金属横向迁移分析发现,矿山重金属会随着沉积物的距离增加而显著降低,新桥河沉积物的迁移变化显著高于顺安河沉积物。在迁移过程中,Cu、Zn、Cr残渣态逐步增加,毒性减弱,Pb、Cd的活性态比例增大。重金属的纵向迁移分析结果表明,离矿山的位置远近对沉积柱金属的总量和形态起决定作用,矿区下游河流沉积物既受尾矿的影响,也受河流流域物质本身的影响。
1.4 大气沉降物及城区表土与灰尘
随着城市化进程的加快,而带来的交通污染以及其他方面的污染使得大气环境质量越来越差,大气环境污染问题越来越引起人们的注意。李如忠[18]利用美国国家环保局(US EPA)推荐的健康风险评价模型对铜陵市区表土与灰尘重金属污染健康风险进行了研究。研究表明,铜陵城区土壤和地表灰尘已遭受较为严重的重金属污染;不同功能用地的致癌风险均显著超过US EPA推荐的可接受风险阈值范围和国际辐射防护委员会(ICRP)推荐的最大可接受风险值;铜陵市表土与地表灰尘已对公众身体健康构成危害;其中主导致癌与非致癌风险效应的主要污染因子是As,主要暴露途径是手-口摄入途径。
吴开明[19]用藓袋法对铜陵市大气重金属污染进行了研究,发现铜陵市Cu污染最严重,有色金属冶炼工业是铜陵市最主要的污染源,交通运输对大气重金属污染也日趋严重。
殷汉琴[20]对铜陵市大气降尘中铜元素的污染特征进行了研究,采用富集因子法定性地判断各采样点铜元素的来源,研究表明,铜陵市大气降尘中铜元素污染严重并且形成了以铜开采和冶炼企业为中心的污染区域。研究发现铜矿石的开采和冶炼对大气降尘中的铜元素污染贡献较大, 是主要的污染源。
2 重金属污染修复技术与控制措施研究
重金属在土壤、水体、大气、生物体中广泛分布。由于大气和生物体中重金属的特殊性及其主要直接或间接来源于土壤和水体,所以对于重金属的污染修复技术主要集中在对土壤和水体中的重金属污染进行修复。
重金属在土壤中不易随水淋溶,不能被微生物分解,具有明显的生物富集作用且土壤污染具有较长潜伏期;由于土壤、污染物及地域的复杂性,土壤一旦受到污染,其治理不仅见效慢、费用高,而且受到多种因素的制约。目前,治理土壤重金属污染的途径主要有两种:(1)改变重金属在土壤中的存在形态、使其固定,降低其在环境中的迁移性和生物可利用性;(2)从土壤中去除重金属[21]。围绕这两种途径展开的土壤重金属治理措施有物理及物化措施、化学措施、农业生态措施、生物修复等[21~23]。
王华等[24]对我国底泥重金属污染防治研究做了相应综述,提出目前我国底泥重金属污染治理的常用方法有工程治理方法、生物治理方法和化学治理方法。
重金属污染物进入水生生态系统后对水生植物和动物均产生影响,并通过食物链发生富集,引起人体病变,危害人类。目前水体重金属污染治理修复方法主要有物理方法、化学方法、物理化学方法、集成技术、生物方法等[25]。
为控制铜陵市重金属污染、提高环境质量,铜陵市环保局组织编制了《铜陵市重金属污染综合防治“十二五”规划》,该规划以国家《重金属污染综合防治“十二五”规划》为指导,落实源头预防、过程阻断、清洁生产、末端治理的全过程综合防治理念,提出了一系列重金属污染防治措施,以求能遏制重金属污染趋势,改善区域环境质量,保护人民身体健康和环境权益。
3 结语
对铜陵市重金属污染研究情况进行了介绍,对重金属污染防治措施与修复技术经行了总结。根据目前研究结果表明,铜陵市重金属污染已比较严重。Cd、As、Cu和Pb为主要的污染元素,Hg虽然含量较低,但因为其毒性较大,亦当引起足够的重视。矿石的开采和冶炼以及尾矿的堆积成为铜陵市重金属污染的主要来源,所以首先应控制源头,治理矿石的开采和冶炼,清理尾矿的堆积。由于植被等生物体对重金属具有良好的吸附阻拦作用,可在采矿厂四周设置重金属吸收强防护带,阻止污染向更远扩散。对于已经受到污染的土壤,可以采用生物方法、物理或化学方法去除。
健全重金属污染防治法律体系、做好污染综合防治规划和强化行政管理是防治重金属污染的重要管理手段。《铜陵市重金属污染综合防治“十二五”规划》的提出对铜陵市重金属污染防治具有重要的指导和实践意义。健全重金属污染防治法律体系,实施清洁生产,监督实施环境影响评价验收工作,开发研究重金属污染防治技术等是目前重金属污染防治的重要任务。
参考文献
[1]罗吉.我国重金属污染防治立法现状及改进对策[J].环境保护,2012(18):24-26.
