前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇放射性污染的特点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:伴生放射性矿山;辐射安全管理;环境治理
1伴生放射性矿山辐射安全管理现状
1.1放射性污染控制标准缺失
对于伴生性矿山放射性污染物控制的标准,国家目前只对废水排放具有比较明确的控制标准和限值要求。对于废气排放,只有在《稀土工业污染物排放标准》中对“钍、铀总量限值”有要求,对于其他伴生矿生产行业没有相关的控制标准。对于伴生放射性矿山生产过程中产生的废渣,国家没有对其分类和处置进行明确的规定,使得放射性废渣得不到科学合理的处置,对生态环境造成危害[2]。因此,国家有关部门有必要对放射性污染控制标准进行详细的制定,加强对放射性污染物控制与管理力度。
1.2定义与监管行业范围不明确
我国到目前为止还没有制定出统一的伴生放射性废物和污染的判定标准,《中华人民共和国放射性污染防治法》和《放射环境管理办法》也只是从理论的角度定义了伴生性矿山,但是在文件中并没有对准确的判定标准进行规定,没有给出具体的量化指标,这使得在对伴生性矿山进行管理的过程中没有可以依据的标准,管理工作缺乏可操作性和可执行性,管理工作难以展开,无法对伴生性矿山辐射安全进行有效管理。
1.3伴生放射性矿辐射安全设计标准不健全
随着社会的发展,人们日常生活中对于矿产品的需求量也在不断的增加,伴生性放射性矿山资源开发利用效率对于自然资源的有效利用具有重要影响,放生性矿山生产过程中所产生的放射性污染物对于环境造成的危害是巨大的。我国在伴生性矿山开发方面虽然有所研究和成果,但是国内还没有专门出台辐射防护标准的具体技术规范和要求,比如缺少对矿井的通风设计的要求和当放生性物质达到一定浓度时放射性矿采冶设备的防辐射保护距离的要求等都没有做出明确的规定,这不利于伴生放射矿山辐射的安全管理工作有效展开,不利于矿山开采过程中对于辐射的防护和对辐射物的处置,对工作人员和环境造成众多安全隐患。
1.4对伴生放射性矿山设施退役治理问题重视不够
伴生放射性矿山开采的过程中产生的放射性污染物对于生态环境造成一定的负面影响,有些地方的污染面积对人们的日常生活已经造成了较大的影响,但是国家到目前为止还没有出台相应的整治政策,只是在《放射性废物管理规定》中提出要对伴生性矿山的污染问题进行整治,但是如何整治以及整治的标准都没有进行明确的规定。这使得伴生放射性资源开发利用企业在生产过程中缺乏对污染治理的认识和技术方法,缺少对伴生放射性矿山设施退役治理措施的了解,使得设施退役治理问题得不到有效的解决。
2伴生放射性矿山辐射安全管理对策
2.1完善伴生放射性废物的管理体系的建议
环境的治理涉及到管理标准的问题,在人们日常生活产生的污染较少的情况下,生态环境可以通过自身的调节来消除污染物对环境的影响,但是当污染物的数量超过一定的标准,即超过自然环境的承受能力就会破坏生态环境自身的生态平衡,对自然环境造成损害。所以,国家有必要对伴生放射性环境管理标准进行明确的界定,对环境治理标准进行明文规定,提高相关企业对放射性问题的重视程度。
2.2辐射剂量监测
在日常的作业中,常用到的检测方法是辐射剂量监测,主要是对生产矿山中的放射性粉尘浓度、氡及氡子体、放射性表面污染的测量,还有对矿山附近水、空气、土壤中放射性物质的测量和辐射水平,以及对放射性废水、废渣、废气中放射物质含量的测量,为放射性污染物的处置方案的制定提供参考数据,防止生产性矿山辐射剂量超标,及时检测、参与矿井各种防护措施、井口通风系统的效能,为伴生放射性矿山井下工作人员身体健康提供有效保障,做好矿山生产安全管理工作,保证伴生放射性矿山资源的有效利用,保证开采工作的顺利进行。
2.3明确伴生矿定义和范围
我国是国土辽阔的国家,具有矿山资源丰富的特点,国内伴生放射性矿产行业的种类繁多,在生产过程中产生的放射性污染物的种类也是多样的,不同矿山行业产生的污染物类别和污染水平具有较大差距,在处理方法上也是不相同的。因此,在对伴生放射矿山进行管理的过程中,要先制定伴生放射性矿山管理名录,按照公众照射剂量评价结果和天然放射性核素含量等检测结果对伴生性矿山进行分类管理,参考国际上关于伴生性矿山审管、定义和豁免标准,结合我国伴生放射性矿山生产需要和污染状况,制定出每种放射性污染物管理限值,并以此对伴生性矿山进行定义。
