首页 > 文章中心 > 纳米技术报告

纳米技术报告

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇纳米技术报告范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

纳米技术报告

纳米技术报告范文第1篇

1、各国竞相出台纳米科技发展战略和计划

由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。

(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。

纳米技术报告范文第2篇

关键词:纳米技术及其相关产业;概念界定;体系辨识。

当前,“发展纳米技术及其相关产业”这一口号,已被提升到实现中国梦苏州篇章、苏州实施创新引领战略进而华丽转身的重大战略高度,那么什么是纳米技术及其相关产业,搞清楚这一问题,则无论对于苏州的决策者、研究者还是实践者来讲,都具有重要的建设性意义。

去年,我们在执行一项有关促进苏州市纳米技术及其相关产业发展的重大软科学课题时,首当其冲地遭遇到这一问题。通过文献检索与分析,我们发现,由于纳米技术及其相关产业纷繁复杂,纳米科学技术界尚未对该一问题形成共识;同时,社会科学理论界卷入纳米领域研究较少,可资借鉴的成果太少。然而,这一问题的解决将直接影响到我们研究项目的进一步履行,为此,我们设立了一个研究子课题,本文即是该子课题研究成果,在此抛砖引玉,期望不仅对苏州市,也对国内其他正在促进纳米技术及其相关产业发展的地区起到启迪作用。

一、什么是纳米技术及其相关产业

要搞清楚纳米技术及其相关产业首先要理解纳米与纳米尺度范围,以及纳米尺度范围内物质的质变特性及其意义,本节我们将据此入手,进而界定纳米技术及其相关产业的概念。

1.纳米与纳米尺度范围

纳米(Nanometer,缩写nm)是计量学中的长度单位。1纳米(nm)等于10-3微米(mm),等于 10-6毫米(mm),等于 10-9米。1—100纳米(nm)被纳米学界公认确定为纳米尺度。 通过不同物体相对尺度大小比较(见图1)及纳米尺度范围内常见球形物体大小比较(见图2),可以加深对于纳米及纳米尺度范围概念的理解。

2.纳米尺度范围内物质的质变特性及其意义

科学家发现,当物质小到1 ~100纳米时,由于其量子效应、物质的局域性及巨大的表面及界面效应,物质的很多性能将发生质变,呈现出许多既不同于宏观物体,又不同于单个孤立原子的奇异现象(白春礼,2001)。即在原子、分子及纳米尺度上,物质表现出极其新颖的物理、化学和生物学特性,该特性能被人类学习、掌握、控制和利用,从而使得人类社会现存的一切发生翻天覆地的变化。

3. 国外科学家如何理解与解释纳米技术

看一看国外科学家如何理解与解释纳米技术或许对我们会有很大帮助,以下是国外科学家对于什么是纳米技术的典型解释(转引自彭练矛,2011):

“The term nanotechnology means different things to different people. It used to cover anything from making microelectromechanical systems (MEMS) to creating designer proteins.”

“Whatever we call it, it should let us

—— Get essentially every atom in the right place.

—— Make almost any structure consistent with the laws of physics and chemistry that we can specify in atomic details.

—— Have manufacturing costs not greatly exceeding the cost of the required raw materials and energy.”

这两段英文的中文翻译如下:纳米技术术语意味着对于不同对象人群的不同事情。它通常涵盖从制造微电子机械系统到创造人造蛋白质的所有事情。然而,不管我们如何称呼,纳米技术的实质应该包括:每一个原子应被安排在合适的位置,任何相应建构应符合原子水平上的物理和化学原理,原材料和能源等相应制造成本应不是太贵。

从以上国外科学家对于什么是纳米技术的典型解释中我们可以发现,纳米技术(nanotechnology)在国外是一个约定俗成的术语,是对纳米领域新生事物科学研究、技术研发和工程应用的统称,纳米技术尚是一个发展中的概念,目前还没有被严格界定。

4. 纳米技术概念

经过上面的铺垫,现在我们可以来探讨界定纳米技术概念。对于什么是纳米技术,麻省理工学院(MIT)的德累克斯勒(Drexler)教授曾作出过一个解释:

“在分子水平上,通过操纵原子来控制物质结构,利用单个原子组建分子系统,据此制备不同类型的纳米器件”(Drexler,1990)。

而在中文语境中,谈到技术往往还牵连到科学与工程,对此,白春礼院士也有一个解释:

“纳米科技是20世纪80年代末、90年代初才发展起来的前沿、交叉性新兴学科领域,是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术”(白春礼,2001)。

白院士所指的纳米科技既包括纳米科学又涵盖纳米技术。实际上,中文语境中的纳米科技常常是纳米科学研究、技术研发和工程应用的统称。指在纳米尺度上研究物质和体系的现象、规律及其相互作用,重新认识自然界,发现新现象和新知识,并通过直接操控原子、分子结构的技术来创造对人类有用的新的物质和产品。

综上所述,可见所谓纳米技术是指涉及到纳米科学研究、材料发展和制备、器件制造以及产品开发生产之所有技术的总和。

5. 纳米技术相关产业概念

知道了什么是纳米技术以后就较易分辨纳米技术相关产业。过去的二、三十年,纳米科学技术的进步,尤其是纳米技术的应用已经和正在对人类社会的经济发展、社会进步和国防安全产生重大影响。然而,这仅仅是开始,纳米科学研究、技术发展和工程应用已经和正在引发一场新的工业革命,证据表明,纳米技术在材料、信息、能源、环境、生命、生物、军事、制造、纺织、染料、涂料、食品等产业领域都具有广泛而重要的应用。而一旦这些产业领域中纳米技术应用产品批量化、商品化和规模化,则自然形成一个个纳米技术相关产业。

二、纳米技术体系范畴

界定了纳米技术及其相关产业概念后,本节与下节我们可以转而讨论纳米技术体系范畴以及纳米技术相关产业体系范畴。

技术来源于科学,是理论知识应用于实践、解决实际问题的方法和手段,因此谈到纳米技术不能不涉及到纳米科学。尽管目前学术界对于纳米科学的内涵和分类尚存在着不同的认识和提法,但对于这一新兴领域多学科交叉特性的认识是一致的。一般而言,纳米科学可以包括纳米材料物理学、纳米材料化学、纳米材料学、纳米测量学、纳米电子学、纳米机械学和纳米生物医学等,由此也产生了按照这一体系分类的纳米技术。

