首页 > 文章中心 > 纳米材料研究分析

纳米材料研究分析

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇纳米材料研究分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

纳米材料研究分析

纳米材料研究分析范文第1篇

关键词:纳米材料;纳米技术;环境安全;环境治理

纳米材料指的是晶粒尺寸为纳米级(10-9μm)的超细材料,纳米科技的发展速度将超过其他研究领域,而逐渐成为世界科学发展的核心领域,纳米科技将为人类带来一场新的技术革命。如今,环境安全问题已经成为全球国家关注的重点问题,随着人类社会的不断发展,工业化程度越来越高,随之而形成的环境问题也日益严重,大气污染、水污染等问题正困扰着人类科学家。近年来,不断有科学家将纳米技术和纳米材料应用到环境治理工作中,取得了突破性的进展。

一、纳米材料的特征

1.表面效应。纳米材料与其他科技材料不同,其会随着时间的变化而形成不同的形态,利用显微镜对其表面进行观察可以发现,这些超微颗粒没有骨龄的形态,而是不断的变化,这与普通的固体形态和液体形态都有着很大的区别。当纳米超微粒径在10μm以下时,材料表面的原子会形成一种类似沸腾的运动状态;当粒径尺寸超过10μm时,则表面趋于稳定。由此可以看出,超微颗粒的活性很强,如果带有金属性质的超微颗粒暴露在空气中,会在短时间内发生自燃,因此为了避免自燃现象,通常在金属颗粒的表面都会包裹一层氧化膜,以此来增强纳米晶粒的稳定性。纳米材料这种特殊的表面效应,受到了催化剂研究领域的热捧,被广泛的应用于高效催化剂的制造。

2.小尺寸效应。纳米材料的晶体尺寸都很小,而且在一定的条件下,尺寸的量变会引起材料性质的质变,这种特殊的效应被称为小尺寸效应。晶粒的尺寸越小,则其结构表面的变化就会越大,这对于很多特殊的科学领域有十分重要的作用,如光学、力学、升学等,都可以利用纳米材料的小尺寸效应实现这些领域中的特殊技术研发。

二、纳米材料在环境安全领域中的应用

1.大气污染治理中的应用。目前,大气污染主要表现在空气中的硫化物含量过高、汽车尾气和室内空气污染等几个方面。第一,利用纳米材料对大气中的硫化物净化。硫化物含量过高是引起大气污染的主要因素,尤其是煤炭资源的燃烧产生的二氧化硫、一氧化碳等有害气体,是产生硫化物的主要途径。因此可以在煤炭燃烧的过程中加入纳米级催化剂,不仅有利于促进煤炭的充分燃烧,减少二氧化硫气体的产生;同时也可以提高煤炭能源的利用效率,可以使二氧化硫气体转化为固体,对其进行回收和处理,可以极大的减少由于煤炭燃烧而导致的硫化物产量。第二,用纳米材料对汽车尾气进行治理。汽车排放的尾气对人体健康危害较大,而且对大气环境也会造成严重的污染。如果可以运用纳米材料代替传统的燃料,则可以有效的减少汽车尾气中的有害物质。因此可以选择纳米复合材料制备与组装的汽车尾气传感器,对汽车排放的尾气量和有害物质含量进行实时监测,当尾气的排放量超过标准时,就会发出警报,并且及时做出空燃比的调整,以此来减少富有燃烧状态产生的有害气体,不仅可以对汽车尾气达到有效的治理,还可以减少燃油的消耗量。第三,室内空气的净化。在室内装修过程中产生的有害气体对人体造成的危害,往往更加严重,而且室内的密闭空气中有害气体的含量也超于室外环境,室内空气污染的有害气体主要有甲醛、苯等,利用纳米材料则杀死空气中的有害物质,达到净化空气的目的。纳米TiO2经光催化产生的空穴和形成于表面的活性氧膜化能与细菌细胞或细胞内组成成分进行生化反应, 使细菌头单元失活而导致细胞死亡,并且使细菌死亡后产生的内毒素分解。