[2]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥工业大学博士学位论文,2005.
[3]铜陵市重金属污染综合防治“十二五”规划[R].
[4]胡园园,陈发扬,杨霞,等.铜陵铜官山矿区土壤重金属污染状况研究[J].资源开发与市场,2009,25(4):342-344.
[5]杨西飞.铜陵矿区农田土壤及水稻的重金属污染现状研究[D].合肥:合肥工业大学,2007.
[6]王嘉.铜陵矿区土壤重金属污染现状评价与风险评估[D].合肥工业大学,2010.
[7]白晓宇,袁峰,李湘凌,等.铜陵矿区土壤重金属元素的空间变异及污染分析[J].地学前缘,2008,15(5):256-263.
[8]陈莉薇,徐晓春,黄界颖,等.铜陵林冲尾矿库复垦土壤重金属含量及污染评价[J].合肥工业大学学报:自然科学版,2011,34(10):1540-1544.
[9]徐晓春,王军,李援,等.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J].岩石矿物学杂志,2003,22(4):433-436.
[10]惠勇,张凤美,王友保,等.铜陵市凤凰山尾矿区重金属污染研究[J].安徽农业科学,2011,39(23):1426-1426.
[11]王少华,杨劫,刘苏明.铜陵狮子山杨山冲尾矿库重金属元素释放的环境效应[J].高校地质学报,2011,17(1):93-100.
[12]周元祥,岳书仓,周涛发.安徽铜陵杨山冲尾矿库尾砂重金属元素的迁移规律[J].环境科学研究,2010(4):497-503.
[13]张敏,王德淑.长江铜陵段表层水中重金属含量及存在形态分布研究[J].安全与环境学报,2003,3(6):61-64.
[14]徐晓春,牛杏杏,王美琴,等.铜陵相思河重金属污染的潜在生态危害评价[J].合肥工业大学学报:自然科学版,2011(1):128-131.
[15]李如忠,徐晶晶,姜艳敏,等.铜陵市惠溪河滨岸带土壤重金属形态分布及风险评估[J].环境科学研究,2013,26(1):88-96.
[16]王岚,王亚平,许春雪,等.长江水系表层沉积物重金属污染特征及生态风险性评价[J].环境科学,2012,33(8):2599-2606.
[17]叶宏萌,袁旭音,赵静.铜陵矿区河流沉积物重金属的迁移及环境效应[J].中国环境科学,2012,32(10):1853-1859.
[18]李如忠,潘成荣,陈婧,等.铜陵市区表土与灰尘重金属污染健康风险评估[J].中国环境科学,2012,32(12):2261-2270.
[19]吴明开,曹同,张小平.藓袋法监测铜陵市大气重金属污染的研究[J].激光生物学报,2008,17(4):554-558.
[20]殷汉琴,周涛发,张鑫,等.铜陵市大气降尘中铜元素的污染特征[J].吉林大学学报:地球科学版,2009,39(4):734-738.
[21]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997(3):72-76.
[22]佟洪金,涂仕华,赵秀兰.土壤重金属污染的治理措施[J].西南农业学报,2003 (S1):37-41.
[23]顾红,李建东,赵煊赫.土壤重金属污染防治技术研究进展[J].中国农学通报, 2005,21(8):397-408.
