前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料概况范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
Abstract: Function polymer materials are rapidly developing in recently years. But there are not any generalizations to the development of shape memory polymers. The defined, mechanism, characterization and the preparation of the most simulative shape memory polymer are briefly introduced in this paper. Then the developing prospects are also reviewed.
关键词: 功能高分子材料;展望;形状记忆
Key words: functional polymer materials;outlook;shape memory polyer
中图分类号:TB324 文献标识码:A 文章编号:1006-4311(2012)31-0303-02
0 引言
随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料——形状记忆材料。20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它可分为三大类,形状记忆合金、形状记忆陶瓷和形状记忆聚合物材料。高分子产业的迅速发展,推动了功能高分子材料得到了蓬勃发展。形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。
1 功能高分子材料研究概况
功能高分子材料是20世纪60年代的新兴学科,是渗透到电子、生物、能源等领域后开发涌现出的新材料。由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。
1.1 功能高分子材料的介绍 功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。
1.2 功能高分子材料分类 可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。
1.3 形状记忆功能高分子材料 自19世纪80年现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支——形状记忆功能高分子材料。和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。
形状记忆聚合物(SMP)代表一项技术上的重要的类别刺激响应的材料,在于形状变动的反应。更确切地说,传统意义上的SMP是聚合物变形,随后能固定在一个临时的形状,这将保持稳定,除非它暴露在一个适当的外部刺激激活了聚合物恢复到它原来的(或永久的形状)。因此,相关的反应被称为聚合物内的形状记忆效应(SME)。虽然各种形式的外部刺激可以被用来作为恢复触发,最典型的一种是直接加热,通向温度增加[4]。
2 部分形状记忆高分子材料的制备方法
2.1 接枝聚乙烯共聚物 在形状记忆聚乙烯中,交联(辐射或化学)是必须的,但是交联程度过高会导致聚合物的加工性能不好,因此最好是将交联放在产品制造的最后一步:Feng Kui Li等采用尼龙接枝HDPE获得了形状记忆聚合物。他们采用马来酸酐和DC处理熔融HDPE在180℃反应5分钟,然后在230℃下和尼龙-6反应5分钟得到产物。SEM照片显示尼龙微粒小于0.3μm,在HDPE中分散良好,两者界面模糊,显示两者形成化学粘合;而尼龙和HDPE简单混合的SEM照片中两者界面明显试验同时表明,随着DCP含量和尼龙含量的提高,共聚物中形成了更多的共聚物具有和射线交联聚乙烯(XPE)SMP相似的形状记忆效应,形变大于95%,恢复速度好于射线交联的聚乙烯SMP,该聚合物在120℃左右形状恢复达到最大。对其机理研究表明,接枝在PE上的尼龙形成的物理交联对形状记忆效应有重要作用。值得注意的是该共混物是仅仅通过熔融混合得到的,工艺非常简单,而且采用的是通用聚合物,因此该方法值得推广[5]。
2.2 聚氨酯及其共混物 聚氨酯是含有部分结晶相的线性聚合物,该聚合物可以是热塑性的,也可是热固性的。聚氨酯类形状记忆材料,软段的结构组成和相对分子质量是影响其临界记忆温度的主要因素,硬段结构对记忆温度影响不大。