然而,白春礼院士(2001)认为这种与传统学科紧密联系的分类方式无法简单便捷地勾勒出纳米科技的大致轮廓,而且各类别之间又有交叉和重叠。因此,他建议将纳米科学研究分为“纳米材料”、“纳米器件”和“纳米检测和表征”三大领域, “其中纳米材料是纳米科技的基础; 纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志; 纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础”(白春礼,2003)。据此,纳米技术体系又可主要由上述三大范畴来表达。

我们认为上述与传统学科紧密联系的分类及三个大类的简单分类都有各自的道理和应用价值,前一个分类便于整合发展纳米学科知识和实施教育培训,而后一个分类则更多地聚焦到纳米科学技术当前关键发展领域,重点特出、应用性强。若与纳米技术相关产业相联系,则我们更倾向于并将更多地采纳和应用后一个分类。

无独有偶,日本专利局《专利申请技术动向调查报告》中提供了一个与应用实际联系密切的纳米技术分类(见图3,该图由DRM咨询公司补充修改而完成),该分类基本遵循上述三个大类分类范畴,并采用图式标识了各主要应用领域中的发展状况,恰好为三大类纳米技术分类体系作了一个生动的注解,虽然尚未达到完整完善的程度,但已有很大的参考价值。

沿着三大类纳米技术分类思路继续往下走,可以得到图4所示纳米技术分类体系。其中一级状态子目录包括“纳米检测和表征技术”、“纳米材料制备技术”和“纳米器件制造技术”。而每个一级目录又可进一步产生二级目录,如纳米检测和表征技术可分为“扫描探针显微技术”和“原子级和超精密加工技术”;纳米材料制备技术可分为“化学制备技术”、“物理制备技术”和“综合制备技术”;纳米器件制造技术可分为“LIGA制造技术”、“超精密机械加工技术”、“特种加工技术”、“注塑成形加工技术”和“机械组装技术”等。需要说明的是,这一分类只是大体上勾勒了纳米技术发展现状,提供了一个整体认识把握的粗略框架。现实纳米世界中的实际情况则更为纷繁复杂,不仅存在着旁支末叶,也可以进一步细分和再细分。

三、纳米技术相关产业体系范畴

应用上述“纳米材料”、“纳米器件”和“纳米检测和表征”三大范畴的纳米技术分类思想,可以推导出纳米技术相关产业体系范畴,如图5所示:

如图5所示,首先,纳米技术相关产业可以被界定为纳米材料产业、纳米器件产业和纳米检测仪器设备产业,其中纳米材料是纳米技术相关产业得以生存发展的原始基础,没有纳米材料则一切无从谈起;纳米器件系纳米材料进一步加工组合后的产物,是延伸发展各种纳米技术应用产品的基础;而纳米检测仪器和设备则是发展纳米材料、器件及其延伸产品的必不可少的硬件手段,缺乏这些手段,事情就无法进行。

上述三者一方面构成了纳米技术相关产业生存发展的基础,另一方面,正是基于这种基础性和不可替代性,它们各自能够发展成三个供需旺盛的分支产业,并在每个分支产业下面各自生成若干数量不等的子产业。

此外,鉴于纳米材料和纳米器件能够被应用到各个新兴和传统产业领域,创造出各种各样新颖独特、质量上乘、性能优异的新产品,因此,在上述三个分支产业以外,又可辨识出纳米材料应用和纳米器件应用两个分支产业。当然,这两个分支产业下面更能各自生成若干数量不等的子产业。

若从事情发生的先后次序来看, 纳米科学技术研究发展的需要首先造就了纳米检测仪器设备产业和纳米材料产业。结合纳米检测手段和纳米材料的研究创造了纳米器件, 纳米器件(如纳米传感器)的推广应用催生了纳米器件产业。接着,纳米材料和器件在各个领域的广泛应用开发出许多新颖产品和更新换代产品,从而发展出形形的纳米产品产业,并进一步促进纳米材料、器件和检测仪器设备产业的发展。这就是纳米技术相关产业相伴共生、互促共长的内在逻辑。

在现实生活中, 纳米材料产业和纳米检测仪器设备产业已经形成一定规模,发展相对成熟。处于纳米技术高端的纳米器件产业(电子/光电子器件、量子器件、以及微/纳机电系统)目前尚处在发展成长过程中,这是纳米大国共同关注、竞相角逐的领域,也是进一步发展的方向,其中属于MEMS/NEMS范畴的微纳传感器分支产业已经初具规模。同时,纳米材料和器件的应用已经渗透进入许多不同的经济和社会领域,例如,电子和信息、生物与医药、环境保护等,从而增殖衍生出发展状况各异、纷繁复杂的纳米技术产品和产业。

当然,换一个角度,如果忽略纳米技术居中扮演的角色,这一复杂逻辑体系中各个分支仍可分属于自己的母体产业,例如,纳米材料产业可归属于材料产业,纳米检测仪器设备产业可归属于仪器设备产业等等,由此也揭示了纳米技术相关产业所具有的双重产业属性。

四、结 语

以上我们通过运用相关文献资料, 进行抽丝剥茧式的逻辑分析,界定了纳米技术及其相关产业的概念, 进而揭示了纳米技术及其纳米技术相关产业的体系范畴,从而为从社会科学角度研究促进纳米技术及其相关产业发展(譬如制定技术/产业发展路线图)奠定了有关客体对象的认知基础。

当前,纳米技术与信息技术和生物技术一起并列为世界三大高技术前沿热点领域,而纳米技术又在促进信息技术和生物技术发展中扮演了重要角色,正在悄然引发着新一轮工业革命,成为国际高科技及其产业竞争的制高点。期待我们这一抛砖引玉的工作能为苏州/中国抢占这一制高点作出些微贡献。