2.4加强对伴生放射性废物排放和处置问题的研究
目前,对于伴生放射性矿山生产中辐射安全防护具有一定措施,对于生产过程中产生的污染物处置方法上具有一定研究,但是对于辐射安全问题还未能得到根本的解决。国家有必要加大对伴生放射性废物排放和处置问题研究资金的投入,提升放射性污染物处置技术和处置标准,为伴生放射性矿山生产工作人员人身健康提供更多保障,为环境污染治理提供更有利的条件,促进伴生放射性矿山行业健康发展。
2.5加强伴生放射性企业的退役及环境整治
伴生放射性企业的退役对环境治理造成的影响是较大的,矿山资源开采结束并不能表示矿山开采工作的结束,伴生放射性企业应该对矿山开采后的治理给予一定的重视。国家可以在实践治理工作经验的基础上,结合国际相关研究成果,对退役企业治理技术和治理标准进行准确界定,要对土壤中残留水平、金属复用的标准、废渣厂的整治等工作进行规定,以此来指导和规范伴生放射性企业的退役及环境整治工作。
[关键词]核设施;退役;辐射监测
中图分类号:TN671 文献标识码:A 文章编号:1009-914X(2015)19-0329-01
所谓的核设施具体是指借助核反应堆的变化产生各种能力的设备,这些设施能够对核能量进行充分、合理地利用,具体包括核燃料生产、加工以及贮存中使用的设备;处理放射性废物的设备等等。核设施最为显著的特点是危险性,通常情况下,核放射、核泄漏以及核污染的作用半径约为10km以内,核爆炸及核渗漏的作用半径则在50km以内。若是人体长期受到核辐射,轻则会产生出不适的症状,严重时甚至会造成身体主要器官和功能系统损坏,进而导致各种疾病,如白血病、肿瘤、生殖系统疾病等等。为此,在核设施退役的过程中,必须对其进行辐射监测。
1 核设施退役的特点及辐射监测的重要性
1.1 核设施退役的特点
与一般的设施和设备相比,核设施具有自身的特殊性,所以在核设施服役期满后,即达到使用年限时,需对其进行退役处理,这样做的最终目的是使核设施原本的场址能够不受限制的开放和使用,降低核辐射对社会公众健康和自然生态环境的影响。大体上可将核设施退役的特点归纳为以下几个方面:
1.1.1核设施内部存在大量的放射性活度。以商业规模的反应堆为例,此类核设施在运行期间,其所包容的放射性活度约为~Bq,当反应堆停运并全部卸料之后,其内部的放射性活度仍然会留存~Bq。
1.1.2坚固性。从核辐射防护的方面考虑,核设施要比普通的设施或设备更加坚固,若是设施的坚固性不足,则会导致其在运行期间出现损坏等问题,由此可能会造成核泄漏。所以在核设施建设时,坚固性是必须具备的特点之一。核设施的这一特点给拆除工作增添了一定的难度。
1.1.3复杂性。通过对大量的核设施进行研究分析后发现,几乎所有核设施的结构都非常紧凑,系统方面也十分复杂。故此,在核设施退役的过程中,往往需要高精尖的技术,并耗费巨资。具体而言,就是核设施退役需要付出极其昂贵的代价。
1.2 辐射监测的重要性
从目前国内核设施的总体情况上看,绝大部分的运行寿命均在几十年之间,当核设施达到使用期限后,便要停产关闭。通常情况下,大多数非核设施在停产关闭后便不会再产生污染物,它对环境的影响会随着寿命的终结而终止。而核设施却不同,即便它们停产关闭,其原本所包容的放射性物质仍然存在进入环境的可能性,所以当核设施停产关闭后,必须经历一个安全的退役过程。而在这个过程中,辐射监测是必不可少的一个环节,也是核设施整个退役过程中最为重要的环节,一般会贯穿于退役的全过程中。
2 核设施退役过程中的辐射监测要点
2.1 监测内容及要求
核设施退役过程中,辐射监测具体是对以下三个阶段的监测,即退役作业前、退役期间以及退役后。
2.1.1 作业前的监测。主要包括如下内容:
①对与核设施相关的系统及各类部件的辐射水平、放射性污染水平以及放射性活度等进行调查,并对源项进行估算。
②对核设施内环境辐射水平、气溶胶水平以及放射性气体进行调查。
③对核材料的卸料区域和放射性废物暂存区的放射水平进行调查。
④对作业现场外水域和陆地等区域进行调查,所选的监测点应当能够充分反映出作业现场周围环境的辐射水平。
2.1.2 退役期间的监测。该阶段的辐射监测主要包括以下内容:
①核设施退役作业现场内的辐射剂量率和放射性气体监测。
②在拆除具有较强放射性零部件时,需要在排放口位置处设立放射性气溶胶固定监测点,对放射性进行连续监测。
③在某些特定的场所内,应当按照工艺要求随时进行取样,如有必要则应进行核素分析。