采用聚氨酯和其它聚合物共混,可以改善性能,得到所需要的产物。有报道采用聚己内酰胺(PCL)、热塑性聚氨酯(TPU)和苯氧基树脂制得的形状记忆材料。发现该产物随着组成的变化而玻璃化转化温度不同;同时发现PCL部分在混合物中结晶相消失,说明结晶过程被阻碍。改混合物具有形状记忆效应的原因在PCL/苯氧树脂作为了可逆相。该混合物的玻璃化温度可以通过TPU/苯氧基树脂的混合比例和种类决定,增加混合物中固定相和减少TPU链长度可以减少滞后效应。报道采用PVC和PU共混也能得到SMP。该混合物中存在PVC/PCL形成的无定形相,混合物的玻璃化的温度也随着PVC/PCL的组成变化而平稳的发生变化,固定相记忆着最初形状[6-8]。
3 国内外形状记忆高分子材料研究现状
3.1 国内研究现状 国内研究的形状记忆高分子材料多以聚氨酯和环氧树脂基为主,加入添加剂或固化剂进行改性,可以得到满足基本要求的SMPs,但是由于其自身缺点的约束,所以限制了其使用范围。最近几年来,形状记忆合金以利用聚合物为基体添加其他成分,突出各个优点进行对比,得到一些性能良好的形状记忆材料因此我们列举国内最新的SMPs研究。
魏堃等人将新型聚合物固化剂与环氧树脂(EP)进行机械共混,进行适度交联固化后,制出具有较低玻璃化转变温度(Tg)的无定型EP体系,得出结果显示适度交联固化的EP体系具有良好的形状记忆特性。
高淑春等人利用活化溅射方法制备TiO2薄膜,以Ni-Ti形状记忆合金生物材料为基体,附着在形状记忆和金材料的表面,其跟血液相容性比较好,因此具有较高的临床使用价值。
3.2 国外研究现状 对比国内,国外的SMPs发展比较早,例如:美国、日本、德国等由于具有先进的设备和理论基础,因此在各个方面相对国内都比较成熟,所以本人参考最近国外SMPs相关研究在此论述。
Y.C.Lu等人利用环氧基的形状记忆材料设计模拟服务环境所能反映出的预期性能要求即
①暴露在紫外线辐射下循环为125分钟;②在室温下沉浸油内;③浸泡在热水中49℃。一种新颖的高温压痕法评估适应条件的SMPs的形状和力学性能。结果表明对于有条件的比较一般环境条件SMPs的玻璃化转变温度降低与较高模和敏感应变速率。如果温度设定低环境条件影响的SMPs形状恢复能力。特别是紫外线暴露和浸入水中的SMPs回复率明显低与无条件的材料。当回复温度高于Tg,材料的回复能力相对保持不变。
R.Biju等人用双酚A(BADC)与缩水甘油醚或者双酚A(DGEBA)与苯酚螯合物(PTOH)通过一系列聚反应合成热固性聚合物表现出具有形状记忆性能。利用差示扫描量热分析、红外光谱及流变仪来表征其固化特征。以不同比例DGEBA/PTOH/BADC混合,研究了它们的弯曲、动态力学性能以及热性能;对于一个给定的成分,弯曲强度和热稳定性随着氰酸酯浓度增加而增加,而这些特性随着PTOH浓度的增加而降低,储存模量表现出相似的趋势。这个转变温度(Tt)随着整体氰酸酯含量的增加而增加。这些聚合物在形状记忆性能显示出良好的恢复形状,并且形状恢复时间减少。而显示恢复时间与形状恢复模量增加(Eg/Er)刚好相反。这个转变温度可调谐反应物组成及变形恢复速度随驱动的温度增加而增加。这些环氧基氰酸盐系统具有良好的热、力学和形状记忆特征很有希望用在智能电气领域。
4 展望
由于SMP有着丰富的后备资源,而且形状记忆的方式灵活,具有广阔应用和发展前景。因此本文认为,有很多重要因素影响将SMPs技术成功转化成生产应用,例如:标准化的不同方法描述为量化形状记忆材料的性能。应该进一步完善形状记忆原理,在分子结构理论和弹性形变理论基础之上,建立形状记忆的数学理论模型,为开发新材料奠定了理论基础;运用分子结构理论、实验设计原理和改性技术知识,提高形状记忆各项性能、丰富品种、满足不同的应用需要,增强应用和开发研究,拓宽应用领域,尽快转化为生产力。
形状记忆高分子与形状记忆合金相比具有感应温度低,且形状记忆高分子因其独特的优点而具有广泛的应用前景,但是我们也应该看到在开发应用上仍存有一些不足[22]:形变回复力小;只有单程形状记忆功能,没有双程性记忆和全程记忆等性能;优化制作设计与工艺,开发更多优秀的品种,在研究聚合物基的SMP中有许多重要工作需要我们一步步努力去做,在完善SMP过程中,同时要研究复合社会不同需求的产品。
参考文献:
[1]陈义镛.功能高分子[M].上海:上海科学技术出版社,1998:1-5.
[2]江波等.功能高分子材料的发展现状与展望[J].石油化工动态,1998,6(2):23-27.
[3]古川淳二.对21世纪功能高分子的期待[J].聚合物文摘,1994,(6):17.
[4]Tao xie. Recent advances in polymer shape memory[J].Polymer, 2011,(52):4985-5000.
[5]Han Mo Jeong Europen polymer ourn [M].2001,(37):2245~2252.
[6]饶舟等.形状记忆聚氨酯高分子材料的研究进展[J].聚氨酯,2011,110(7):1-7.