关键词:土壤重金属; 污染特点; 治理策略
1 引言
在环保领域对重金属污染的定义是能够使生物遭受显著毒性的金属,这些物质包括汞元素、铅元素、锌元素、钴元素、镍元素、钡元素等,有时候也包括锂元素与铝元素等等。一项来自研究机构的调查统计数据表明,近年来全球汞排放量达每年1.5万吨,铅排放量达每年500万吨,这些元素进入农田和城市,为所经地区的土壤带来严重的重金属污染,这些污染一方面能够影响地下水和农作物的品质,另一方面也通过食物链对当地居民产生不容忽视的影响。当前,如何进行土壤重金属污染的分析、评估、预防和治理,是一个世界性的问题,本文首先从土壤重金属的主要来源和土壤重金属污染的危害两个方面分析了重金属污染的现状,在此基础上进一步阐述了土壤重金属污染的空间差异以及污染整体的形态特征,最后深入论述了土壤重金属污染的预防以及修复策略。本文的成果对于环境保护和土地利用均有着比较好的理论价值和实践意义。
2 土壤重金属污染现状分析
2.1重金属来源分析
(1)交通运输
我国正在进行着大规模的城镇化建设,各类交通工具的数量近年来一直呈现出大幅攀升的态势,因此其排放的废气也逐年增加,导致土壤里重金属元素逐步累积,形成污染。以汽车为例,污染源包括尾气排放、汽油燃烧、轮胎磨损等,会逐渐排放出铅、汞、铜、锌等重金属元素,一方面对大气质量造成破坏,另一方面也导致土壤重金属超标。
(2)工业和矿产业
工业生产会排放出重金属元素,以烟尘或者废气废水的形式进入大气与土壤,而大气中的重金属则会逐渐沉降入土。工业生产中的废渣是更加主要的重金属污染来源,比如金属冶炼企业、电解铝企业、电镀企业等,在其日常生产排放的废渣中含有大量的重金属元素,如果在不经处理的情况下随意露天堆放,或者直接倾倒进土壤中,会为土壤带来极大的污染。
(3)燃煤释放
煤的燃烧会向大气中排放大量的污染物质,并逐渐沉降入土壤中。我国的燃煤企业,包括火力发电厂和钢铁企业等,会排放大量的汞金属,其中约三分之一的汞元素最终进入土壤。一些经济发达的大城市,汞元素的排放有其严重,这些污染能够为城市的环境质量和生态系统带来致命的影响。
(4)居民垃圾
居民如果将大量垃圾不加分类地堆放在户外,由于垃圾中存在不少未经处理的废弃物,例如电池等,将会使其中的重金属逐步渗透和扩散至周围的环境中,逐步导致土壤的重金属污染。
3 土壤重金属的污染治理策略
土壤重金属的污染的治理,可以从预防和修复两方面进行着手。
3.1重金属污染预防策略
控制污染,应从源头做起。因此在农村地区,应注重灌溉用水的质量,谨慎使用污水灌溉。在农田使用杀虫剂和肥料时也应合理用量,并且坚决杜绝汞含量超标的农药,也应禁止使用含镉化肥等对环境带来危害的农药和杀虫剂。对于城市地区的工业企业,则应严格控制对三废的排放。而居民区则应对废弃垃圾进行再回收利用或者分类处理。对于日益增多的交通工具,则应改善燃油质量、并积极鼓励以新型环保燃料代替传统燃油,从而减少废弃物的排放。
此外还应以完善的法规控制重金属排放。土壤污染已经被国际相关领域视为化学炸弹,是一个极其严峻而棘手的问题。只有通过立法的方式才能使污染的防范和治理进入可持续发展的轨道。而我国的环保法治进程目前尚需加速。举例来讲,当前有不少养殖户所购买的饲料里往往含有铜、铅等重金属,而禽类和畜类一旦食用并排出体外,便会对土壤形成污染,而我国当前并未将重金属列在畜禽养殖业污染物排放标准里,形成管理的漏洞。因此,亟需制定切合我国实际的法律法规进行重金属污染的防范。
3.2重金属污染治理策略