④对拆除下来的放射性物项必须进行监测,同时要将处理的总量记录下来,以备后续使用。
2.1.3 退役后的监测。该阶段的辐射监测主要包括如下内容:
①对拆除后的核设施本体以及拆除设施中使用的各种工具需要进行释放监测,并对可能受到放射性污染的作业人员的皮肤、工作服等进行污染监测。对于场所和设备的污染监测可视现场情况设置监测点
②当退役作业完成以后,应当按照核设施退役前的辐射监测要求对作业现场及其周围环境进行一次全面、系统的最终监测,并依据监测结果作出评价。
2.2 辐射监测要点
2.2.1流出物监测要点。对气载流出物进行辐射监测的主要目的是为了有效确保又有通排风系统能够正常运行,以此来保证核设施退役作业过程中产生的气载放射性污染物不会对周围环境造成污染。因核设施退役时的操作方式与运行阶段存在一定的差异,所以当原核设施的通风系统无法使污染物排放达到规定要求时,应在该通排风系统上加装相应的过滤设备,这样能够保证排放过程达到标准要求。通常情况下,液态流出物的排放应当执行原有的排放标准,并借助原设施的排放系统完成排放。由于部分核设施没有排放系统,故此无法对液态流出物进行排放。此时,则应当在排放前对废水进行辐射监测,并对日排放量进行严格控制。①对废水进行监测取样时,应当取清液置于塑料容器当中,并向容器内添加硝酸,使其pH值约等于2,然后将样品送至实验室进行分析。②对于废油则应当搅拌均匀后取适量滴在棉质纱布上,再将纱布封存于样品袋中,送往实验室进行源项核素含量检测。
2.2.2放射性废物监测。在核设施退役过程中,通常会有部分放射性废物需要暂时存放,应当在暂存期内对其进行辐射监测。①气溶胶。应对放射性气溶胶进行定期监测,具体频次为每月不少1次,最小的取样体积应当满足测量设备的性能要求,若是监测过程中发现异常,则应当改为每日监测1次,直至处理至正常为止。②辐射场。应对剂量率进行定期监测或是按照相关作业要求进行不定期监测,具体频次每月应当不少于1次,如果发现异常,则应改为每日监测1次,直至处理至正常为止。
2.2.3终态监测。在对终态监测方案进行制定的过程中,除了要详细说明监测点位布置的合理性以及样品采集的代表性之外,还应说明核设施退役过程中对周围环境造成的影响。该环节的工作必须在土地平整之前进行。具体的监测技术要点如下:①可将验收场址以10O的面积进行分区,在对分区后的区域以1O的面积划分成网格,然后取0-20cm的表层土,各个网格内的取样点不得少于1个,取样重量约为100g,并对土壤样品中的α和β总量的活度进行测量。②对于存在渗漏污染但已经进行处理的区域,应当进行钻井取样,随后对总的α和总的β以及源项核素的活度进行测量。
3 结论
综上所述,当核设施服役期满后便需要停产关闭,为了避免退役过程中产生的放射性物质对人员及周边环境造成辐射污染,应当对其进行辐射监测。在这一过程中,监测人员除了应当了解相关的监测内容和要求之外,还应熟练掌握有关的监测技术,只有这样,才能确保监测工作顺利进行,有助于降低核设施退役中对人员及环境造成的危害。
参考文献
[1] 郭仕源.李阳.曾民生.大型辐照装置退役的辐射监测与防护评价[J].中国辐射卫生.2013(12).
[2] 孙庆红.谷存礼.李洋.核设施退役产生的极低放废物就地填埋方法研究[J].核辐射管理.2012(3).
[3] 黄治俭.滕慧洁.宋海龙.某厂核设施退役工程的竣工验收辐射检测[J].辐射防护.2010(9).
( 1 )悬浮物及飘浮物
一般均在病房出口处设置化粪池。污水进入化粪池后,其中比重较大的污染物在池中沉淀分离,发酵消化。在沉降过程中也夹杂一些病毒病菌随之沉降,故污泥也应作相应处理。化粪池出水仍会携带一部分漂浮物和机械杂质进入消毒池,这将影响消毒剂的杀菌效果,因此,污水进入消毒池前应得到充分沉淀和简单的过滤。
( 2 )有机污染物
医院污水的有机物一般小于城市污水, BOD5 多在 100 毫克 / 升左右。可以利用水体本身的自净能力将其消化。但如果直接排入要求较高的地表水体、风景区等时,则对其有机物要进行处理,一般多采用生物处理法。
( 3 )放射性同位素
由于原子核自发蜕变产生射线,它的存在使污水具有放射性污染,无法人为的改变污水中放射性物质的强度和性能。因此只有用稀释或浓缩的办法来降低或避免其危害。对于这种污水可根据放射性物质的种类、半衰期长短来决定其处理方法。对于半衰期短的元素,采用储存的方法或用稀释方法进行处理;对于半衰期长的放射性物质可采用物理、化学或生物法处理,将其先从污水中分离出来。根据调查,目前一般医院中使用的放射性同位素均系半衰期较短者,而且污水量较少,故通常采用储存法处理。