关键词:涂料学;高分子专业;教学改革;涂料实验
近年来,随着我国对创新型人才培养问题的日益重视,大力加强素质教学,培养和激发学生的创造力的同时,进一步巩固学生的基础知识就显得尤为重要[1]。在我国,无论是在综合性院校、理工科院校,还是职业技术院校,大都开设了高分子的本科专业,包括:高分子化学与物理专业、高分子材料专业以及高分子加工专业等。在课程设置方面,基本都开设了高分子化学、高分子物理和高分子分析方法等基础课程以及高分子专业基础实验。然而我们在教学实践中发现,学生很难将之前开设的基础课程中的知识融会贯通,对生活实例不能做出相应合理的解释。高分子作为一个实用性很强的专业,各门专业课之间有着密切的联系:利用高分子化学知识合成出不同结构的高分子材料,高分子材料的结构将直接影响其性能,在对材料进行加工时又需要运用高分子物理和流变学等知识[2]。如果学生们不能将专业基础知识活学活用、融会贯通,那么他们将很难应对高分子专业相关工作中的实际问题。因此,我们尝试针对高分子专业的培养方案,在开设高分子化学、高分子物理、高分子成型加工以及高分子结构分析方法这些专业课程的基础上,新增了一门《涂料学》课程,安排在第7学期进行,计划学时为32学时。力求通过本课程的学习,巩固之前学到的专业知识并将其融会贯通,同时拓宽学生的知识面,提高其实践能力。为了达到教学目标,培养出基础扎实、有创新思维、创新能力的高素质人才,《涂料学》课程的本科教学内容和教学方法的设计就是必须考虑的首要问题。为此,笔者结合从事涂料课程教学与科研的经验,参考接收本科生进行涂料实习单位的反馈意见,同时结合《涂料学》课程自身特点,做了一些初步的探讨。
一、《涂料学》课程的特点和意义
高分子的主要应用领域集中在涂料、塑料、粘合剂和助剂四方面。进入21世纪以来,我国涂料行业发展迅速,对涂料行业科研技术人才的需求量大大增加[3]。为此,在国内一部分高校中的高分子相关专业开设了涂料相关课程。《涂料学》课程是建立在高分子化学、有机化学、无机化学、胶体化学、表面化学与表面物理、流变学、材料力学、光学和颜色学科基础上的一门综合性学科,但又不是这些学科的简单加和而有其自身理论。对于高分子专业的学生而言,如何能将其学到的无机化学、有机化学、物理化学、高分子化学、高分子物理等基础知识贯穿统一起来,《涂料学》无疑是一个不二选择。开设涂料课程,一方面使今后从事涂料行业的学生进入工作岗位后,尽快成为行业技术骨干;另一方面对于今后从事非涂料领域的高分子学生而言,课程的学习过程也是对之前学到的化学和材料学基础知识巩固、加强和提高的过程。
二、《涂料学》教学的主要内容
涂料学课程的内容多,课时少,教师难以在短时间内将涂料行业所需的内容讲深、讲透。在课程教学的过程中,教师应该坚持理论结合实际的教学方针,对知识结构优化调整,做到简单而不浅显,深奥而不枯燥。在教学内容上,要注重两方面的统一:一方面注意《涂料学》课程章节间的联系和统一,这门课程涉及到涂料概述、颜料、溶剂、树脂等内容,各部分内容既相对独立,又相互联系;另一方面,要把握《涂料学》课程与无机化学、有机化学、物理化学、高分子化学、高分子物理等基础知识贯穿统一。教师在教学中应该重点介绍以下内容。
1.涂料的基本知识。这部分内容主要介绍涂料概念、组成、类别、功能以及发展概况。结合日常生活所接触的涂料,使学生掌握涂料的基本概念、分类和作用。让学生们了解到,现代涂料学的发展是以化学,特别是高分子科学为基础,结合界面科学和流变学发展起来的。了解涂料的发展背景和面临的挑战,懂得涂料的发展趋势。通过对目前报道较新的,具有特殊功能的涂料的介绍来激发学生对涂料的兴趣,并为以后进行涂料的科学研究开好头。
2.颜料相关理论。颜料和填料是涂料生产不可缺少的成分之一。其作用不仅是色彩和装饰性,更重要的是改善涂料的物理化学性能,提高涂层的机械强度、附着力、防腐性能、耐光性和耐候性。让学生了解遮盖力、着色力和吸油值等基本概念。在授课过程中,这部分知识与物理化学中的双电层理论联系紧密,可以对以前的基础知识巩固提高。关于颜料的分散是教学的重点。
3.溶剂知识。溶剂是不包括无溶剂涂料在内的,各种液态涂料中所含有的,为使得液态涂料完成施工过程的必要的一类物质。原则上不构成涂膜,也不存留在涂膜中。在授课过程中,这部分知识与有机化学和高分子物理中的极性、溶解力、粘度等相关知识联系紧密,可以对以前的基础知识巩固提高。在教学中,使学生掌握根据溶剂理论选用溶剂和改善涂料性能,了解有机溶剂对环境的危害,开发绿色水性涂料和高固体份涂料是涂料行业的趋势。
