前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料的结构特征范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:高分子材料 加工方法 成型技术
一、前言
近些年来,国防尖端工业和航空工业等特殊领域的发展要求更高性能的聚合物材料,开发研制满足特定要求的高聚合物迫在眉睫[1]。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。
二、高分子材料成型成型加工技术的相关定义
1.高分子材料
高分子材料是指由相对分子质量较高的化合物为基础构成的材料,其一般基本成分是聚合物或以含有聚合物的性质为主要性能特征的材料;主要是橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料。高分子材料独特的结构和易改性与易加工特点,使它具有其他材料不可取代与不可比拟的优异性能,从而广泛运用到科学技术、国防建设和国民经济等领域,并已成为现代社会生活中衣食住行用等各方面不可缺少的材料。
2.高分子材料成型加工技术
在高分子工业的生产中分为高分子材料的制备与加工成型两个过程。高分子材料的成型加工技术就是运用各种加工方法对高分子材料赋予形状,使其成为具有使用价值的各种制品。高分子材料加工主要目的是高性能、高生产率、快捷交货和低成本;向小尺寸、轻质与薄壁方向发展是高分子材料成型技术制品方面的目标;成型加工方向是全回收、零排放、低能耗,从大规模向较短研发周期的多品种转变。判断高分子材料的成型加工技术的质量因素是加工后制品的外观性、尺寸精度、技能性中的耐化学性、耐热性等等。
三、高分子材料成型加工技术的方法
高分子材料的的成型方法有挤出成型、吹塑成型、注塑成型、压延成型、激光成型等。以下介绍的是现今高分子材料成型加工的主要技术方法。
1.挤出成型技术
挤出成型技术是指物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。它的具体原理是高分子原材料自料斗进入料筒,在螺杆旋转作用下,通过料筒内壁和螺杆表面摩擦剪切作用向前输送到加料段,在此松散固体向前输送同时被压实;在压缩段,螺槽深度变浅,进一步压实,同时在料筒外加热和螺杆与料筒内壁摩擦剪切作用,料温升高开始熔融,压缩段结束;均化段使物料均匀,定温、定量、定压挤出熔体,到机头后成型,经定型得到制品。挤出成型又有共挤出技术、挤出注射组合技术、成型技术、反应挤出工艺与固态挤出工艺等。
2.注塑成型技术
注射成型技术是目前塑料加工中最普遍的采用的方法之一,可用来生产空间几何形状非常复杂的塑料制件[2]。注射成型技术根据组合材料的特征,又有以组合惰性气体为特征的气体辅助注射成型,以组合组成化学反应过程为特征的反应注射成型,以组合混合混配为特征的直接注射成型,以组合不同材料为特征的夹心成型等多种方法。
3.吹塑成型技术
吹塑技术一种发展迅速的塑料加工方法。热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热或加热到软化状态,置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。根据型坯制作方法,吹塑可分为挤出吹塑和注射吹塑,新发展起来的有拉伸吹塑和多层吹塑。
四、高分子材料成型加工技术的发展新趋势
目前,高分子加工成型技术正在快速地进步,它的发展总方向是高度集成化、高度产量、高度精密化,不断实现对加工制品材料的聚集态、组织形态与相形态等的控制,最大程度地达到制品高性能的目的。具体的创新技术之处主要体现在以下几项新技术上。
1.聚合物动态反应加工技术
聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的[3]。这项技术解决振动力场下聚合反应加工过程中质量、动量和能量传递与平衡的难点,从技术上解决了设备结构集化的问题。
2.热塑性弹性体动态全硫化制备技术
这项技术引入振动立场到混炼挤出的全过程,实现混炼过程中橡胶相动态全硫化,控制硫化反直的进程,防止共混加工过程共混物相态发生发转。此技术非常有意义,研制发明出新的热塑性弹性体动态硫化技术与设备,能有效地提高我国TPV技术的水平。
3.信息存储光盘盘基直接合成反应成型技术
此技术是将盘级PC树脂生产、中间储运与光盘盘基成型三个过程融合为一体,联系动态连续反应成型技术,研制开发精密光盘注射成型装备,达到有效提高产品质量、节约能源,降低消耗的目的。该技术避免了传统方式中间环节多、能耗大、周期时间长、成型前处理复杂、储运过程易受污染等缺陷。
五、结语
综上所述,我国在新时期要把握高分子成型加工技术的前沿,注重培育自主的知识产权,努力打破国外技术的垄断,实现科学技术研究与产业界的良好结合的目的。这能有效地将科学研究成果转化为实际的生产力,有效地加快我国高分子材料成型加工技术及其相关产业的快速发展。
参考文献
[1] 王云飞;孙伟.浅谈高分子材料成型加工技术[J].城市建设理论研究,2012,(11): 32.