( 4 )寄生虫
( 5 )病毒
病毒是一种远比细菌小的物体,他们没有完整的细胞结构,必须在一定的活细胞中才能生存繁殖。在人类的传染病中 80% 是由病毒引起的。病毒一般来说耐冷不耐热(但肝炎病毒对热、干燥和冰冻均有一定抵抗力,如甲型肝炎耐热 56 ℃, 1 小时以上;乙型耐热 60 ℃, 4 小时以上),不过所有病毒对高温煮沸和强氧化剂都很敏感,因此可投一定浓度的氯使其灭活。
( 6 )传染病菌
传染病菌的种类很多,但其活动规律则大同小异,一般在 PH 值 5-9.6 范围内生存,当 PH 值超出此范围病菌即死亡。在清水中能活一个多月,但在粪便污水中生活时间较短。这是因为: a. 粪便污水中含有自身分解生成的氨,可起杀菌作用; b. 大便分解还能产生某些灭菌素使细菌灭活。另外大部分病菌(除破伤风为厌氧菌外)都是好氧的。利用这一特性,如将水池加盖密封,一方面由于有机物分解消耗大量氧,另一方面因池子密封补氧困难,导致污水中溶解氧减少,致使好氧病菌在缺氧下自行消灭。
此外,在化验室、检验室中还有铬、汞等重金属存在,可用化学方法去除。
综上所述,医院污水是一种极其复杂的体系,因此,采用常规处理方法很难达到满意的效果。
近来发展起来的臭氧水处理技术,在医院污水处理工程上被广泛应用,收到了极好的效果,这是因为臭氧比氯、漂白粉、二氧化氯具有更强的氧化能力,可以比氯快 600-3000 倍的速度杀死包括氯不能彻底杀死的所有细菌、病毒等;可将某些重金属离子 Pb 、 Hg 等氧化沉淀达到分离的目的;另外臭氧还可降低生化耗氧量( BOD )和化学耗氧量( COD )、去除亚硝酸盐和脱色、除臭等。经此处理的医院污水,可大大提高排放标准,甚至可返回作为非饮用水使用。
医院污水处理方案(二)
潍坊现代环境科技有限公司分享医院污水处理工艺:医院污水来源成分复杂,含有病原性微生物、有毒、有害的物理化学污染物和放射性污染物等,具有空间污染、急性污染和潜伏污染等特征,不经有效处理会成为一条疫病扩散的重要途径和严重污染源环境。本文主要介绍了MBR工艺处理医院污水。
一、医院废水的特点
医院各部门的功能、设施和人员组成情况不同,产生污水的主要部门和设施有:诊疗室、化验室、病房、洗衣房、X光照洗印、动物房、同位素治疗诊断、手术室等排水;医院行政管理和医务人员排放的生活污水、食堂、单身房、家属宿舍排水。不同部门科室产生的污水成分和水量各不相同,如重金属废水、含油废水、洗印废水、放射性废水等。而不同性质医院产生的污水也有很大不同。医院污水来源成分复杂,含有病原性微生物、有毒、有害的物理化学污染物和放射性污染物等,具有空间污染、急性污染和潜伏污染等特征,不经有效处理会成为一条疫病扩散的重要途径和严重污染源环境。
二、医院污水的来源、水量
(一)、医院污水的来源
医院排放废水的主要部门和设施有:诊疗室、化验室、病房、洗衣房、X光洗印、同位素治疗诊断室、手术室等;还包含医院行政管理和医务人员排放的生活污水、食堂、宿舍排水。
(二)、医院污水的水量
设备较全的大型医院平均日污水量在400-600L/(床。d),K=2.0-2.2
一般设备中小型医院平均日污水量在300-400L/(床。d),K=2.2-2.5
小型医院平均日污水量在250-300L/(床。d),K=2.5
K—小时变化系数
三、医院污水的水质特征
医院污水的主要污染物包含病原性微生物、有毒、有害的和含放射性污染物三大类。
病原性微生物及其控制指标:
通常把大肠菌群数和粪大肠群数作为衡量水质受到粪便污染的生物学指标。
医院污水和生活污水中经水传播的疾病主要是肠道疾病,由病毒传播的疾病有肝炎、小儿麻痹等。
有毒有害物质及水质指标:
pH:医院的酸碱污水主要来源于化验室、检验室的消毒剂的使用及洗衣房和放射科等,可对管道造成腐蚀或影响消毒剂的使用效果。
SS:影响水体外观和氯化消毒灭活效果。
BOD和COD:大部分来自生活系统排水,可生化性能良好,但医院广泛使用的消毒剂对生物处理是不利的。
动植物油:来自食堂排水,影响水体溶解氧和医院含菌污水的消毒效果。
总汞:包含有机、无机、可溶和悬浮的汞,可是人体发生全身性的中毒。主要来自于口腔科、破碎温度计和某些使用汞的计量设备汞的流失。
医疗单位在诊断和治疗中用到的放射性同位素在其衰变过程中产生α、β和γ放射性,在人体内积累会对人体健康造成损害。