参考文献

赵康等。《苏州市纳米技术及其相关产业发展战略研究总论》, 古吴轩出版社,2012。

杨辉。《纳米科学技术概论》(未发表PPT课件),2010。

白春礼。纳米科技及其发展前景。《科学通报》,2001/2。

白春礼。全面理解纳米科技内涵,促进纳米科技在我国的健康发展。《微纳电子技术》,2003/1。

彭练矛。《纳米科技和纳米电子学》(未发表PPT课件),2011。

基金项目:苏州市2012年度重大软科学课题,项目编号:SR201201。

作者简介:赵康(1950 –),男,江苏苏州人,博士,教授,博导,主要研究方向为公共管理、咨询学、专业社会学。顾茜茜与陈加丰均为赵的博士研究生,赵迪凡为项目研究助理。

What Is Nanotechnology and Its Related Industries

——Concept Defination and System Identification

ZHAO Kang GU Xixi CHEN Jiafeng ZHAO Difan

(School of Politics and Public Adminstration, Soochow University, Suzhou 215021, China)

纳米技术报告范文第3篇

随着纳米技术在医学领域中的深入研究,临床诊断技术及治疗水平也得以提高。本文就纳米技术、纳米技术在肿瘤治疗中的应用、用于肿瘤治疗的纳米粒子作一简要阐述,并提出相关建议和期望。

关键词:

纳米技术;肿瘤诊断;肿瘤治疗

目前,肿瘤已经严重地威胁着人类的健康,如何提高肿瘤诊断的准确性和治疗的靶向性一直都是临床研究的重点,纳米技术是指在纳米尺寸(1~100nm)内,研究电子、原子和分子的运动规律和特性的一种高新技术,该技术在医学领域有着广阔的应用和发展前景,本文就纳米技术在肿瘤的诊断和治疗中的应用做一简要阐述。

1纳米诊断技术在肿瘤中的应用

当前,临床上针对肿瘤的多种诊断手段都存在准确性和灵敏度低的问题,纳米技术的出现可大大改善这一局面。

1.1细胞分离技术

一直以来,从大量外周血中筛选出极少量的肿瘤细胞是一项难题,纳米细胞分离技术尤其是免疫磁性分离技术的出现有助于快速获取细胞标本,使其成为可能。目前,Wang等[1]发现基于该技术产生的循环肿瘤细胞(circulatingtumorcells,CTCs)检测表明,在乳腺癌等领域,肿瘤患者的预后与其外周血中的CTCs计数有着明显的相关性,甚至在化疗过程中,可以反映患者对当前化疗方案是否敏感,有一定的辅助治疗作用。

1.2纳米造影剂

将无机纳米粒子用作新型的生物造影材料,不仅可以提供较好的检测信号对比度和生物分布度,并有望将现有解剖学层面的造影技术推向分子水平从而提高诊断效率。Chen等[2]研究表明包裹金纳米棒-液态氟碳的纳米级造影剂,实现了体外超声/光声双模态增强显影。另有研究表明多功能纳米造影剂Fa-PEI-SPIO可高效负载MRI和荧光造影剂实现对肝癌细胞的高效率敏感显像,并同时实现目的基因的传输[3,4]。

1.3纳米传感器

纳米传感器可获取活细胞内多种电、化学反应的动态信息,用于监测肿瘤细胞中的异常情况,对认识肿瘤的发生及指导肿瘤的诊断与治疗都有着深远的意义。Wang等[5]已开发出一种含有嵌入金纳米颗粒的碳基传感器的装置Nano-nose,分析了呼吸气体成分,确定肺癌患者存在的气体成分。

2纳米技术在肿瘤治疗中的应用

化疗作为肿瘤治疗的重要手段,存在毒副作用大的问题,纳米技术的引入能够提高化疗的靶向性,为肿瘤的治疗提供了新的思路。

2.1纳米靶向载体系统在肿瘤治疗中的应用

纳米药物载体即溶解或分散有药物的各种纳米颗粒,如纳米囊、纳米球、纳米脂质体等。纳米靶向载体因其表面经过生物或理化修饰后具有靶向作用,可以作为良好的肿瘤药物与基因载体,具有比表面积大、无免疫原性、在血液中有较长的循环时间等特点,大大降低了药物对机体的毒副作用。Yao等[6]以PVP-β环糊精作为亲水嵌段,金刚烷—聚天冬氨酸为疏水嵌段构建了嵌段聚合物,其自组装形成的纳米粒尾静脉注1h后就能到达肿瘤部位,表现出明显的肿瘤靶向性。Gao等[7]将细菌膜包覆到30nm左右的金纳米粒表面(BM-AuNP)用于淋巴结靶向。

2.2纳米中药在肿瘤治疗中的应用

纳米中药是运用纳米技术制造的粒径小于100nm的中药有效成分、原药及其复方制剂。同传统中药相比,纳米中药对一些肿瘤细胞株和动物肿瘤甚至人体晚期癌肿均显示了良好的抑制效应。Huang等[8]成功制备了粒径为97.5nm的冬凌草三嵌段共聚物纳米胶束,并与冬凌草甲素进行了对比研究,结果表明冬凌草三嵌段共聚物纳米胶束对小鼠H22瘤体的抑制率明显高于传统的冬凌草甲素。

2.3磁控纳米载药系统在肿瘤治疗中的应用

多项研究表明磁控纳米载药系统在肿瘤的治疗中能够达到很好的靶向效果,具有很大的应用前景。

2.3.1磁控纳米载药系统

磁控纳米载药系统具有磁特性,在外加磁场的作用下,抗肿瘤药物能及时、定点、定向地聚集到病灶处,既能最大程度的浓集效应分子,又能使体内磁性微粒在治疗结束后得以彻底有效的清除,以减少其在体内慢性蓄积的毒性作用。Assa等[9]的研究表明,磁性纳米药物运载系统在肿瘤的治疗中具有极大的应用潜力。