4.树脂知识。成膜物质是组成涂料的基础,它具有粘结涂料中其他组分形成涂膜的功能,对涂料和涂膜的性能起到决定性的作用。例如,在丙烯酸树脂章节中的内容与高分子化学基础课中自由基聚合和聚合方法的相关知识密切联系。不饱和聚酯树脂、醇酸树脂和聚氨酯章节中内容与高分子化学基础课中的缩聚和逐步聚合相关内容联系紧密。因此,授课的过程也是对以前的知识复习,深入体会和提高的过程,将这些基本知识与涂料制备技术相互渗透,相得益彰,这也正是开设《涂料学》课程的特色。
三、教学方法
1.教学与生活、生产相结合,注重理论联系实际。涂料是一门理论性和应用性都很强的交叉学科。理论知识比较晦涩,但大多数基本理论知识都已经在本科基础课教学阶段涉及,在涂料课程中只是有针对性的学习,必须与实际结合才能使学得的知识深化和牢固,也才能引起学生的兴趣。在教学的初期阶段,为了使得学生尽快入门,熟悉涂料学,就要将日常生活、生产与涂料结合,介绍生活和生产中涂料的应用,提高学生从心理上对课程的接受程度。众所周知,涂料学的特点是“入门易、学懂难”。为了提高教学效率,改善教学效果,必须要注重理论联系实际。这种联系实际上是基础知识与涂料学的联系;涂料学与实际应用的联系。把涂料学作为有机化学、高分子化学、高分子物理等基础知识实践的对象,会使学生对所学过的基础知识巩固提高,为今后打下坚实的理论基础。在涂料学理论实践过程中,学生可以去涂料生产厂和研究院所参观学习。学习涂料生产方法和检测方法,了解生产设备和检测仪器设备。学生往往很有兴致,注意力高度集中,因此将理论知识寓于合适的实际背景中进行讲授效果明显。
2.开设涂料实验。在高分子化学实验的基础上,开设涂料实验课程[4]。高分子化学实验中,一般开设甲基丙烯酸甲酯(或苯乙烯)的乳液聚合、聚酯合成实验等,可以在这些实验的基础上,进一步开设丙烯酸乳液合成、低分子量聚酯合成以及低分子量聚酯与异氰酸酯固化等,并且可以进一步开设乳胶漆的制造、涂料性能检测等系列实验,让学生自己合成树脂,自己配制涂料,自己对涂料和涂层进行检测。通过实验,不但将课堂所学到的理论知识通过实验巩固提高,而且训练学生进行涂料生产和科学研究的方法,培养学生的动手能力,分析和解决问题的能力。
四、结语
总之,笔者对在高分子专业本科教学中开设《涂料学》课程的必要性、优化教学内容、改进教学方法进行了初探,提出开设《涂料学》课程的必要性:一方面,对于处于专业知识学习的学生而言,通过本课程的学习,加强他们对高分子专业基础知识的巩固,为今后从事高分子相关专业的工作打好坚实的理论基础;另一方面,针对今后从事涂料行业的学生,涂料行业快速发展,科技含量越来越高,涂料学课程的开设正好可以满足涂料行业对大批高层次科研技术人员的需求。
参考文献:
[1]徐光宪.我对素质教育的认识[J].大学化学,2004,19(3):1-8.
[2]陈立贵,袁新强,李雷权,等.构建符合学校定位的高分子专业人才培养方案的研究[J].科技资讯,2009,(22),161-162.
[3]涂料工艺编委会.涂料工艺[M].北京:化学工业出版社,1997.
关键词:高分子课程;全英语课程;比较研究
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)06-0063-02
为适应我国加入WTO之后经济全球化的新形势,早在2001年教育部就明确要求“本科教育要创造条件使用英语等外语进行公共课和专业课教学”。相应地,在为上海“四个中心”建设培养具有国际竞争力人才的背景下,上海市教委从2009年开始了上海高校示范性全英语教学课程建设。上海理工大学材料科学与工程专业积极开展专业课程的全英文教学实践[1],迄今为止已有9门课程入选该项目,其中包括笔者所负责的《高分子科学基础》课程。
目前内已有一些对中外本科教学的比较研究,但对具体课程的比较研究还较少[2,3],特别是对我国全英语课程与国外相应课程的比较研究尚未见报道。为了提高我校全英语专业课程与世界一流大学专业课程接轨的程度,本文以我校材料科学与工程专业和英国曼彻斯特大学材料科学与工程专业为例,选择有代表性的高分子课程,对中英两国的教学内容、方法和评价手段等进行了访谈调研,获得了一些认识和体会。
一、曼彻斯特大学高分子课程的特点
1.课程概况。曼彻斯特大学为英国老牌名校,拥有欧洲最大的材料学院。众所周知,英国(苏格兰除外)大学本科学制为3年,该校材料科学与工程专业与高分子相关的课程名称为《聚合物制备和表征》,是一门面向大三学生开设的必修课。该课程旨在使学生能够理解重要的聚合方法和聚合物表征技术。