放射性在污水中的浓度以Bq/L表示。放射性液体废物按其放射性浓度水平分为不同的等级:
第Ⅰ级(低放废液):浓度≤4×106Bq/L。
第Ⅱ级(中放废液):浓度为4×106Bq/L~4×1010Bq/L。
第Ⅲ级(高放废液):浓度>4×1010Bq/L。
医院放射性污水主要来自同位素治疗室,应针对这一部分污水单独设置衰变池处理,达标后再排入综合下水道。
四、医院污水的处理技术分析
医院污水的处理主要根据医院的规模、性质和处理污水排放去向,进行工艺选择。医院污水处理所用工艺必须确保处理出水达标,主要采用的三种工艺有:加强处理效果的一级处理、二级处理和简易生化处理。
其选择原则如下:
传染病医院必须采用二级处理,并需进行预消毒处理;
处理出水排入自然水体的县及县以上医院必须采用二级处理;
处理出水排入城市下水道(下游设有二级污水处理厂)的综合医院推荐采用二级处理,对采用一级处理工艺的必须加强处理效果;
对于经济不发达地区的小型综合医院,条件不具备时可采用简易生化处理作为过渡处理措施,之后逐步实现二级处理或加强处理效果的一级处理。潍坊现代环境科技有限公司销售:*****主营产品:医疗污水处理设备一体化污水处理设备 乡镇医院污水处理设备 卫生院污水处理设备
MBR工艺处理医药污水的特点:
采用膜生物反应器作为主处理单元,它具有抗冲击能力强,出水水质优质稳定,其处理构筑物全部置于地下,占地面积小,布局合理。PLC柜置于地上控制室内,使管理较为简单。
MBR工艺由于高效的固液分离作用,出水悬浮物浓度低,细菌和病毒失去了附着或包裹的屏障,易于被灭活,能有效去除SS和细菌。
膜组件的高效截留作用使反应器内保持了较高的生物量,提高了生物处理效率,由于MBR的截留作用使微生物富集,可使世代周期较长的硝化细菌得以保留和繁殖,从而到达了很好的脱氮效果。
关键词:土壤污染危害性修复技术
中图分类号:C35文献标识码: A
当前,土壤污染的研究工作比较侧重与修复运用方面,而对土壤污染的主要来源和危害方面的认识还不充足。经过对国内土壤污染现状和案例的分析与研究发现,土壤污染已经严重影响到人类与动植物的健康,因此,必须加强环保意识,研究与创新土壤污染处理措施。
一、土壤污染的危害与分类
(一)土壤污染的分类
污染土壤在很早时期就发生了。许多工厂建立在城市的周边区域,由于工艺设备比较落后,在经营管理方面也相对粗放,环保设备不足。对此,土壤污染情形比较严重。部分场地的污染物浓度十分高,甚至有些已经超出相关监管标准的几百内,而污染深度有的甚至可以达到低下十几米,部分有机污染物会以非水相的液体方式在地下土层中进行大量聚集,转变为新的污染源。土壤污染依据有关污染物的类型可以分成重金属污染和有机物污染及放射性污染等许多类型。其中,重金属污染一般是钢铁冶炼企业和尾矿企业,另外化工企业中的固体废弃物也是重金属污染,具有代表性的重金属污染物包铅、镉和铬。而石油、化工和焦化等的污染土壤中主要以有机物污染作为主体,一般是有机物污染。而污染物通常是有机溶剂类,例如苯系物和卤代烃等。同时还存在其他有关污染物,比如重金属等。我国以前生产与利用国的有机污染物主要是滴滴涕和六氯苯及灭蚁灵等多种,部分农药虽然已禁止利用许多年,可是土壤中依然残留有机污染物。
(二)土壤污染的危害
1.土壤污染造成事物品质下降
国内许多城市郊区土壤都受到各种程度上的污染,部分地区的粮食和蔬菜及水果等有关食物中含有的重金属严重超标,甚至接近临界值。另外,土壤污染不仅严重影响食物的有关卫生品质,还影响着农作物的其他有关品质。
2.土壤污染造成环境污染
土壤遭受污染之后,在含有高浓度重金属的土壤中比较容易在风力与水力作用下会进入大气与水体中,造成大气污染和地表水污染及地下水污染等,从而严重影响生态系统。
3.土壤污染造成的经济损失
农药与有机物污染及放射性污染等形式的土壤污染所造成的经济损失是无法估计的。单单以土壤的重金属污染作为案例,国内每一年由于重金属污染就造成粮食减产1000多万吨。除此之外,粮食遭受重金属污染每一年也有1200万吨,大致每一年的经济损失就会达到200亿元。
二、土壤污染的深入分析
(一)重金属污染的分析
在所有污染中,其中重金属污染土壤是最为关注的。近些年,国内各个区域血铅超标事故非常严重。重金属污染的土壤对人类和植物造成的危害十分严重。
汞是从收到污染的粮食和鱼肉及蔬菜等进入人体,通常情况下,人体的汞含量在13mg,一旦人们摄入的汞达到130至150mg时,就会造成死亡。而汞在土壤中通常以化合物的方式存在,此类化合物与汞会直接损坏土壤中的微生物活性,造成农作物的根系生产较为缓慢,同时吸收能力下降。