一、强调学好药用高分子的重要性,激发学生学习热情
药用高分子材料指的是一类具有良好生物相容性和安全性而应用于药物制剂领域的高分子材料。高分子材料在药学、制药、制剂领域的应用具有久远的历史,早在远古时期人类就懂得利用淀粉、纤维素、蛋白、多糖等天然高分子材料,尤其是在医药领域,古老的药典中已经记载了应用天然高分子作为药方的添加剂。20世纪30年代以来,药用高分子材料更是迅速发展,例如聚维酮被成功合成并在随后被作为血聚代用品而广泛应用于药剂工业。20实际50年代以来,药物传递理论得到迅速发展,而药用高分子材料是现代药物传递体系的重要组成部分。当药物传递不良时,病人服用的药物只有很少一部分能作用在受体部位,大部分的药物在传递过程中被破坏或浪费,不仅药物利用率低而且可能产生较多副作用;而应用药用高分子材料作为缓释控释体系或者包衣体系,可以极大提高药物的药理活性和减少药物对人体的不良作用。随着科技进步,药用高分子材料也迅速发展。例如在制剂包衣方面,作为肠溶包衣材料的虫胶被纤维素衍生物取代,丙烯酸树脂又以其优良的性能和广泛的适用能力而与纤维素衍生物同时大放异彩。可见,药用高分子材料的基本知识,己经成为药剂、制药等领域的工作者必备的知识,在新药设计、药物开发、药物利用、药物包装等方面发挥着重要作用。这些背景的介绍可以使学生对药用髙分子材料在医药领域的重要性产生深刻的认识,从而激发学生对这门课程的学习热情,更好地学习和掌握药用高分子材料的相关知识。
二、结合药学专业特点,组织授课内容
针对药学专业的学生,教师授课时应注重针对学生的专业背景、特点和兴趣来组织课堂内容。首先,要选择适合的课本,我校药用高分子材料学课程选用郑俊民主编的《药用高分子材料学》一书,该书由中国医药科技出版社出版,是全国高等医药院校药物类规划教材,也是普通高等教育“十一五”国家级规划教材。该课本面向的正是药学专业的学生,涵盖了与药学相关的高分子化学和高分子物理学知识,以高分子作为药用辅料的应用为主要内容。其次,由于课程的教学时数为32学时,因此要合理分配各知识点的授课时间。高分子化学和高分子物理部分的重点放在高分子、交联、柔性等基本概念和重要高分子化学反应如加聚反应、缩聚反应、连锁聚合反应和逐步聚合反应,其中自由基聚合反应是重点和难点。要特别注意理论联系实际,因此高分子溶液的配制也是这部分内容的重点,因为药物制剂过程经常需要用到高分子溶液,而一般市售的药用高分子大多是颗粒状、粉末状,如果将其直接用良溶剂溶解,则很容易聚结成团,得不到均匀分散的高分子溶液。例如聚乙烯醇和羧甲基纤维素在热水中易溶,则应先用冷水润湿、分散,然后加热使其溶解,这样才能得到均匀的高分子溶液。这样的授课方式可以让学生感受到这门课程的实用性,对这门课程更有学习的热情。再者,讲授高分子材料时要结构、性质、应用相联系,让学生知道高分子的结构决定了它的性质,而它的性质决定了其应用。例如淀粉在热水中能发生溶胀,支链淀粉分子从淀粉中向水中扩散形成胶体溶液,而支链淀粉则仍以淀粉粒形式残留在水中,通过离心可以很容易将直链淀粉和支链分离。这种性质与其结构有关,支链淀粉构成有序立体网络,其中间被直链淀粉占据,形成固体溶液,在热水中处于无序状态的螺旋结构的直链淀粉分子伸展成线性脱离网络,因而分散于水中形成胶体溶液。通过计对药学专业特点的教学方式,可以使学生对这门课的学习更有兴趣,也更容易掌握重点和难点。
三、运用多媒体教学手段
多媒体技术作为一种新的教学手段,可以将文字、图像、动画、视频等数字资源整合在一个整体中。在药用高分子教学中应用多媒体技术,具有很多的优势。首先,多媒体技术可以在有限的时间内有效传递更大的信息量。其次,多媒体技术的应用可以将抽象的内容具体化,将静止的内容动态化,更具有视觉冲击的效果,使学生更容易接受新的知识。比如高分子反应这一章中的自由基聚合反应,其基元反应分成链引发、链增长、链转移、链终止等,如果用传统的板书教学手段,学生无法理解其瞬间反应的特征。而如果采用多媒体教学手段,可以将其反应过程立体化、整体化,帮助学生更容易理解这些反应。在教学过程中,笔者深刻体会到多媒体技术在这门课程教学的重要性,我们将在后续教学中探索如何更好地将多媒体和传统教学相结合,更好得突出重点难点,更好地帮助学生理解抽象知识。