英国大学没有统一的教材。该门课程推荐了如下几种参考书:Polymer Chemistry:An Introduction”,MP Stevens,3rd Ed.,OUP,1999;Introduction to Polymers”,R.J. Young and P.A. Lovell,3rd Edition,CRC Press,2011,2nd Edition,CRC Press,1991;Principles of Polymerisation”,G. Odian,all editions;Polymers:Chemistry and Physics of Modern Materials”,J.M.G. Cowie,all editions;Organic Chemistry of Synthetic High Polymers”,R.W. Lenz,Interscience,1967。这些教材都是高分子领域的经典教材。
2.教学方法。英国大学在教学方法上比较灵活,有多种教学形式:包括授课(lectures)、实践课程(practical classes & workshops)、小组辅导(group tutorials)、自主学习(independent study)等。具体课时安排为:授课22学时,实践课6学时,小组辅导3学时,自主学习6时。
授课是本门课程的主要教学方式。教师用幻灯片等多种方式讲解专业知识,讲课的速度会较快。教师在课前一般会布置阅读任务,并在课上就其中的问题进行讨论,因此对学生来讲,课前阅读非常重要。高分子的制备与表征是一门实践性较强的课程,因此这门课程安排了专门的实验学时,学生需要单独或以小组为单位完成指定的实验,最后上交实验报告。在英国高校的课程安排中,辅导课是一个重要的组成部分。小组辅导是教师对学生学习进程进行集中的指导,同学可以就课程上的问题与教师进行交流。此外,还安排了远多于授课学时的自主学习课时。
3.评价手段和学习效果。该课程的评分为书面考试和书面作业(包含小论文)相结合,分别占70%和30%。课程评价中注重对“学习效果(learning outcomes)”的考查,这是一个从上世纪80年代就开始引入西方教育界的概念。就本课程而言包括以下四个方面:知识和理解、智力技能、实践技能和可转换技能(transferable skill)。具体而言,知识和理解包括:理解重要聚合方法的原理,聚合条件对聚合动力学和聚合物性能的影响,聚合物常用表征技术的原理,选择适当的技术来制备和表征某一聚合物。智力技能包括:展现改进的逻辑推理和解决问题的能力,能确定制备具有某一性能的聚合物的条件和表征某一聚合物所需要的技术,能评估和解释聚合物结构表征数据和热分析数据。实践技能包括:能在实验室进行一个标准的聚合,能分析材料加工实验的结果,能选择适当的技术来解决聚合物表征中的问题。可转换技能包括:能使用适当的方法来解决问题,评估结果,可靠并有效地交流结果和完成简单的技术报告,等等。
二、上海理工大学高分子科学课程的特点
1.课程概况。《高分子科学基础》全英语课程是为材料科学与工程专业三年级本科生所开设的专业选修课。这门课程的主要内容包括绪论、高分子的制备、高分子的结构与性能、高分子溶液、高分子的降解与环境等五个部分,涵盖了高分子化学和物理的基本内容。本课程选用美国Joel R. Fried教授所编写的Polymer Science and Technology(Prentice Hall,2014年第3版)作为主要教材,该教材为美国多所大学所采用。在课程建设项目的资助下,每个学生都能使用到英文原版教材。
2.教学方法。教学形式主要包括授课、学生陈述和答疑等。具体课时安排为:授课3时,学生陈述时,课外答疑48学时。学生陈述要求学生分别选择一种高分子材料,用英文制作PPT来进行介绍。课外答疑是教师在公布的时间和地点解答学生的疑问。
3.评价手段。课程评分包括平时成绩和期末成绩,分别占30%和70%。平时成绩包括出勤、课堂表现和课后作业评分,期末成绩则包括学生陈述和小论文评分。
三、比较研究和启示
1.在教学内容上,英方课程侧重于高分子的制备和表征,实践性较强;而我校课程则侧重于高分子化学和物理知识,理论性较强。
2.在教学方法上,英方虽然也以授课为主,但突出了实践课程和小组辅导,并要求学生花大量的时间进行自主学习;而我校的课程是一门纯理论课程,教学方法相对单一,我校的答疑活动则类似于英方的小组辅导,但属于课外活动,且不局限于单个的学生或小组。
3.在评价手段上,英方课程没有基于考勤和课堂表现等的平时成绩,而书面考试成绩占总成绩的大部分;在这一点上,我们的课程评价手段似乎需要调整,以小论文代替考试导致成绩评定往往存在较多主观因素,不利于全面考察学生对知识点的掌握程度。因此,在期末成绩评定上,恢复书面考试似乎有必要。
通过上述对中英两国高分子课程的对比,有如下几点启示:(1)教学内容上增加实践教学环节;(2)在教学过程中增加分组讨论环节;(3)改进课程评价手段,使书面考试占有一定的权重,并注重考查“学习效果”,特别是“可转换技能”。
参考文献:
[1]钱微.材料科学与工程全英语教学专业核心课程群构建与实践[J].上海理工大学学报(社会科学版),2012,34(4):320-324.
关键词:氯化聚乙烯 用途 生产方法
1 引言
对于氯化聚乙烯(CPE)来讲,它是由聚乙烯(PE)经氯化制得的一种高分子材料。根据其含氯量、残余结晶度及其它技术特征,CPE产品可分为树脂型和橡胶型。性能与所用原料聚乙烯的分子质量、产品中氯含量及分子结构有关。CPE分子结构中不含不饱和双键并接入含氯基团,且氯原子也是沿着聚乙烯链无规分布在分子结构中,所以产品具有稳定的化学结构,优良的耐热、耐老化性、阻燃性、耐寒性、耐油性、耐候性、自由着色性、耐化学药品性、耐臭氧性和电绝缘性及良好的相容性和加工性等。它在塑料、建材、电气、医药、农业、橡胶、油漆、颜料、轮船、造纸、纺织、包装及涂料等行业都具有广泛的应用,其开发利用前景非常广阔。
2 CPE的主要用途
CPE作为一种新型的高分子材料,在塑料、建材、电气、医学、农业、橡胶、油漆、颜料、轮船、造纸,纺织、包装、涂料以及钢材等诸多领域有着广泛的应用。
1)在塑料中的应用。由于CPE和各种高分子材料具有良好的相容性,可作为聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE)、聚苯乙烯(PS)和丙烯腈一丁二烯一苯乙烯共聚物(ABS)等塑料的改性剂。CPE作为硬质PVC的改性剂,可以改善PVC的抗冲击性、耐候性和加工性,制造挤出片材、管材、建材、板材、注射管材和电器零部件等。CPE作为软质或半硬质PVC改性剂,也可改善其耐湿性、电气性、手感性和加工性,被用于制作电线、家电外壳、防腐衬里、电器零部件、电缆护套、软管、垫圈、电工胶布、防水卷材、薄膜和粘胶带等。经CPE改性的PVC,脆性温度可低到-40℃,且耐候性、耐热性和化学稳定性也远远超过用其它产品改性的PVC,因此在建材、水利、通讯等行业广泛应用。
2)在涂料中的应用。从分子量为几千、含氯量为60%到分子量为数万乃至几十万,含氯量为30%-50%的CPE都可用于涂料。它广泛用于船底涂料、化工厂钢架、桥梁、贮槽等金属构件的防锈涂料。也可制成溶液涂料、乳液涂料和粉末涂料,用于橡胶、塑料、纤维和金属材料的涂层和地板涂料等。
3)在橡胶中应用。CPE与乙丙橡胶(EPR)、天然橡胶(NR)、异戊橡胶(IR)、丁苯橡胶(SBR)、丁腈橡胶(NBR)和聚氨酯(Pu)等有良好的相容性,掺混后可提高各类橡胶的加工性能及改善物理机械性能。改性的橡胶可制成电线、软管、密封材料、垫圈、机器配件及阻燃运输带等。CPE作为基料制得的硫化橡胶在耐磨损、介电性能、耐热、耐老化、耐油性等方面比氯丁橡胶好,类似于乙丙橡胶、天然胶、异戊胶和丁腈橡胶,成本低于氯丁橡胶、丁腈橡胶。主要用于电线电缆工业、汽车工业、耐高温耐油胶管、软管、传动带及运输带等。CPE还可与普通橡胶共混加工,使加工出的橡胶制品具有强度高、耐磨耗、耐热、耐化学药品、难燃自熄、耐低温等优良性能。
4)在防水卷材中的应用。CPE可用作防水卷材,性能与氯磺化聚乙烯(CSM)、乙丙橡胶(EPDM)防水卷材性能相似,-30℃至-20℃仍能保持良好的弹性。
5)在各种接枝共聚物中的应用。CPE可以通过接枝共聚的方法制备VC―CPE和ACS。而ACS是一种性能优良的新型工程塑料,阻燃性、耐候性能均优于ABS树脂,被用于汽车、轮船、建筑材料和家用电器等上。
6)其它应用。CPE加到燃料油中可降低凝固点,充当齿轮油的添加剂可提高油的耐压能力,添加到切削油、钻孔油中可提高工具的使用寿命;CPE可用于制造橡塑共混仿革鞋底、微孔鞋底、仿牛皮鞋底、建筑用防水胶片、耐酸耐油胶管胶辊、阻燃高压帽和难燃耐磨输送胶带等。
3 CPE生产方法
CPE的生产方法主要有水相悬浮氯化法、溶剂法、固相氯化法和盐酸相悬浮氯化法几种。工业生产方法主要采用水相悬浮氯化法。
1)水相悬浮氯化法。该法由德国赫斯特公司首先开发成功,在5%-20%PE水悬浮液,6-8%氯化铵(或硫酸)水悬浮液或0.5%-2.0%氯化钙悬浮液中氯化,反应到所要求的氯含量后,停止通氯。经离心或过滤分离得到CPE产品。氯化过程中加入溶胀剂、防粘剂、分散剂、引发剂、消泡剂和防静电剂。为了防止颗粒附聚、氯化不均匀,也可采用二步法进行氯化。第一步在低于HDPE软化点(110℃)的温度下氯化,氯含量达到10%-20%时,在140℃进行第二步氯化。若要制得氯含量大于6O%的CPE可采用三步法。水相悬浮法CPE产品的氯分散均匀性决定于原料PE的粉碎程度,采用高分散聚乙烯,在1MPa压力下进行氯化,可制得氯化程度高且均匀稳定的CPE产品。该法是目前国内外生产CPE的主要方法。优点:具有操作平稳、氯气利用率高,产品含量稳定,后处理容易,对设备要求较低,生产成本低,产品质量好,适用于大规模生产。缺点:由于用水作为氯化介质,副产的大量稀盐酸回收利用困难,只能用碱或石灰等中和后排放(浪费资源,增加生产费用);该工艺废水排放量大,设备腐蚀严重,产品易变色。