镉一旦被长时间食用,就会严重影响到身体肾小管功能,这样人们就会比较容易出现自发性骨折与软骨症。而镉还会严重影响植物的繁殖与酶的活性,如果含量过多,就会在一定程度上降低植物的生化速度,甚至造成植物死亡。
在铬离子中,三价铬与六价铬对人们造成的伤害是比较大的,其中三价铬能够造成人体畸变与残疾,而六价铬要比三价铬的毒要高许多,人体在吸收过后比较同意出现鼻咽癌与肺癌。另外,土壤中铬含量的增多会造成植物中植株变矮和主茎叶的数量变少,同时开花结果也会延迟,其产量就会明显下降。如果和其他有关重金属形成负荷污染,导致的危害就更大。
人体中铅的含量到某一程度时,就会对人体的肾脏与智力造成伤害,同时对人体骨髓的造血系统与神经系统也会造成一定伤害。长时间食用被铅污染的农作物,也会造成人类畸变与癌变。另外,铅还会造成植物的吸收能力下降,耗氧量进一步增大,严重影响植物的生产,从而引发植物死亡。由于重金属的污染造成粮食减产可以达到数十亿吨,同时重金属污染的土壤也会降低益菌含量,进而导致土壤自身拥有的自净能力降低。目前,国内所有的污染事故,其中重金属污染已经占据40%左右。
(二)其他土壤污染造成的影响
尽管重金属污染已经成为国内土壤污染的主要污染物,可是其他有关污染物造成的伤害也存在。
1.有机污染物
土壤中许多有机污染物都是来自农药或是过度施肥,然而大量利用化学材料,就会导致土壤的原有结构破坏,进而严重影响农作物的质量与产量,在一定程度上加大生产资本。另外,人体长时间处在有机物严重污染的环境下,会发生许多反应,从而引发多种严重疾病,例如癌症和糖尿病等。
2.放射性污染物
放射性污染物虽然不会对植物和土壤造成致命的影响,但用污染了的土壤种植植物或蔬菜,污染物通常是吸附于植物体中进入人体,参与生命循环。进入人体过后会对人体的组织细胞带来一定伤害,从而使人们患上白血病和肿瘤及遗传等方面的疾病的可能性大大增加。
3.病原微生物的污染物
病原微生物如果从外界进入到土壤中就会大量繁殖,从而导致土壤的质量下降,打破土壤结构平衡,造成植物病变或是死亡。另外,如果病原微生物所污染的土壤生产出的蔬菜和水果等被人类所食用,就会直接影响人类的身体健康。
结束语:
综上所述,土壤污染主要来自工业、农业等方面,其中重金属对土壤的污染十分严重。遭受污染的土壤具有隐蔽性与滞后性等特点,所以一定要在最大程度上防止重金属土壤污染的发生。另外,土壤是不可再生的资源,污染了片就少了一片干净的绿地。遭受污染的土壤对植物和人类造成的伤害比较严重,同时污染对植物与人类造成的影响也是不同的,严重的时候甚至会影响人类生命安全。对此必须坚强人们的环保意识,进而降低污染事故的出现。
参考文献:
[1]刘丽敏,杨淑娥.生产者责任制度下企业外部环境成本内部化的约束机制探讨[J].河北大学学报: 哲学社会科学版,2011,(3):79-82.
[2]齐美福,桂双林,刘俭根.持久性有机污染物( POPs)治理现状及研究进展[J].江西科学,2012,26(1):92-96.
(1)水文地质单元的细分。根据地下水补给条件、赋存条件和分水岭分布特征,厂址半径5km范围内可划分出3个一级水文地质单元,即第Ⅰ、第Ⅱ和第Ⅲ水文地质单元(单元间可不考虑地下水水力联系)。厂址所在第Ⅲ水文地质单元可划分为3类4个二级水文地质单元(界线主要为岩性边界、断层边界、断裂破碎带和不整合边界;次级单元间地下水具有一定的水力联系)。由含水介质岩性、构造和地下水赋存特征,Ⅲ-1、Ⅲ-3二级水文地质单元可分别细分为2个三级水文地质单元Ⅲ-1-1、Ⅲ-1-2和Ⅲ-3-1、Ⅲ-3-2(表1)。(2)水文地质参数分区。由于花岗片麻岩风化作用强度存在显著差异,非常有必要按照风化裂隙与构造裂隙发育程度细分为浅、中、深3段,即:浅部花岗片麻岩风化裂隙发育段(包括全风化和强风化岩体)、中部花岗片麻岩构造裂隙发育段(包括中等风化、微风化岩体)、深部花岗片麻岩致密段。厂区南侧分布的全新统海积层由于岩性和渗透系数的差异,亦可细分为上、下两层,即上部粉质黏土层和下部中细砂层(表1)。(3)断裂破碎带。断裂破碎带的富水程度主要取决于断裂带(断裂规模尤为重要)及旁侧岩石裂隙的发育程度,断层影响带以外的未风化花岗岩基岩基本不含水[4-5]。厂址半径5km范围内有1个断裂破碎带F2(宽约20m),由一组剪切面构成,带内岩石破碎(原岩可辨),胶结作用及各种蚀变现象不明显。