四、结语
关键词:高分子材料;室内设计;应用;先进技术
室内设计是结合了艺术与技术的综合性的工程,他不仅需要规范标准的设计工艺,也追求着有创造力的设计理念和设计思想。因为材料是一种能将艺术形式与设计融合到一体的介质,室内所用的材料全部都是设计的现实支撑,创新型的不仅仅是材料使用方面的巨大的进步,更是整个设计的理念的推动力。
1高分子材料的概况
材料从大意上来说是对于室内设计中所应用的物质的整体称呼,并且不被形态,颜色以及材料所牵制。不管是宏观下的世界当中的物质的特征,比如:硬度,气味,色彩以及熔点等,还是在微观的角度来看物质的组成,结构等相关因素,室内设计对于材料的考虑都是比较整体而且全面的。与此同时,设计材料的创新和发展也可以推动设计的理念创新,高分子材料是整个材料科学在近代当中取得的较大的进步,对各个相关的领域都有着不可置疑的推动作用,人们对于设计在室内的要求是会越来越高的也是永无止境的,高分子材料也正是因为这样才得以存在。
2材料,艺术以及技术在室内设计当中的统一性
室内设计的中心思想就是创造出实用性与艺术的审美完美结合的居住环境,一并实现。创造力是没有止境的但是室内设计的实用性对于平衡技术与艺术的结合,对于设计师的技能要求比较高,室内设计以建筑物为主要的载体,虽然建筑工程对于理论非常的完善,但是对于技术性与艺术性在室内设计当中并没有形成一套完善的体系。因为技术性和艺术性在室内设计当中都在一些方面依托于材料的应用,所以以材料为整体切入点研究技术与艺术相统一并且应用于室内设计当中。
3高分子材料应用于室内设计当中
对于人类文明史的划分,相对具有代表性的就应该是据物资资料来进行相应的历史划分了,正因为这样,材料也就是物质资料生产水平的直接体现形式。在整个的建筑工程发展历史当中,因为建筑材料的使用有所不同导致东西方的建筑有着很大的差异,室内设计的风格大有不同。在东方文明当中将会以木材作为建筑当中的基本材料来使用,木质材料作为设计的基本依托,由此来渐渐的产生出梁架变换的内部设计的模式,例如:架,格,屏风以及隔扇等。而且因为木质材料具有强大的可加工性,渐渐的引发建筑变成了精于追求自然,技艺等显著的设计风格在室内设计当中。对于西方文明,大多数用石质为基础的材料,渐渐的形成出厚重感独特的加工特性,和融合了雕塑艺术的西方建筑以及室内设计多有的装饰手段,以厚重,宏大以及精美的雕刻艺术为主要的设计风格。正因为这样,在建筑领域当中的室内设计就是通过用材料把建筑设计的艺术性和其建筑艺术的实用性相互捆绑,从某一个角度来看,材料决定着室内实际与建筑工艺的发展方向,以及艺术风格。对于高分子材料而言,基于其本身的材料建筑的特性与室内设计的发展也表现出了鲜明的时代的特征。
4结束语
高分子材料有着质量较轻,容易加工,成本较低等多种优点,同时还有着各种各样的特性及功能。光电来转化高分子的材料可以用于室内的光线或者电力的供应;仿生的高分子材料更加可以应用于满足人们的生活当中的力学,洁净,以及热血方面的需求;环境敏感性的高分子材料也可以充分利用与环境的改变,未来还会有着更多的高分子材料的出现,以及目前已经应用的高分子材料的特性也会更加的完善。以塑料为高分子材料的代表当做现代建筑当中的主要材料,是因为高分子材料在室内设计当中的应用分析以及产生的重要作用。一塑料为载体的材料合成技术可能将是室内设计领域的新的发展方向。在这个新技术不断出现的时代,材料将是室内设计与艺术的审美的一种重要的融合媒介。特别是对于室内设计的领域当中对于设计思想变革产生的巨大影响的材料,高分子材料。高分子材料的影响力,优越性和发展的趋势有着极其重要的意义。
参考文献
[1]李进.室内设计中现成品材料的运用与研究[D].北京:中央美术学院,2008.