2.3.2磁性纳米材料对肿瘤的热疗作用

磁热疗即应用直接或静脉注射的方法将产热材料定向汇聚于肿瘤部位,在交变磁场的作用下产生磁热效应,将肿瘤组织加热至42~48℃高温,以使肿瘤细胞死亡的新技术。Beik等[10]将磁性阳离子脂质体注射到MM46小鼠乳腺癌中,利用交变磁场使肿瘤表面温度达到45℃,经过几次重复磁热疗,所有小鼠的肿瘤均完全退化。该技术如可同时利用受体—配体特异性结合的特性,将磁粒子准确输送到肿瘤组织,将能达到靶向热疗的目的。

2.3.3磁性纳米微球对肿瘤血管的磁控栓塞作用

磁性纳米微球因具有体积微小、磁控导向等特点,能够在外加磁场的作用下进入并滞留在肿瘤组织的末梢血管床,部分或完全地阻断血管内的血流。惠旭辉等[11]用自制的聚甲基丙烯酸甲醋磁性微球对血管内栓塞进行了探讨实验表明,PMMA磁性微球具有磁响应能力强、磁控栓塞效果好,在高血流速情况下仍能实现靶位栓塞等优点。

2.4纳米控释系统在肿瘤治疗中的应用

纳米控释系统在肿瘤药物输送方面的优越性得益于其可缓释药物、减少给药剂量、提高药物的稳定性等特性。Zhang等[12]利用对酸性敏感的腙键将抗癌药物阿霉素共价键连在介孔二氧化硅的表面,同样可以实现pH敏感的抗癌药物阿霉素的释放,从而有效地抑制人宫颈癌细胞的增殖。

3用于肿瘤治疗的纳米粒子

为提高肿瘤的疗效,在传统材料的基础上开发出生物相容性及可降解性好、缓控释速度适中、靶向性强的纳米制剂成为研究的重中之重。

3.1可生物降解的天然高分子聚合物

3.1.1多糖类

3.1.1.1壳聚糖

壳聚糖是一类无毒且具有良好生物相容性、可塑性和成膜性的聚多糖,被用作靶向给药载体而降低药物的毒副作用。Abouelmagd等[13]将低相对分子质量(低于6500)的壳聚糖通过多巴胺聚合的方法连接到聚乳酸—羟基乙酸共聚物(PLGA)上,减少了巨噬细胞的吞噬,增加了酸性环境下细胞对药物的摄取。

3.1.1.2海藻酸钠

海藻酸钠具有无毒及可生物降解等优点。Guo等[14]制备了一种以甘草次酸为肝靶向因子的海藻酸钠pH响应型靶向纳米给药系统,研究表明,该纳米粒的生物利用度和半衰期及其对肿瘤细胞的抑制率均有显著提高。

3.1.1.3透明质酸

透明质酸(Hyaluronicacid,HA)又名玻尿酸,除具有良好的生物相容性、可降解性及非免疫原性等特点外还具有主动靶向到CD44受体的作用,因此可作为靶向因子用于修饰其它载体材料,促进其对肿瘤组织的靶向性[15]。

3.1.2蛋白类

3.1.2.1白蛋白

白蛋白受体(gp60、gp30、gp18等)广泛存在于肿瘤组织内新生血管内皮的细胞膜上,故白蛋白可作为构建药物载体的优良材料。Ru-go等[16]将454例乳腺癌患者随机分为白蛋白结合型紫杉醇(nab-PTX)组和紫杉醇注射剂(CrE-PTX)组,结果显示,nab-PTX组缓解率显著高于CrE-PTX组(33%vs.19%),并且nab-PTX治疗组无过敏反应出现,提示nab-PTX治疗乳腺癌的安全性和有效性优于CrE-PTX。

3.1.2.2酪蛋白

酪蛋白毒性较低且有较高的生物相容性,是理想的药物载体。有研究人员在合成的酪蛋白纳米粒子中负载了顺铂,通过近紫外活体成像技术观察到该粒子能够在肿瘤部位有效地富集,显示出了较好的肿瘤靶向作用[17]。

3.1.2.3脂蛋白

脂蛋白是一种大量存在于人体的天然脂质运输载体,作为载体材料能够延长药物在体内的循环时间。Ding等[18]将载脂蛋白apoA-I和穿膜肽(CPP)插入到脂质纳米粒表面构建了一个双功能的仿生HDL用于藤黄酸的递送,提高了对肿瘤组织的靶向性。然而由于脂蛋白均来源于血浆,既难以大规模生产,又在生物安全性方面也受到质疑,因此Simonsen等[19]开发出了新型的仿HDL纳米载体颗粒(HPPS)。

3.1.2.4乳铁蛋白

Zhang等[20]制备了藤黄酸—乳铁蛋白纳米粒,用于提高药物的口服吸收和抗肿瘤活性,同时降低药物的毒副作用。此外,利用乳铁蛋白受体存在于脑毛细血管内皮细胞上的依据,可对脑部肿瘤发挥治疗作用。

3.2可生物降解的合成高分子聚合物材料

聚乳酸(PLA)、聚乳酸聚乙醇酸共聚物(PLGA)、聚羟基乙酸(PGA)是乳聚酯类高分子材料,现已成为药剂学领域研究最多的载体材料之一。Kwak等[21]将紫衫醇负载在PEG-PLA纳米粒上,同时采用MT1-AF7p修饰纳米粒,实现了对胶质瘤细胞的靶向治疗作用。当前对共聚物的研究也较为常见,如聚乳酸/聚乙醇酸-聚乙二醇共聚物(PLA/PLGA-b-PEG)等[22]。

3.3不可生物降解的靶向纳米材料

3.3.1碳纳米管

碳纳米管是由层状结构的石墨片卷曲而成,因其独特的中空结构和纳米管径可作为递药载体。Sajid等[23]用生物大分子对碳纳米管进行了非共价修饰,除提高其对肿瘤的亲和力外还避免了网状内皮系统对它的迅速清除,降低对正常细胞的毒副作用。