F2不仅是良好的汇水廊道和导水通道(断裂破碎带两侧地下水标高、水力坡度与厂区及附近渗流场特征基本一致),还可作为次级水文地质单元分界线(图1)。(4)侵入岩接触带与岩脉。侵入岩组主要分布在厂址西侧的Ⅲ-2水文地质单元。在Ⅲ-3水文地质单元内,侵入岩以岩脉形式存在于花岗片麻岩中,脉岩走向多为NE-NEE向,产状较陡(倾角一般50°~80°);岩脉宽一般小于10m(个别达100m)、延伸长一般大于500m,核岛基坑负挖资料显示岩脉出露厚度一般0.3~3.2m。岩脉的抗风化能力差别较大(中酸性岩抗风化能力相对中基性岩要强),在少数钻孔中可见差异风化现象,中等或微风化花岗片麻岩岩体中夹有强风化或中等风化岩脉。(5)地下径流带划分。花岗岩岩体渗透性取决于裂隙的发育、分布和裂隙的张开与闭合状况。花岗岩基岩中以节理、断层导水,以岩块基质中的微孔或微裂隙储水为其特点。厂址半径5km范围内有1个断层F1(长约3km,宽约12m),断层发育构造角砾岩带,角砾分选差,成分可辨。厂址半径5km范围内次生节理发育(原生节理不发育),其中NW向构造节理广泛分布。对于花岗片麻岩浅部风化裂隙水,受北边界地下水分水岭、南侧排泄基准面和含水系统结构等因素的控制,Ⅲ-3-1单元基本上都可以认为是径流区。对于花岗片麻岩中部构造裂隙水,根据厂区及附近构造特征,参考地下水等水位线图,可在厂区及其附近初步划分出3个径流带:由西向东分别为厂址西侧的R1径流带、厂址中南部的R2径流带和厂址东侧的R3径流带(图1)[6]。
2厂区水文地质概念模型
2.1水文地质条件的概化及参数量化(1)概念模型范围的确定。建模范围可初步限定为地下水分水岭、断层、河流、断裂破碎带和海水水体所包络的区域。即以核电厂反应堆为中心的,垂向边界与侧向边界范围内的岩土体及其所含地下水水体构成了厂址所在水文地质单元的概念模型范围。概念模型垂向边界确定如下:顶边界为水面、全新统海积层顶面(第四系覆盖区)、浅部花岗片麻岩风化裂隙发育段顶板(基岩区)和中部花岗片麻岩构造裂隙发育段顶板(核岛基坑负挖区);底边界为中部花岗片麻岩构造裂隙发育段底板。概念模型侧向边界确定如下:北侧边界为地下水分水岭~F1断层,西侧边界为河流,南~东侧边界为海水水体(图1)[7]。(2)边界条件的概化。北侧地下水分水岭属于第二类边界(定流量边界),可概化为零流量边界;北侧断层属于透水边界,可根据水文地质单元补、径、排条件动态分配一定流量,概化为定流量边界;西侧河流属于第一类边界(定水头边界),可根据河流季节性变化特点概化为定压边界;南~东侧边界属于第三类边界(混合边界),即全新统海积层多孔介质渗流区与海水水体存在一定水力联系的边界,属于弱透水边界,可根据全新统海积层孔隙度、渗透率、渗透系数与海水水体深度及潮汐作用间的配置关系,概化为一定流量、一定水头的混合边界[7]。在剖面上,全新统Ⅲ-1-1、Ⅲ-1-2单元与浅部花岗片麻岩风化裂隙发育段之间可概化为透水边界;浅部花岗片麻岩风化裂隙发育段与中部花岗片麻岩构造裂隙发育段之间可概化为弱透水边界;中部花岗片麻岩构造裂隙发育段与深部花岗片麻岩基质岩块之边界可概化为隔水边界(图2)。(3)含水介质与含水系统特征概化。Ⅲ-1-1全新统海积层上部粉质黏土层大部分位于地下水潜水位线之上,其地下水主要以包气带水的形式存在,可概化为层状多孔介质上层滞水;Ⅲ-1-1下部中细砂层和Ⅲ-1-2坡残积层可概化为层状多孔介质孔隙潜水。花岗岩属于弱透水岩石,其赋存的基岩裂隙水可能既有潜水性质,又有承压水性质。如赋存于基岩风化壳蓄水构造中的风化裂隙水就具有潜水分布特性;处在接触带蓄水构造或岩脉蓄水构造中的基岩裂隙水就具有承压水性质。因此,Ⅲ-3-1、Ⅲ-3-2的浅部花岗片麻岩风化裂隙发育段可概化为似层状基岩裂隙潜水,中部花岗片麻岩构造裂隙发育段可概化为网状、树枝状、脉状或块状基岩裂隙承压水。