2)溶剂氯化法。该法是工业生产CPE最早方法,由英国ICI化学公司研发成功。它是在一定压力和温度下,将聚乙烯树脂(PE)溶解在卤代烷烃、氯苯等有机溶剂中,加入引发剂,升温通氯进行反应得到产品。优点:工艺条件温和,操作工艺成熟,所得CPE产品的氯含量可达60%-90%,产品中氯分布较均匀。可用于生产高氯含量及高结晶度的CPE产品。缺点:使用的溶剂对人体有毒,对大气臭氧层易造成破坏,环境污染严重、溶剂回收和产品后处理工艺繁杂,设备费用高、产品中残留的溶剂难于除净,影响产品的质量和用途;生产效率低,不宜大规模生产(已淘汰)。
3)固相氯化法。用氯气或氯和氮的混合气作氯化剂对固体高密度聚乙烯进行氯化,用季铵盐类作防静电剂。先在大于l10℃进行氯化,后在l10-140℃继续氯化到要求的氯含量。该工艺是在干燥的反应体系中进行的,因此设备腐蚀性小,后处理工艺相对简单,并且此氯化工艺既适用于氯化高密度聚乙烯,同时也适用于氯化低密度聚乙烯。低密度的须将低密度的聚乙烯经过特殊处理,使它变成溶胀状态后才能氯化。所以,该法已成为当前国内外聚乙烯氯化改性的研究方向。它又可分搅拌床和流化床两种生产工艺:①搅拌床固相氯化工艺。它是将高密度聚乙烯粉末以固相投入搅拌式反应釜中,在搅拌状态下通入氯气,能获得含氯量不等的产品。②沸腾床固相氯化工艺。该工艺是在沸腾床反应器中使聚乙烯粉固体颗粒悬浮于氯气气流之中,在一定温度和引发剂存在的条件下,发生氯化反应生成CPE。该氯化工艺可根据用户的需求,生产不同氯化程度、不同粘度指标的CPE产品。
4)盐酸相悬浮氯化法。该法是水相悬浮氯化法的一种改进工艺,由德国赫斯特公司开发成功。聚乙烯在配料槽中用20%左右的盐酸配制成盐酸相悬浮液,进入氯化釜。在冷却/加热系统精确控制下,按预定的程序通入液氯进行氯化反应。反应完成后,用平面转盘真空过滤机连续脱酸,洗涤出料,脱出的25%盐酸一部分循环,另部分可作为商品出售。脱酸后的湿料连续进入哈氏合金螺杆筛网离心机,经干燥等工序处理后得成品。优点:该法省去了水洗和破洗两道工序,节能效果显著,所得产品白度高,颗粒均匀,含氯量均匀,不含盐;因采用特殊通氯方式,避免了氯气对搪瓷反应釜的气蚀现象,使得反应釜寿命提高;能回收25%的副产品盐酸,废水排放量也少。缺点:对后处理设备的要求高,投资较大。该法是目前世界上CPE生产最先进的工艺,山东维坊亚星集团有限公司已引进应用该技术。
参考文献
关键词:水工建筑;混凝土裂缝;处理措施
一、水工建筑中的混凝土裂缝种类
(1)干缩裂缝
由于混凝土内外水分蒸发程度不同,从而导致变形不同的结果,这样就会产生干缩裂缝。这种裂缝是不可逆的,多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。
(2)塑性收缩
塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不一、互不连贯状态。较短的裂缝一般长20cm~30cm,较长的裂缝可达2m~3m,宽1mm~5mm。
(3)超载裂缝
超载裂缝是指混凝土构件遭受超载作用时,会出现变形、受力不均等现象,这样构件在超出设计均布荷载或集中荷载作用下时,会导致产生内力弯矩,出现垂直于构件纵轴的裂缝。当构件受到较大剪力作用时,此时裂缝的表现形式一般沿受力钢筋垂直方向或斜向发展,分别为向上、下延伸。
(4)沉降裂缝
由于地基差异沉降或构件结合不良,会在与地面垂直,或成30°~40°角方向发展成为沉降裂缝,从而使得剪应力超过设计强度。这种裂缝的危害极大,并且很难处理,其宽度与沉降值成比例,因荷载大小而异,多见于填土地基、桩基沉降不均匀的各种基础与墙体。
(5)温度裂缝
温度裂缝的走向通常无一定规律,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。温度裂缝一般发生在大体积混凝土表面,或者所在地区温差变化较大。当温度过高时,会引起混凝土的膨胀,这种裂缝形式为中间粗两端细,当温度过低时,产生的冷缩裂缝的粗细变化不太明显。
二、水工建筑混凝土裂缝处理案例
(1)工程概况
某水电站工程以发电为主,兼顾下游防洪。大坝趾板建在覆盖层上的混凝土面板堆石坝上,面板浇注完工后检查发现,面板表面出现裂缝,因该电站是建在深覆盖层上的面板坝,为保证蓄水后大坝的安全,必须对裂缝进行专门处理。
(2)混凝土裂缝问题