随着国际上对于土壤重金属污染的重视以及研究成果的和应用,在重金属污染治理方面有许多值得借鉴的策略,下面分别进行简述:
3.2.1 基于物理法的重金属污染治理
物理法治理又可以进一步分为以下几种方法:
一是热解吸法,这种方法以加热来把一些具有较强会发特性的重金属进行解吸和收集,再妥善处理或者合理利用。以汞元素为例,美国已经形成了比较成熟的基于热解析法的汞元素回收,并在现场治理中取得了较好的效果,使用此项处理方法的地域已经在汞含量方面达标。
二是电化法,这种方法以电解原理进行污染土壤的处理。在受到污染的土壤里设置石磨电极,并以1~5毫安的电流进行激励,从而在阴极收集到金属阳离子,并进行处理或者再利用。这种方法对于铅元素和二甲苯等物质的处理效果比较好。
三是洗土法,这种方法通过试剂与土壤里所含有的重金属物质发生反应,并最终生成可溶于水的金属离子,通过对提取液进行处理,得到重金属,再进行处理或者回收利用。这种方法非常适合于对铜金属、镍金属、铅金属和铂金属的回收处理。
四是玻璃化法,这种方法以电极对受到污染的土壤进行加热,从而使之进入熔化状态,在其最后冷却时,便会变成玻璃状态。这种方法尚在实验中,其成本较高,目前尚未得到的面积推广。
3.2.2基于化学法的重金属污染治理
这种方法在受到污染的土壤中按比例注入一定的化学试剂,从而改良土壤本身的性质,达到减轻重金属活性的作用,可以降低作物对土壤里重金属的富集效应。化学法治理主要指的是土壤添加物法,把一定充分的有机物料或者改良剂加入受污染的土壤之中,能够通过化学作用而使重金属离子沉淀,再对其进行收集,从而减轻污染;还可以通过化学试剂中的酸性物质与重金属元素反应,生成难溶于水的物质,从而使土壤污染得到减轻。这种方法适用于镍离子、锌离子等重金属物质的治理。
3.2.3基于生态工程的重金属污染治理
这种方法可以是在已经被重金属污染的土壤之上加厚一层正常土壤,或者把受到重金属污染的土壤全部挖除,也可以通过灌溉的方式,逐渐使受污染土壤中的重金属物质渐渐迁移到地层深处等,也能对土壤污染起到一定的作用。
3.2.4基于生物的重金属污染治理
这种方法可以通过植物或者微生物等来修复土壤质量。某些植物的根系可以吸收被污染土壤中的重金属,例如蜈蚣草被证实可以有效降低土壤中砷的含量;微生物则可以通过细胞转化作用使被污染土壤中的重金属沉淀或者氧化,从而使其对土壤的影响显著降低。
4 结束语
在世界各地,尤其是经济较为发达的地区均存在着较为严重的土壤重金属污染,重金属的来源是多方面的,当前,学界和环保组织对重金属的污染一般聚焦于污染程度的定性描述和分析。事实上怎样才能实现对重金属污染源进行量化分析,同样对治理逐渐严重的土壤污染有着不容忽视的作用,因此量化分析将是重金属污染研究的发展方向。当前,我国尚未构建完善的城市和农村地区土壤重金属污染的监控网络,因此并不能及时准确地检测土壤重金属污染状况,也难以为土壤重金属污染的治理提供必要的依据。只有制定出严格而适用的土壤重金属评价标准,才能有利于土壤的保护,从而推动经济的可持续发展。■
参考文献
[1]高晓宁.土壤重金属污染现状及修复技术研究进展[J].现代农业科技.2013(09)
[2]郭翠花,黄淑萍,原洪波,等.太原市地表土中五种重金属元素的污染检测及评价[J].山西大学学报(自然科学版),2010,18(2):222-226.
[3]史贵涛,陈振楼,李海雯,王利,许世远.城市土壤重金属污染研究现状与趋势[J].环境监测管理与技术,2012,18(6):9-12.