2.在水污染治理方面的应用。对于水污染的治理,主要从无机污染废水、有机污染废水和自来水治理等领域汇总。对于无机污染废水来说,其中含有大量的重金属,这不仅造成了资源的浪费,也会对人体产生较大危害。而纳米粒子则可以与水中的重金属离子产生化学反应,促进重金属离子的还原,如纳米TiO2粒子,可以通过其自身的氧化作用,吸引汞离子、银粒子等重金属离子吸附其表面,达到还原重金属离子的目的,既可以实现废水的净化,也可以对水中的重金属离子进行回收。有机污染废水治理的主要原理,是对有机污染物进行催化、降解处理,而纳米TiO2粒子具有很强的催化作用,因此可以实现对废水中有机污染物的催化和降解,将废水中的有机污染物进行催化氧化形成水和一氧化碳等物质,达到净化的目的。当前,利用纳米TiO2粒子可以催化和降解的有机污染物达80多种,利用纳米TiO2粒子净化后的有机污染废水,可以作为灌溉、工业用水等其他用用途。自来水是与人们生活息息相关的水源,利用纳米材料作为净化自来水的介质,可以吸附水中的悬浮物,去除水中的铁锈、泥沙等物质,达到净化自来水的目的。纳米级净水剂是当前自来水净化领域中应用的新型纳米科技,其具有超强的吸附能力,可以将污水中的悬浮物和颗粒吸附于表面,再形成沉淀物,进过处理后,就可以得到纯净水。

3.在其它环保领域的应用。除了大气污染、水污染的治理以外,纳米材料在噪声污染治理、固体废弃物处理以及照明工程都有着广泛的应用。噪声污染是工业时代常见的污染,车辆、设备等发动机的噪声可以达到上百分贝,将纳米科技应用到设备中,可以通过纳米颗粒对设备内部结构的撞击和摩擦变得轻微,噪声也随之减少。同时纳米材料还具有较强的作用,可以延长设备的使用时间。对于固体废弃物的处理,则主要是运用纳米科技将废弃物进行超微处理,使其形成超微粉末,进行回收和再利用。在照明工程中,可以应用纳米材料光致发光特性,充分利用太阳能的照明作用,减少对能源和资源的消耗,也可以降低火力发电过程中排放的污染物。

三、纳米材料的应用趋势

纳米材料是目前科学研究的前沿领域,关于纳米材料在环境安全领域中的研究工作不断深入,对于纳米材料实用性的研究也来越多,这对于缓解大气污染、水污染等环境问题的治理将会起到很大的推动作用。纳米技术的应用除了可以用于环境治理,同时也可以融入到人类的生活和生产中,提高人们对环境保护问题的重视程度,并且改善破坏环境的行为,将治理转变为预防,这是纳米材料与环境安全领域结合的必然趋势。然而,纳米技术虽然拥有广阔的发展前景,但是其在环境安全领域中的应用尚不成熟,因此仍然需要我们不断的探索和研究,才能促进纳米技术和纳米材料的有效运用。

结束语

综上所述,本文着重探讨了纳米材料在环境治理中的应用,随着纳米研究工作的持续开展,纳米科技在环境保护领域中的应用也将更加广泛,在改变人们环保观念、改善人类环境行为方面也将发挥重要的作用。纳米科技作为一门新兴的科学,对环境安全领域产生的影响也是深远的,而将纳米材料应用于环境安全领域,成为环境保护的主流科技也是必然的趋势。(作者单位:广西民族大学相思湖学院)

参考文献:

[1] 邓勇航.纳米材料在环境保护领域的应用研究[J].广西轻工业,2008-02-15.

[2] 覃爱苗; 廖雷.纳米技术及纳米材料在环境治理中的应用[J].中山大学学报(自然科学版),2004-12-30.

[3] 张泽江; 张硕生; 冯良荣; 邱发礼.纳米材料在环境保护中的应用与发展[J].四川环境,2004-04-30.