面板第一次复查发现裂缝326条,2个月后检查发现裂缝增加了71条,此后连续2个月检查分别增加了17条和6条。按照缝宽δ≤0.20mm、缝宽δ>0.20mm且≤0.50mm和缝宽δ>0.50mm逐块分类分别为276条、127条、17条。经凿槽检查,裂缝深度最深5cm,超声波探测最深7.1cm。
(3)混凝土裂缝处理
由于裂缝处理是一项专业性很强的隐蔽工程,施工危险系数高,施工过程控制要求高,施工工序复杂,施工工艺要求高,使用大量化学材料,劳动保护要求高,劳动力需用量较大,化学灌浆耗时较长,开灌后必须连续灌浆直至结束,严禁灌浆中断,设备的维护保养、使用要求高。因此,在该工程的大坝迎水面裂缝处,要保证在电动卷扬吊篮上施工,局部存在高排架施工,上下交叉作业。如果工程是在冬季施工的,这样所产生的裂缝,要保证大坝上游面143m水平贯穿裂缝要在今冬明春的枯水季节处理完毕。大坝下游面新老混凝土结合面裂缝处理在混凝土仓位备仓过程中进行施工,大坝上游面裂缝处理与坝顶工程上下交叉作业,施工协调工作量大。在所有进行灌浆处理的裂缝处,大坝加高混凝土内需设置Φ25~Φ36并缝钢筋。
(4)施工流程
根据该工程的裂缝的不同部位和不同性状,从缝口封闭、化学灌浆及加设止水的缝口封闭等上面来讲述裂缝处理的程序,具体如下:
1)缝口封闭处理。缝口封闭型裂缝处理流程为:裂缝检查表面处理凿槽回填砂浆养护。
2)缝口封闭、缝内化学灌浆处理。
3)加设止水的缝口封闭、缝内化学灌浆处理。
三、水工建筑混凝土裂缝的处理方法
水工建筑混凝土裂缝处理施工应在裂缝开度最大时进行,其处理方法主要有五种,分别是喷涂法、粘贴法、充填法、灌浆法和浸渍法。
(1)喷涂法
首先将裂缝附近的混凝土凿毛并清洗干净,刷去松动颗粒,使之充分干燥,用修补材料涂抹于混凝土表面。喷涂法选用于宽度小于0.3mm的表面裂缝的处理。喷涂材料可选用环氧树脂类、聚酯树脂类、聚氨酯类、沥青类等涂料。其中环氧树脂类主要是指环氧树脂浆液,在里面加人一定比例的固化剂、稀释剂、增韧剂等混合而成,硬化后,粘结力强,收缩性小,强度高,稳定性好,有利于发挥抗渗、抗冲、抗气蚀等能力。环氧树脂因有毒性,故在配方浆液和施上中应注意防护。根据试验成果,经综合分析和选择,得出环氧树脂浆液的基本配方。
(2)粘贴法
当裂缝为表层裂缝时,可以直接在结构物的表面使用粘贴法;当裂缝为贯穿性裂缝时,要在使用粘贴法之前先进行灌浆。粘贴法选用的材料有橡胶片材、聚氨乙烯片材和玻璃布等,是一种不以恢复结构功能为目的的处理方法。玻璃丝布的厚度一般为0.2mm~0.4mm,其层数视具体情况而定,一般粘贴2~3层即可。要求玻璃丝布的上层比下层稍宽10mm~20mm,以便于压边。
粘贴法在施工时,要在裂缝宽度窄的部位,用树脂材料充填平整较大的气孔,用铜线刷打毛混凝土表面,用水清洗后再令其干燥,然后粘贴刷有粘结剂的片材,在修补表面涂刷一层树脂基液。
(3)充填法
在处理水工建筑混凝土裂缝的时候,要正确认识充填法适用的范围,保证其是针对缝宽大于0.3mm的表层裂缝的处理,还需要根据裂缝的性质,选择合适的充填材料。例如当裂缝性质属于活缝时,需要选择弹性环氧砂浆和弹性嵌缝材料等弹性材料;当裂缝性质属于死缝时,需要选择环氧砂浆、水泥砂浆、聚合物水泥砂浆等刚性充填材料。
1)活缝处理施工。活缝处理施工时,要铺设隔离膜,在槽底用砂浆找平,清洗干净裂缝周围的部位,沿裂缝凿槽宽、深均为5cm~6cm的U形槽,在槽侧面嵌填弹性材料,涂刷胶粘剂。
2)死缝处理施工。死缝处理施工,应在槽面涂刷基液,这样才能确保槽面处于干燥状态。还要沿裂缝凿槽宽、深5cm~6cm的V形槽,向槽内充填修补材料,并清洗干净、压实抹光。
(4)灌浆法
灌浆法适用于深层裂缝的贯穿裂缝的处理,分为化学灌浆和水泥灌浆两种。
1)化学灌浆。目前,在水工建筑混凝土裂缝的处理中,化学灌浆以其独特的优势,被人们广泛应用。化学灌浆适用于细缝和渗水缝,特别是要重视选择材料的灌浆工艺。对涌水缝的补强,可选用聚氨酯材料;对不需恢复结构的渗水缝,可用丙凝、丙烯酸盐浆材。
2)水泥灌浆。水泥灌浆是一种在实际施工中比较常见的方法,主要用于裂缝补强,一般用于大于2mm的裂缝,对于不规则且缝宽较小的裂缝,使用该方法会不利行浆。随着社会经济的大力发展,水泥灌浆使用的水泥材料越来越多,例如超细水泥和湿磨水泥,将在处理更小的裂缝上面更加具有优势。
(5)浸渍法
浸渍法使用的修补材料有很多,主要用于比较密集的表面细缝的处理,目前广泛使用的有高分子材料和无机材料。高分子材料主要是以甲基丙烯酸甲脂为主的,无机材料有M1500等。其中以甲基丙烯酸甲脂为主的高分子材料具有一定的毒性,价格较高,且工艺复杂,施工要更加严格。M1500是一种无机盐类的液体瓢瓢材料,无毒,操作工艺简单、方便,使用它在处理裂缝时,会形成一种微粒,将裂缝孔隙堵塞,达到耐久性、密封性的目的。