[4]凌辉,谢水波,唐振平,刘岳林,周帅.重金属污染土壤的修复方法及其在几类典型土壤修复中的应用[J].四川环境.2012(01)
[关键词]农村耕地 重金属污染 来源 治理
[中图分类号] S341.1 [文献码] B [文章编号] 1000-405X(2014)-1-161-1
0前言
科学技术的发展,带动了经济的发展,同时也促进了人们生活水平的提高。但是,粗放型的经济发展方式也造成了严重的污染,尤其是重金属对于农田土壤的污染,使得我国的耕地面积不断缩减,影响到了农作物的生长,同时还可能对人体造成相应的危害。因此,要充分重视起来,加强对于农田重金属污染的治理力度,切实保障农业生产的顺利进行。
1重金属污染概述
重金属污染,指由重金属或其化合物造成的环境污染,其产生的主要原因是人们的生产活动,如采矿、废气排放、污水灌溉和使用重金属制品等人为因素造成的。重金属污染的危害程度并不是固定的,而是取决于其在环境、物体中存在的化学形态和浓度。通常情况下,重金属污染主要表现在水污染方面,气体污染和固体废弃物污染相对较少。
重金属具有富集性,很难在环境中降解,因此,容易造成严重的环境污染,加上其具有不易移动溶解的特性,进入生物体后不能被排出,会造成慢性中毒。例如,日本爆发的骨痛病,就是由于重金属元素镉与人体内部的蛋白质和各种类型的酶发生强烈的相互作用,从而导致其失去活性,造成重金属中毒,对骨骼产生了严重的影响,引发剧烈的疼痛。
2农村耕地中重金属污染的来源
目前已经发现的,自然界存在的重金属元素有45种,而对于农村耕地影响较为严重的重金属,则主要集中在汞、镉、铅、铬、砷物种元素,其并称为“五毒”。每年因重金属污染所造成的农业经济损失不计其数,不仅阻碍了经济的发展,更使得粮食产量大幅下降,影响社会的稳定。对于农村的耕地而言,重金属污染的主要来源包括:
2.1污水
重金属污染主要表现在水污染方面,因此污水是导致农田重金属污染最主要的原因。由于粗放型经济发展方式的影响,许多企业并没有对排放的污水进行处理,而是直接排入河流或者土地之中,一方面,使得河流污染严重,农民在引水灌溉的过程中,将污水中的重金属带入农田,从而引发重金属污染;另一方面,污水深入地下后,重金属元素却不会很快讲解,在不断的富集过程中,使得土壤中的重金属含量不断增加,对农作物的生长造成影响。
2.2大气
大气中的重金属主要来自于工业生产排放的废气、汽车尾气等,如果没有对其进行相应的处理,重金属就会以气溶胶的形态,进入大气之中,在自然沉降和降水的作用下,最终进入土壤,从而造成农田的重金属污染。一般来说,大气污染对于农田的影响程度取决与当地的经济增长方式和工业化程度,以及人口的密度和经济发展程度等。
2.3固体废弃物
主要指来自含有重金属的工业企业以及矿业企业废弃物,也包括城市的生活垃圾。这些固体废弃物含有的重金属元素会在存放和处理的过程中,进入土壤,造成污染。例如,重金属矿业企业在对矿渣进行处理时,通常都是采用统一处理或掩埋的方式。在堆放的过程中,会受到雨水冲刷等的影响,使得重金属元素流入水体或土壤;而在掩埋后,矿渣中含有的重金属元素也不会分解,而是逐渐向周围的土壤扩散,不断的富集,进而导致土体中重金属含量超标,造成污染。
2.4化学农药和肥料
一方面,部分化学农药的质量不达标,含有超标的重金属元素,在使用的过程中会随之进入土壤,从而引发重金属污染;另一方面,为了保证农作物的产量,往往会长期使用化学肥料,提供农作物生长需要的微量元素,但是肥料中的重金属元素却在不断富集的过程中,出现污染现象。例如,如果某块农田长期使用磷肥,则可能导致土壤中的镉含量超标,从而引发重金属污染。
3农村耕地中重金属污染的治理对策
3.1对污染源进行控制
对于农村耕地中重金属污染的治理,首先必须采取必要的措施,对污染进行控制,减少污染源,之后才能对其进行处理,以免污染的重复发生。对于重金属污染源的控制,需要做到以下几点:
①对废水、废气、固体废弃物的排放进行控制,确保处理后排放,将其产生的污染降到最低。针对含有重金属元素的污染物,更要加强管理力度。
②对农药肥料等的使用进行限制,对其成分进行改良和创新,尽可能减少农药中重金属元素的残留。
③对农田土壤进行质量监测,及时发现潜在的风险,做到防患于未然。
3.2物理换土法
由于重金属的治理成本大、耗时长,难度大,从经济角度出发,对于污染较为严重的农田土壤而言,可以采用换土的方式进行处理,其优点在于彻底、稳定,虽然施工量较大,但是相对而言速度较快,而且操作简单,不影响农作物的种植。
3.3化学调节法
主要是利用相应的化学药剂等,对农田土壤的有机质、水分、pH值等进行调节,改变重金属的水溶性和扩展性,从而降低污染的扩展速度以及其对于农作物的影响。
3.4生物修复法
指利用植物、动物、微生物等,对土壤中的重金属进吸收和转化等,从而消减重金属污染对于农田的影响。例如,向日葵可以吸收重金属,进而通过自身的作用将其排入空气中,降低土壤重金属的含量;部分藻类和蚯蚓等动物也可以对重金属进行吸收。
4结语
总之,重金属污染对于农村耕地的影响是十分巨大的,农业技术人员要加强对于重金属污染来源的分析,通过预防和治理相结合的方式,解决土壤重金属污染的问题。
参考文献
[1]蒋利萍.国内土壤重金属污染现状及治理修复[J].内江师范学院学报,2010,25(z2):471-473.