[4] 光焕竹; 冯树文; 杨培霞; 袁福龙.纳米材料在环境保护和环境治理方面的应用[J].化学工程师,2002-04-26.

纳米材料研究分析范文第2篇

南北高校各有优势

2011年,北京科技大学、北京航空航天大学、大连理工大学、苏州大学和南京理工大学五所高校开始招收纳米材料与技术专业本科生。五所大学中,北京科技大学、北京航空航天大学和大连理工大学三所北方高校在材料科学上属传统名校,而南方院校苏州大学和南京理工大学把纳米材料成果产业化,形成了自己的特点。

北方三所高校算是材料科学与工程领域传统名校,值得注意的是,它们却均未设置专门的纳米材料研究机构,更多的是依托原有的强势学科,在传统材料研究领域引入纳米科技,寻求突破。

北京科技大学

北京科技大学原名北京钢铁学院,曾被誉为“钢铁摇篮”,其材料科学研究侧重点是金属材料。除了材料学院这个重点学院外,从事材料科学研究的还有新金属国家重点实验室、高效轧制国家工程研究中心、国家材料服役安全科学中心等机构,侧重点也不局限于金属材料,在无机非金属、高分子、生物医药材料等方面亦有建树。

目前,北科大纳米材料课题组主要研究纳米材料制备与表征、纳米材料改性、功能纳米材料等方面。此外,亦有部分老师研究纳米加工、纳米组装、纳米器件等应用方向。

北京航空航天大学

与北科大不同,北航材料学院在北航不属于重点学院,规模较小,师资力量仅百来人,这决定了北航材料学院的研究方向不会太广。作为航天航空院校,北航材料学院也有自己的优势,正在筹建的航空科学与技术国家实验室(航空领域最高级别实验室),它的侧重点在金属材料、树脂基复合材料及失效分析、先进结构材料、新型功能材料等方面。

在纳米材料上,北航材料学院重点关注纳米器件和纳米涂层。材料学院的纳米材料研究发展趋势可能是纳米技术在航天航空领域的应用。

大连理工大学

大连理工大学的材料学院在金属材料、材料加工方面实力强,基于大连的地理位置,材料学院还开设了五年制金属材料工程日语强化班。不过,纳米材料与技术专业并非隶属于材料能源学部,而是化工与环境学部。因而,大连理工大学的纳米材料研究偏化工类,包括纳米粒子合成化学技术、无机纳米功能材料、纳米复合材料等方向。纳米材料与技术专业开设的专业课中,亦有化工原理、基础化学、材料化学等化工类课程。可以说,这是大连理工大学纳米材料与技术专业的一大特色。

与北方三所高校相比,苏州大学和南京理工大学纳米材料与技术专业的发展方向截然不同。两所南方高校均成立多个纳米材料研发机构,在研究方向上,两所高校侧重于纳米材料器件应用,尝试产业化。这些特点可能与江浙一带出现纳米高新技术企业有关。

苏州大学

苏州大学没有材料科学与工程学院,而是材料与化工学部,研究偏向化工,在无机非金属、高分子材料方面实力不错。纳米材料与技术专业并没有开设在材料与化工学部,而是2010年成立的纳米科学技术学院。除了纳米科学技术学院,苏州大学研究纳米材料的机构还有2008年成立的苏州大学功能纳米与软物质研究院、2011年成立的苏州大学-滑铁卢大学苏州纳米科技研究院。其中,以中科院院士李述汤教授领衔组建的功能纳米与软物质研究院已初具规模,它以功能纳米材料和软物质为研究对象,侧重于功能纳米材料与器件、有机光电材料与器件、纳米生物医学技术等,寻求在纳米器件以及新能源、环保、医用等领域的应用。