3.3.2纳米石墨烯及其衍生物

近几年在生物医学领域的应用研究方面石墨烯及其衍生物——氧化石墨烯(grapheneoxide,GO)发展迅速。GO含有大量的羧基、羟基和环氧基团,这些含氧活性基团的引入不仅使其拥有较好的稳定性和水溶性,而且可使其更易于被修饰而具有了功能化作用,其中,作为药物载体就是其重要的功能之一。Chen等[24]报道了一种新颖的药物靶向递送系统,即通过原位还原法将银纳米粒负载于GO上,再载药,制得的递药系统可通过表面增强拉曼散射(SERS)—荧光结合光谱检测,观察到其中药物的胞内释放行为,故能用于癌细胞内的药物输送和成像。

3.3.3金纳米粒

金纳米粒(goldnanoparticles,GNPs)是一种新型的载体材料,鉴于其表面单层被修饰后可与多种药物结合的特点而受到了广泛的关注。Favi等[25]通过巯基聚乙二醇与紫杉醇共价连接之后再与金纳米粒子偶联,制备了PTX-PEG-GNP共聚物,该共聚物不仅提高了药物的稳定性,也增加了药物在肿瘤细胞内的聚集和肿瘤杀伤效果。

3.3.4介孔二氧化硅

介孔二氧化硅因其不同的孔径可以直接包埋药物,还可与其他载体材料合用,连接适当的靶向因子制成靶向纳米载体以发挥快速杀伤这些肿瘤细胞的作用。Wang等[26]首先制备了Fe3O4@SiO2核—壳纳米粒,并进一步合成Fe3O4@MgSiO3磁性介孔纳米复合材料,并将之用于在体靶向研究和抗肿瘤体外体内研究,结果显示,人肝母细胞瘤耐药细胞Hep-G2/MDR细胞对复合材料多柔比星摄取较游离多柔比星溶液有5倍的增幅。

3.3.5磁性纳米靶向载体材料

磁小体作为载体材料,其膜上存在大量的活基团,可通过氨基、羧基、巯基以及分子架桥的方式偶联药物。Deng等[27]将抗肿瘤药物阿糖胞苷成功负载于磁小体表面,所得的纳米粒径在(72.7±6.0)nm,其不仅具有长循环作用,还能改善阿糖胞苷的释药行为,解决了药物的突释现象。

4存在的问题及展望

综上所述,纳米技术在肿瘤的治疗方面展现出了巨大的潜力,纳米颗粒的发展为现代医学进步带来了许多可能性。但是,本研究认为关于纳米技术的研究尚存在一些问题:①研究内容多聚焦在体外研究;②趋向于评价急性毒性和死亡率,评价慢性毒副作用及致病率的研究很少[28]。此外,对于纳米技术应用于肿瘤的治疗,本研究有以下设想:①采取多学科联合攻关,将更多效果更好的纳米中药应用于肿瘤的治疗。②有针对性地将不同类型的高分子材料组合起来,取长补短,使所得的复合材料具有更多功能将会是研究靶向给药制剂的重点。③纳米粒子在肿瘤个体化治疗上应具有广阔的发展前景。

参考文献:

[1]惠旭辉,高立达,何能前.聚甲基丙烯酸甲醋磁性微球血管内栓塞实验研究[J].四川医学,2001,22(10):928-929.

纳米技术报告范文第4篇

10月24~26日,由中国纺织工业联合会、亚洲纺织学会联盟指导,中国纺织工程学会主办,东华大学承办,中国纺织服装品牌创业园、山东如意科技集团、卓郎纺织机械有限公司特别支持的第12届亚洲纺织会议暨2013中国纺织学术年会在上海召开。

来自中国大陆及台湾、美国、英国、韩国、日本、澳大利亚等多个国家和地区的专家学者以及企业负责人,就现在纺织工业的材料科学与工业技术进行交流,共同探讨纺织工业的创新发展道路。

行业面临诸多挑战

多年以来,中国纺织工业依靠科技进步取得了快速发展,中国俨然成为了全球纺织业最重要的生产加工厂和市场。正是因为如此,中国纺织业也面临着新的挑战和机遇。

“新工业革命为中国制造业发展提供了严峻的挑战和难得的机遇。”中国纺织工业联合会副会长、中国纺织工程学会理事长孙瑞哲指出,中国纺织行业面临着诸多压力。

首先是市场需求。据相关数据统计,30年之前,城乡居民在衣着方面的支出差距是3倍,而目前这个差距增长到了4.6倍。“过去30年,城乡之间在衣着支出方面的差距没有消除,反而增加了,所以在中国消除城乡差距还有很长的路要走。”孙瑞哲说。

在城乡居民衣着方面差距增大的同时,行业也面临着网购的挑战。“5年之前没有人会相信纺织品或者是服装会成为网购第一大产品。但去年,服装和家用纺织品成了网购最大的一个产品,占全部网购量的24.45%。我们预计在2016年,服装和家用纺织品的网购将会超过1万亿人民币。”孙瑞哲介绍说。

相比市场需求的挑战,来自资源方面的挑战更大。

“现在中国纺织行业面临着纤维短缺的巨大挑战,除了棉花问题外,我们还有PX原料问题。”孙瑞哲表示说,目前PX项目已经成了一个非常敏感的社会话题,每新建一个项目,都会遭到当地居民的抗议。但是如果纺织产业链上没有PX的话,行业中最主要的原料――涤纶,就会出现更大的问题。

据了解,目前中国PX进口依赖度已经上升到50%以上。据估算,到2015年中国生产的涤纶产量将达到3900万吨,对PX需求将达到2200万吨,而目前PX的产量只有770万吨。

“如果我们不去扩大PX的产能,中国将会主要依赖于进口,国际市场的任何波动都会对我们整个纺织产业造成非常大的威胁。”孙瑞哲担忧地说。

环境保护问题也对行业形成了很大的压力。纺织工业废水排放在中国的废水占比由2005年的10.65%上升到2010年的14.83%,在39个工业行业中,纺织工业化学需氧量的占比由2005年的8.6%上升到2011年的14.33%。“这是一个挑战,这需要我们利用非常经济、高效的技术来提高我们的环保能力。”孙瑞哲说。