>> 淮南谢桥塌陷区表层土壤重金属污染分布特征与现状评价研究 城市表层土壤重金属污染分析 城市表层土壤重金属污染分析模型 基于因子分析法的城市表层土壤重金属污染模型 关于城市表层土壤重金属污染的数学模型分析 城市表层土壤重金属污染的因子分析 城市表层土壤重金属污染来源与分布问题 利用高斯模型和尺度空间理论分析表层土壤重金属污染 表层土壤重金属污染源的分析方法 基于表层土壤重金属污染分析的数学模型 贵州麦西河沉积物及土壤中重金属分布特征及污染评价 城市表层重金属污染的综合评价 成都平原典型菜园土重金属含量的空间分布特征 海南昌化铅锌矿废弃地重金属污染评价及其空间分布特征 卧龙湖沉积物中典型重金属污染评价及其空间分布特征 地表层土壤重金属污染传播模型 灌溉水—耕作土壤—化肥—作物生态系统中重金属镉的分布特征 煤矸石充填型重构土壤中重金属的生物迁移及分布特征 商洛茶叶和产地土壤重金属元素含量及分布特征研究 畜禽养殖废水灌溉土壤中重金属分布特征研究 常见问题解答 当前所在位置:l,2011-09-09.
[2] 范拴喜,甘卓婷,李美娟,等.土壤重金属污染评价方法进展[J].中国农学通报,2010,26(17):310-315.
[3] 张尧庭,方开泰.多元统计分析引论[M]. 北京:科学出版社,1982.
[4] 刘 静,蔡国学,刘洪斌.西南丘陵地区土壤有机质含量的空间插值法研究[J].西南大学学报(自然科学版),2008,30(3):107-111.
[5] 吴学文,晏路明.普通Kriging法的参数设置及变异函数模型选择方法――以福建省一月均温空间内插为例[J].地球信息科学,2007,9(3):104-108.
[6] 张朝生,章 申,等.长江水系河流沉积物重金属元素含量的计算方法研究[J].环境科学学报,1995,15(3):258-264.
[7] 刘付程,史学正,于东升,等.基于地统计学和GIS的太湖典型地区土壤属性制图研究――以土壤全氮制图为例[J].土壤学报,2004,41(1):63-70.
[8] 国家环境保护局.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
[9] 刘凤枝.农业环境监测实用手册[M].北京: 中国标准出版社,2001.
[10] GB15618-1995,土壤环境质量标准[S].
[11] 尹 君.基于GIS 绿色食品基地土壤环境质量评价方法研究[J].农业环境保护,2001,20(6):10-11.
[12] 陈俊坚,张会华.广东省区域地质背景下土壤表层重金属元素空间分布特征及其影响因子分析[J].生态环境学报,2011, 20(4):646-651.
[13] 张长波,李志博,姚春霞,等.污染场地土壤重金属含量的空间变异特征及其污染源识别指示意义[J].土壤学报,2006, 38(5):525-533.