[2]马素德,宋国林,樊鹏飞,等.相变储能材料的应用及研究进展[J].高分子材料科学与工程,2010,26(8):161~164.
[3]王登武,王芳.乙烯树脂、混酸处理碳纳米管复合材料的制备与性能[J].中国塑料,2014,28(9):57~60.
[论文摘要]目前,静电在生物工程中有着重要的应用。介绍高分子抗静电的方法,阐明高分子材料抗静电技术在我国的发展和策略。
静电广泛地存在于自然界和日常生活之中,如人们每时每刻呼吸的空气每厘米就含有100500个带电粒子;自然界的雷电;干燥季节里人身上化纤衣物由于摩擦起电而粘附在身体上,这一切都是比较常见的静电现象。实际上,静电在生物工程中有着重要的应用。
一、高分子抗静电的方法概述
高聚物表面聚集的电荷量取决于高聚物本身对电荷泄放的性质,其主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,三者中以表面传导为主要途径。因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。
(一)添加导电填料
这类方法通常是将各种无机导电填料掺入高分子材料基体中,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。
(二)与结构型导电高分子材料共混
导电高分子材料中的高分子(或聚合物)是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、成型困难、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。
(三)添加抗静电剂法
1.有机小分子抗静电剂。有机小分子抗静电剂是一类具有表面活性剂特征结构的有机物质,其结构通式为RYx,其中R为亲油基团,x为亲水基团,Y为连接基。分子中非极性部分的亲油基和极性部分的亲水基之间应具有适当的平衡与高分子材料要有一定的相容性,C12以上的烷基是典型的亲油基团,羟基、羧基、磺酸基和醚键是典型的亲水基团,此类有机小分子抗静电剂可分为阳离子型、阴离子型、非离子型和两性离子型4大类:阳离子型抗静电剂;阴离子型抗静电剂;非离子型抗静电剂;两性型抗静电剂。
导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下4种:(1)抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成“海一岛”型水性的导电膜。(2)离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。(3)介电常数大的抗静电剂可增加摩擦体间隙的介电性。(4)增加制品的表面平滑性,降低其表面的摩擦系数。概括起来一是降低制品的表面电阻,增加导电性和加快静电电荷的漏泄;二是减少摩擦电荷的产生。
2.永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。
二、我国高分子材料抗静电技术的发展状况
我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、ABPS(烷基苯氧基丙烷磺酸钠)、DPE(烷基二苯醚磺酸钾);上海助剂厂开发目前多家企业生产的抗静电剂SN(十八烷基羟乙基二甲胺硝酸盐),另外该厂生产的抗静电剂PM(硫酸二甲酯与乙醇胺的络合物)、抗静电剂P(磷酸酯与乙醇胺的缩合物);北京化工研究院开发的ASA一10(三组份或二组份硬脂酸单甘酯复合物)、ASA一150(阳离子与非离子表面活性剂复合物),近年来又开发出ASH系列、ASP系列和AB系列产品,其中ASA系列抗静电剂由多元醇脂肪酸酯、聚氧乙烯化合物等非离子表面活性剂;ASB系列产品则为有机硼表面活性剂(主要是硼酸双多元醇脂与环氧乙烷加成物的脂肪酸酯)