传统出口市场的不断萎缩是行业面临的另一个新的挑战。“尽管我们的出口量还在不断地增长,但是欧、美、日等传统市场都在萎缩。”孙瑞哲表示,中国必须要找到其他的出口市场,构建新的竞争优势。

靠技术做强做专

在当前诸多挑战的面前,行业又该如何发展?与会专家在接受记者采访时表示,要利用新的技术,集成创新,做强做专,并要积极开拓出新的市场。

“我觉得现在行业不是做大做强,而是要做强做大。”上海市纺织科学研究院副院长张庆表示,现在大部分企业强调的是飞速做大,而不是做强。企业做强之后,基础扎实,产品才能有特色,这样才会有更大的效益。”张庆说。

在四川省纺织科学研究院院长蒲宗耀看来,当前纺织行业发展比较艰难,如果要生存下去,产品一定要有特色,并且还要保持一定的技术含量。

“你的产品一定要做到精,并且技术含量一定要比同类高才行。”蒲宗耀向记者表示,技术创新是第一位的,现在不像以前只要买台新的设备就能赚钱。“这个时代早已过去,没有技术含量就没办法生存。”

山东康平纳集团有限公司总经理刘琳认为,在当前形势下,行业要利用高新技术推动企业转型升级。“以前康平纳是个普通的纺织企业,现在发展成集智能化、信息化、创新化于一体的国内先进的纺机企业,就是利用高新技术,集成创新。”

对此,中国人民总后勤部军需装备研究所教授级高级工程师施楣梧表示,企业要针对目前的经济形势进行集成创新,并要开拓新的市场。但是他还提醒说,发展高新技术固然重要,但是高新技术的转化是需要很长时间的。

会议期间,一些国外专家对纺织行业的发展也给出了一些建议。

日本信州大学名誉教授平井利博指出,当前行业在发展中一定要保持创新性,只有这样才能保证发展的持续。

而韩国纤维学会会长尹在伦则表示,当前校企联合是一个很好的形式,要广泛地利用各自的优势,从而共同推动行业的发展。

纳米技术成为热点

在本次会议上,来自世界各国的专家学者对纺织行业不同领域的相关技术研究进行了交流,多个报告实现了跨学科、跨领域融合。其中,如何利用纳米技术开发出新的产品成为热点话题。

不可否认的是,当前纺织行业俨然已进入到了一个由宏观发展到非常微观发展的层面,这其中包括了各种新型的材料和先进的技术。

本次大会共设置纤维与低维材料、纺织加工技术、生态染整与绿色化学 、新一代聚酯纤维材料、纺织纳米技术、高品质产业用纺织品、现代纺织装备技术、服装与服饰、纺织品性能、测试与评价等9个英文分会场,来自世界各国的专家学者对纺织行业不同领域的相关技术研究进行了交流,多个报告实现了跨学科、跨领域融合。其中如何利用纳米技术开发出新的产品是此次学术会议探讨的热点话题。

“现在纳米科技已经创造了一个全新的工程技术研究领域,我们看到在这方面已经有很多的成就和成果。”平井利博在主题报告中提出,在纳米技术刚开发的时候,没有人想到它可以用于纤维和纺织行业,但是事实上,纳米技术确实给纤维开发带来很大的潜力。

“当然传统的纤维材料会延续下去,但是我们这个行业要通过传统纤维来获得更多的利润是不可能的。所以我们要开发新的材料帮助我们满足未来的需求,纳米纤维和纺织科技可开创一个全新的科技领域。”平井利博说。

实际上,目前纳米技术正逐步应用到纺织行业当中。

“为了充分利用天然蛋白质纤维,我们自主研制了纳微米级的超细蛋白粉体。”武汉纺织大学副校长徐卫林介绍,这种超细蛋白粉体将与化学纤维进行重构,并赋予了纤维在染色、回潮、舒适和抗静电等方面优良的性能。

尹在伦则表示,由纳米柱状陈列组成的纳米结构是在聚合物表面形成的,具有分辨率高、生产效率高和低成本的特点。利用注塑成型技术形成的纳米结构,可在聚合物表面形成纳米柱状阵列。“这与纳米压印光刻、热压印和传统注塑成型等其他传统加工技术相比,具有一定的优势。”尹在伦介绍说。

事实上,由于纳米纤维材料具有纤维直径小,比表面积大,且孔隙率高等优点,在工业生产及人类日常生活中都具有广泛的应用前景。在纳米纤维的制备方法中,静电纺丝技术成为当前有效制备纳米纤维材料的主要途径之一。

东华大学副校长俞建勇介绍,静电纺丝技术制造装置简单,纺丝成本低廉,具有可纺物质种类繁多,工艺可控等特点。

除此之外,来自北卡罗来纳州立大学教授张向武对新型的储能纳米纤维研究进行了讲解,江南大学教授魏取福就静电纺纳米纤维的表面性能功能化作了进一步的探讨,东华大学教授丁斌对静电纺无机纳米纤维及其应用作了详细的介绍。

在纺织技术取得越来越多成就的同时,很多专家也将注意力转移到环境可持续发展的研究中,加州大学教授孙刚提出了绿色环保的纺织印染方法,另外还有来自国内外的多名顶尖专家就纺织加工技术和新材料等多个内容进行了交流。

未来趋势有新变化

纺织科技的未来发展趋势具有三个特点:技术要素配置趋于智能、资源要素配置趋于绿色、创新要求配置趋于融合。

当前纺织行业正呈现出蓬勃发展的态势,未来的发展趋势又该如何?会上一些专家针对这些问题进行了探讨。

孙瑞哲指出未来纺织产业发展应具有四个导向,分别是资源控制力、环境友好度、劳动生产率、时尚导向力。

在纺织科技发展的趋势方面,孙瑞哲则表示行业未来发展趋势具有三个特点:分别是技术要素配置趋于智能、资源要素配置趋于绿色、创新要求配置趋于融合。

纳米技术报告范文第5篇

一、反向等同原则的起源及现状

(一)反向等同原则的起源

反向等同原则是在美国司法实践中确立起来的,最初见于美国最高法院判决的Westinghouse v. Boyden Power Brake Co.案。本案中,法院认为Boyden的装置已经为Westinghouse专利的字面范围所覆盖,但即便如此,法院拒绝判定侵权成立, “被控侵权物即便不在权利要求的字面范围内,侵权指控仍然有可能成立,反过来也一样。专利权人可以证明被控侵权物落入了权利要求的字面范围,但如果被控侵权物在原理上已经发生了重大改变,使得专利权利要求的字面范围与专利权人的实际发明之间出现了脱节,那么被控侵权物就不在专利权的保护范围之内,没有侵犯专利权。”该表述也成为了反向等同原则最初的雏形。