2.2水文地质单元概念模型(1)Ⅲ-1-1水文地质单元上部粉质黏土层。该层主要分布在厂址南~东部沿海地段,其底边界为粉细砂层的顶,南~东侧边界为海水水面,其它侧边界为浅部花岗片麻岩风化裂隙发育段顶板;该层厚度一般2~6m,土工试验得出的垂直渗透系数为0.020m/d,为弱透水层;地下水为包气带上层滞水,富水性贫乏。(2)Ⅲ-1-1水文地质单元下部中细砂层。该层分布范围和侧边界与上覆粉质黏土层相同,底边界为浅部花岗片麻岩风化裂隙发育段顶板。该层厚度一般小于5m,由试坑注水试验可知其渗透系数为0.75~5.57m/d(平均值2.27m/d),地下水为层状孔隙潜水。(3)Ⅲ-1-2水文地质单元坡残积层。该层主要分布在低山丘陵和河谷边缘,其底边界与Ⅲ-1-1单元底边界相同;南侧边界为Ⅲ-1-1海积层的顶,其余侧边界为浅部花岗片麻岩风化裂隙发育段顶板。该层厚度一般为1m(坡脚、沟口附近可大于3m),抽水试验给出的渗透系数为0.010~0.239m/d,地下水为层状孔隙潜水。(4)浅部花岗片麻岩风化裂隙发育段。该段顶边界为基岩面(基岩出露区)或Ⅲ-1-1海积层底或Ⅲ-1-2坡残积层底,底边界为花岗片麻岩基岩构造裂隙发育段,北侧边界为地下水分水岭~F1断层,西侧边界为河流~Ⅲ-1-2残坡积层的顶,东侧边界为海水水体,南侧边界为Ⅲ-1-2坡残积层。该段厚度在3.3~14.5m之间,风化裂隙发育,呈网状、脉状微张状态。10口井的抽水试验成果表明,该段(含强风化岩脉)渗透系数为0.03~2.78m/d(平均0.46m/d),属弱透水~中等透水层[8],地下水为似层状微承压水。(5)中部花岗片麻岩基岩构造裂隙发育段。该段顶边界为浅部花岗片麻岩基岩风化裂隙发育段底板,底边界为花岗片麻岩未风化基岩顶板,北侧边界为地下水分水岭~F1断层,西侧边界为河流~花岗片麻岩风化裂隙发育段,东侧边界为海水水体,南侧边界为基岩风化裂隙发育段底板。该段厚度2.5~9.7m,构造裂隙或节理相对发育,节理一般无充填,呈闭合或微张状态。5口井14个井次的压水试验得出的渗透系数介于0.009~0.103m/d,属弱~微透水层,地下水为网状、树枝状、脉状或块状风化裂隙承压水。
3厂址附近地下水放射性监测井布设
3.1地下水放射性监测点网布设原则地下水放射性监测点网布设原则如下:①在总体和宏观上应能控制不同的水文地质单元。②监测重点为具有供水目的的含水层。③监控地下水可能遭受放射性释放污染的地区,监视放射性释放源对地下水的污染程度及动态变化,以反映所在区域地下水的放射性污染特征。④考虑监测结果的代表性和实际采样可行性与可达性,尽可能从常用的民井、生产井以及泉水中选择布设监测点。
3.2地下水放射性监测井分类布设原则(1)对照井点的布设原则。根据大尺度区域水文地质单元状况和地下水主要补给来源,在可能的放射性污染区地下水径流区上游布设1口对照井。(2)现状监测井点的布设原则。采用控制性布点与功能性布点相结合的布设原则。监测井点应主要布设在核电厂主厂区、厂址周围环境敏感点、可能的地下水放射性污染源、主要水文地质关注点[10]。
3.3地下水放射性监测井在剖面上的考虑地下水放射性监测井在地质剖面上应作如下考虑:①监测井点的层位应以潜水和可能接受放射性事故释放影响的有开发利用价值的含水层为主。②潜水监测井不得穿透潜水隔水底板。③应选用取水层与监测目的层相一致,且是常年使用的民井、生产井为监测井(无井可利用时,需布设专门的监测井)。④监测井井深设计应根据监测目的、含水层介质类型及其埋深与厚度来确定,尽可能超过已知最大地下水埋深以下2m[9]。
3.4监测井的具体布设地下水放射性监测井布设时,在剖面上考虑:①可能的民井取水层位;②潜水与承压水在剖面上的兼顾;③浅部花岗片麻岩风化裂隙发育段与中部花岗片麻岩构造裂隙发育段的兼顾。在平面上充分考虑三级水文地质单元边界性质及其3个径流带的空间分布。(1)对照井点的布设。可考虑在Ⅱ、Ⅲ水文地质单元地下分水岭北侧、F1断层下盘~岩性边界南侧的花岗片麻岩风化裂隙发育段布设1口对照井,如图1中的S0点。(2)针对R1径流带的考虑。由图1,2可知,虽然断裂破碎带F2是导水通道,由于厂区及其附近地形是西北高、东南低,Ⅲ-3-1单元基岩风化裂隙水即使通过NNE向构造裂隙或NE~NEE向岩脉附近裂隙流向断裂破碎带,也不会穿过破碎带继续流向F2西侧的Ⅲ-3-2单元,只可能在断裂破碎带附近汇集并沿着断裂破碎带向南流向Ⅲ-1-1单元。因此,可考虑在断裂破碎带靠厂址一侧的S1点附近选择1口民井(若有的话)或布设1口地下水放射性监测井。(3)针对R2径流带的考虑。同理,Ⅲ-3-1单元基岩风化裂隙水在地形控制下,可能会沿着NNW、NW向构造裂隙和NW向岩脉附近构造裂隙,向东、南方向流向Ⅲ-1-1单元。基于这种考虑,可以在S2点附近布设1口地下水放射性监测井。(4)针对R3径流带的考虑。Ⅲ-3-1单元基岩风化裂隙水也有可能沿着近EW向展布的岩脉附近的裂隙汇集到R3径流带上,因此可考虑在S3点附近布设1口地下水放射性监测井。
4结语