与其他非离子表面活性剂复合而成;ASH和ASP系列主要是阳离子与非离子表面活性复合而成,杭州化工研究所开发的HZ一1(羟乙基脂肪胺与一些配合剂复合物)、CH(烷基醇酰胺);天津合成材料工业研究所开发的IC一消静电剂(咪唑一氯化钙络合物);上海合成洗涤剂三厂开发生产的SH系列塑料抗静电剂,已经形成系列产品,在使用效果和性能上处于国内领先地位,部分品种可以替代进口,如SH一102(季铵盐型两性表面活性剂)、SH一103、104、105等(均为季铵盐型阳离子表面活性剂),SH抗静电剂属于结构较新的带多羟基阳离子表面活性剂;济南化工研究所JH一非离子型抗静电剂。(聚氧乙烯烷基胺复合物)等;河南大学开发的KF系列等,如KF一100(非离子多羟基长碳链型抗静电剂)、KF-101(醚结构、多羟基阳离子永久型抗静电剂),另外还有聚氧乙烯醚类抗静电剂,聚乙烯、聚丙烯和聚氯乙烯专用抗静电剂202、203、204等;抗静电剂TM系列产品也是目前国内常用的,主要用于合成纤维领域。
从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。
三、结语
我国合成材料抗静电剂行业发展前景较好,针对目前国内研究、生产、应用与需求现状,对我国合成材料抗静电剂工业发展提出以下建议。
(一)加大新品种开发力度
近年来国外开发的高性能伯醇多聚氧化乙醚类非离子型表面活性剂;用于聚碳酸酯的脂肪酸单缩水甘油酯;用于磁带工业的添加了聚氯化乙烯醚醇的磷酸衍生物;适应于聚烯烃、聚氯乙烯、聚氨酯等多种合成材料的多元醇脂肪酸酯和三聚氰胺加成物等,总之国内科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。
(二)加快复合抗静电剂和母粒的研究与生产
今后要加快多种结构抗静电剂及其他塑料助剂的复配,向适应范围广、效率高、系列化、多功能、复合型等方向发展。另外合成材料多功能母粒作为助剂已经成为今后合成树脂加工改性的重要原材料,如着色、阻燃、抗菌、成核等母粒在国内开发方兴未艾,国内要加快抗静电母粒的开发与研究,促进我国抗静电剂工业发展。
参考文献:
[1]高绪珊、童俨,导电纤维及抗静电纤维[M].北京:纺织工业出版社,1991.148154.
[关键词]材料发展、金属材料、无机非金属材料、高分子材料
人类社会的发展历程,是以材料为主要标志的。历史上,材料被视为人类社会进化的里程碑。对材料的认识和利用的能力,决定着社会的形态和人类生活的质量。历史学家也把材料及其器具作为划分时代的标志:如石器时代、青铜器时代、铁器时代、高分子材料时代……
100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。20世纪中叶以后,科学技术迅猛发展,作为发明之母和产业粮食的新材料又出现了划时代的变化。首先是人工合成高分子材料问世,并得到广泛应用仅半个世纪时间,高分子材料已与有上千年历史的金属材料并驾齐驱,并在年产量整理的体积上已超过了钢,成为国民经济、国防尖端科学和高科技领域不可缺少的材料。其次是陶瓷材料的发展。陶瓷是人类最早利用自然界所提供的原料制造而成的材料。50年代,合成化工原料和特殊制备工艺的发展,使陶瓷材料产生了一个飞跃,出现了从传统陶瓷向先进陶瓷的转变,许多新型功能陶瓷形成了产业,满足了电力、电子技术和航天技术的发展和需要。
现在人们也按化学成分的不同将材料划分为金属材料,无机非金属材料和有机高分子材料三大类以及他们的复合材料。
金属材料科学主要是研究金属材料的成分组织、结构、缺陷与性能之间内在联系的一门学科。金属材料科学与工程的工作者还要研究各种金属冶炼和合金化的反应过程和相的关系,金属材料的制备方法和形成机理,结晶过程以及材料在制造及使用过程中的变化和损毁机理。对其按化学成份进行分类可以分为钢铁、有色金属以及复合金属材料。按用途分类包括结构材料和功能材料。