(二)反向等同原则的发展及现状

1、联邦最高法院的确认

在著名的Graver Tank & Mfg. Co. v. Linde Air Products Co.案中,反向等同原则的观点首次得到了美国联邦最高法院的确认,“等同原则的适用并不总是有利于专利权人,有些时候也会不利于专利权人。当一项装置与发明在原理上存在较大变化,采用实质不同的方式,实现了与发明相同或基本相同的功能时,即使该装置落入了专利权利要求的字面范围,被控侵权行为人仍然可以凭借等同原则来限制权利要求的范围,用以击败专利权人的侵权指控。”

这里我们可以看出,反向等同原则与等同原则其实是密不可分的,如果说等同原则的目的在于惩罚那些“形不是而神是”的被控侵权物的话,那么反向等同原则的目的就在于保护那些“形是而神不是”的被控侵权物。

第二,为反向等同原则的适用提供了强有力的判例依据,在Graver案后,许多地区法院和上诉法院都在其判例中认可了反向等同原则的适用,其中最为知名的是1976年美国索赔法院审理的Leesona Corp. v. United States案,该案中,法院认为,“若要证明侵权成立,仅仅在字面程度上(相同)是不够的经过比对,被控侵权设备没有通过与专利设备实质相同的方式,为了与其同样的目的而实现实质相同的功能,因此,侵权并不成立”。

2、联邦巡回上诉法院的态度

联邦巡回上诉法院(CAFC)在其审结的Tate Access Floors, Inc. v. Interface Architectural Res., Inc.案中,对反向等同原则的适用提出了质疑,“Graver案后,国会在适用112条时,其对说明书、实施例、功能性限定特征等的要求与反向等同原则最广泛的含义是一致的,尽管本院承认存在以该原则为依据对字面侵权提出的抗辩,但对于久未适用的这样一种例外,我们很难确定其可以再次被使用。”

但是,CAFC并没有否认反向等同原则作为一向有效的法律原则存在的可能性,有学者指出,“该原则在联邦巡回上诉法院受到了冷遇,不过这种情况可能正在变化。”此外,虽然专利法规定权利要求要确保充分公开,但这个要求通常依赖该发明的科技领域的知识状态,不可预测领域的发明较传统领域对公开的要求更高。有人认为,“公开之详尽,从未要求达到对大量制造所请求的发明给予指导的程度,专利制度的目的并不是向相竞争的制造者提供免费的制造数据及制造图纸。”并且,允许以功能性限定权利要求的存在使得这种充分公开即便通过了专利审查,在之后技术的发展过程中就不可避免的会有权利要求范围超过说明书涵盖实际发明范围的情况出现。

二、反向等同原则的内涵与本质

(一)事实问题:技术进步带来的影响

专利法的根本目的是为了通过授予排他性的权利来鼓励技术的创新和发展,对于新兴领域的产业而言更是如此,因为在这类产业中,技术的飞速发展使得原有专利技术特征的内涵和外延都发生了巨大的、甚至是实质性的变化,技术特征的范围也不断扩张,在后出现的新技术往往会落入原有专利权利要求的字面范围。要想避免新技术过早“夭折”,则需要在其产生初期通过专利法提供充分的庇护,反向等同原则即是有效的方法之一。这里,笔者以纳米技术为例对反向等同原则适用进行说明。

纳米技术是一门应用科学,其目的在于研究纳米规模下物质和设备的设计方法、组成、特性以及应用,因为物质在纳米尺度,会和它们在宏观时有很大的不同,宏观上要达到的高效稳定的质量,都不只是进一步的微小化而已。

此外,与传统机械相比,纳米器械有着完全不同的运行规则。例如,如果不改变其原有的机构和技术特征,仅仅将传统产品进行复制性的微缩制造,显然没有脱离现有技术的范围,从而无法满足专利法对于新颖性的要求。但有的学者认为,在纳米技术下,如果这种微缩制造产生的产品采取了极为微小的度量标准,从而其导致内部结构、排列等物理规则已发生了显著的改变,则可适用反向等同原则以避开在先技术的保护范围,康奈尔大学的研究者所研发的一款“纳米吉他”就是其中一种:

首先,该款吉他的弦由激光拉制而成,大约只有100个原子的宽度,其可以产生高于人类听力所及频率十七倍的音色。与此相应,如果在这之前存在一种普通的六弦乐器,其权利要求十分广泛,且并未对器械的大小有所提及,权利人很有可能宣称上述“纳米吉他”与其产品是相同的,也就是说,利用纳米技术制成的器械所应用的技术方案是有可能与传统的同类产品专利形成字面等同的。

其次,这种纳米级的器械制造者在设计过程中必须要考虑到较之于传统器械不同的特点,这些特点往往都是非常突出的。例如,不可思议的微小尺寸,电子结构、传导性能、灵敏程度、熔点以及机械性能等都显著区别于与其相同的在先产品。同时,这种将器械纳米化趋势已经在机械领域扩张开来,一份由国家科学基金会制定的社会纳米技术发展报告显示,“纳米化不仅仅是一个微缩过程,更是一种可以产生质的变化的技术。”

出于以上两点原因,有学者指出,“当被控侵权装置与发明的权利要求存在明显不同时,尽管其完全落入权利要求的保护范围之内,对其发明者不侵权的判决也许更为公平”。

(二)法律问题:权利要求的限缩解释

我们知道,专利权保护范围的确定是以权利要求的内容为准,但现实中无论是技术方案简单亦或复杂,仅仅依靠权利要求书的文字表述是远远不够的,尤其对于发明和实用新型而言,都需要对权利要求的具体含义进行进一步的解释。当权利人的权利要求的字面范围与专利权人的实际发明之间出现脱节时,即发明内容不足以支持权利要求,权利要求的范围相对于发明申请日时的发明技术过于宽泛,权利要求书不能成为一个比说明书描述得更广泛的发明。

正是基于上述原因,与等同原则对权利要求扩张解释,以利于充分保护权利人的利益相对应,反向等同原则对权利要求进行限缩解释,为那些本不应该遭受侵权指控的人提供依据起到了重要作用。例如,美国虽然允许以功能性限定技术特征的方式来书写权利要求,但同时也要求对该类权利要求的解释不能覆盖所有能够实现该功能或者效果的具体实施方式,而只能被解释为覆盖了说明书中所记载的具体实施方式及其等同物。有学者进一步指出,“事实上,只有从具体的实施例出发,才能对于宽泛的权利要求的解释起到限定性的作用,而反向等同原则正是将关注点放在了具体的实施例上,这就为解释权利要求的范围提供了明确的语境,这样一来,对于权利要求的解释将更加精准,专利权人也不会享受到那些本不应该被赋予的利益。

三、反向等同原则适用的原因及可能性

(一)功能性限定权利要求

1、功能性限定权利要求的特点

一般来说,产品专利的权利要求应由反映该产品结构或者组成的技术特征组成,方法专利的权利要求则由反映实施该方法的具体步骤和操作方式的技术特征组成。而如果一项权利要求中采用了零部件或者步骤在发明中所起的作用、功能或者所产生的效果来限定发明,则成为功能性限定特征。笔者在上文中曾提到,反向等同原则的重要功能之一就是为权利要求提供限缩性的解释,而针对功能性权利要求,我们更应该适时地适用该原则,以说明书的记载为准来缩小解释权利要求范围,使得发明人得到的报酬(保护范围)与发明公开的技术内容相适应,即将功能性权利要求的保护范围合理限制在所属领域的普通技术人员根据说明书的即在容易实施的技术范围内。

2、司法实践中的应用

当权利要求中采用多个功能性限定特征时,则需要从整体上考虑被控侵权技术与专利技术的差别。在1988年美国联邦巡回上诉法院审理的Texas Instrument Inc. v. U.S. International Trade commission案中,被告美国国际贸易委员会认为,就单个技术特征而言,对比技术特征都是等同的,但从整体上来看,被控侵权物与发明之间的区别是巨大的,前者对该种微型电子计算器的改进已经超出了原告专利公开的技术范围,故驳回了原告对被控侵权人提出的控告,原告不服,上诉至美国联邦巡回上诉法院。

上诉法院在审理过程中首先指出,对于功能性限定权利要求中的特征,应仅仅解释为覆盖了说明书中记载的具体实施方式及其等同物,并进行了详细的技术比对:尽管从字面上看权利要求1中所述的每一个功能性限定特征在被控侵权人的计算器中都被采用了,而且就单个而言,可以认为两者实现每一功能所采用的具体方式都是等同的,但如果将被控侵权人的计算器作为一个整体,就可以发现它与专利发明之间的区别是显著的,并同时指出,反向等同原则也许成为不等同原则更好,当权利要求的字面范围远大于说明书所公开的技术内容的合理范围时,被告就可以要求法院适用该原则。

(二)从属专利的强制许可

在讨论这一点之前,我们需要做一个假定:既然在反向等同原则适用的案例当中,被控侵权技术往往有了飞跃性的进步,较之于涉案专利有了实质变化,那么该种技术方案很有可能在现实中也被授予了专利权。由于其包含了在先专利所有的技术特征,与在先专利达到了字面相同的程度,那么,实施后专利则不得不侵犯前专利,这就为强制许可的适用创造了条件。

虽然强制许可被学界视为当垄断存在时防止专利权滥用的一种有效方法,且于技术进步是有利的,但由于触及到一些占据市场支配地位的大型工业集团的利益,其在适用时往往会遭到他们的强烈反对,这也使得现有的知识产权体系对其采取了较为排斥的态度。

有人可能会对此表示担心,认为适用反向等同原则会削弱对在先专利权利人的保护力度,因为毕竟他们往往是某一类技术的最初创造者,为什么不能让他们也享有在后技术创造者的成果呢,就在后的技术一并享有专利呢?这里,仍以之前提到的纳米技术为例进行说明:

首先,对于纳米技术的持有者而言,其在研发的过程中投入了巨大的成本,他们拥有该种技术的专家以及升级了的设备,较之于那些仍依赖传统技术的在先权利人而言,主打新兴纳米技术的企业已经具有了实施这些技术的能力,因此更适合作为新技术下一步发展的主导力量。

第二,在专利法范围内赋予纳米技术更宽松的发展环境不一定就会损害到传统产业的商业利润。上文中提到的“纳米吉他”即是如此,只要人们没有完全摒弃原有的传统吉他,总会有对于原有更便于操作的产品的需求者。因此,在先产品的制造者不必担心在后制造者进入市场带来的威胁,因为他们自会占据一个合适的地位。

第三,如果像某些人建议的那样,将在后技术所获得的专利也授予在先技术持有人,使其成为该类技术的垄断者,则会违背专利体系的本质功能。因为授予专利的目的是为了鼓励发明者进一步的创新,但事实上,对于传统吉他的制造者来讲,其关注的重点不在于纳米技术的应用上,授予其有关纳米吉他的专利除了能够为其带来一笔意外的财富外,并不能对其就传统产品进行发明再创造提供额外的动力。

综上,无论是强制许可亦或交叉许可,其虽然是防止前专利垄断技术的方法,但其实施多少掺入了政策性的考虑,适用上也离不开国家行政权力的保障,故而与专利诉讼中的侵权判定关系不大,有学者曾对强制许可适用的类型做过总结,“专利失灵”便是其中的一种。而如果引入反向等同原则,法院至少可以不必动用强制力来保证强制许可的实施。