南京理工大学

南京理工大学由军工学院演变发展而来,其材料科学与工程学院的材料学研究侧重于金属材料及复合材料。不过,南理工是国内最早开展纳米材料与技术研究的大学之一,正筹建纳米结构研究中心,研究侧重点是与纳米结构材料相关的分析、材料力学、电化学性能评估等。由南理工化工系和南京部分企业共同支持的南京市高聚物纳米复合材料工程技术中心,研究侧重点是纳米材料制备、应用、纳米催化聚合反应、纳米复合材料,该中心已与江苏部分纳米企业开展纳米技术产业化合作。此外,南理工还共建了金属纳米材料与技术联合实验室。

其他高校纳米特色

上海交通大学

上海交通大学材料科学与工程学院在各类相关排名中居首,教职工200多人,研究侧重点包括金属材料、复合材料、塑性成形、轻合金精密成型等,在中国是材料科学与工程学子公认的梦想学府。其材料学院也涉及纳米材料,比如,复合材料研究所部分老师从事纳米复合材料研究,微电子材料与技术研究所从事纳米电子材料研究。此外,上海交通大学还成立了微纳科学技术研究院,研究方向为纳米生物医学、纳米电子学与器件。生物医药工程学院也开展纳米材料的可控合成与制备、纳米生物材料等方面的研究。

清华大学

与北京航空航天大学相似,清华大学材料科学与工程系是学校名气大于院系实力,每年有数百人争夺材料系不足30个研究生名额。材料系建有新型陶瓷与精细工艺国家重点实验室,研究侧重点以陶瓷材料为主,同时涉及磁性材料、复合材料、电极材料和核材料。在纳米材料方面,清华材料系主要研究纳米材料结构、纳米材料合成和微纳米颗粒等。2010年,清华大学成立了微纳米力学与多学科交叉创新研究中心,主要研究微纳米器件、纳米复合材料在电能存储上应用和微纳米设备研发等。

北京大学

北大材料科学与工程系成立于2005年,教职工10余人,成立之初就把材料科学与纳米技术结合起来,欲在纳米材料与微纳器件方面有所突破。此外,北大成立了纳米化学研究中心,教职工7人直博生却达45人,主要研究领域包括低维新材料与纳米器件、纳米领域的基本物理化学问题。

西北工业大学

西工大是西部材料科学与工程实力最强的院校,其材料学院师资队伍近200人,有凝固技术国家重点实验室和超高温复合材料国防科技重点实验室。因此,其研究侧重点在凝固,复合材料和金属材料的实力亦不俗。在纳米材料方面,西工大成立了微/纳米系统研究中心,致力于航空航天微系统技术、微纳器件设计制造技术、微纳功能结构技术。总之,西工大的纳米材料研究可能集中于纳米器件在航天、航空、航海方面的应用。

留学两大国

纳米技术是交叉学科,包括纳米科技、物理、化学、数学、分子生物学等课程。报考纳米专业或方向的研究生在本科一般学的是材料学、材料物理与化学、凝聚态物理、物理化学等。就留学而言,由于纳米材料处于基础研究阶段,容易;各个国家在纳米材料方面投入大量资金,使得科研经费相对充足,相比于其他专业容易申请奖学金。这两点决定了留学攻读纳米技术专业研究生相对容易。

2000年,美国白宫国家纳米技术计划,美国的纳米技术得到飞速发展。总体上看,美国的纳米技术已经处在纳米技术实用化阶段,而其他各国仍处在纳米技术的基础研究阶段。美国各大高校也争相进入纳米材料各个研究领域——

实力强劲的麻省理工学院在太阳能存储、航空材料、燃料电池薄膜、封装材料耐磨织物和生物医疗设备领域的碳纳米管、聚合纳米复合材料等方面成果显著。

加州大学伯克利分校注重于纳米材料在能源、药物、环境等方面的应用,已卓有成效。

哈佛大学则侧重在生物纳米科技,即生物学、工程学与纳米科学的交叉领域。

康奈尔大学已经在纳米级电子机械设备、碳纳米管应用电池、纳米纤维等方面获得突破。

斯坦福大学重在纳米晶的光学性能、输运性能和生物应用,以及纳米传感器、纳米图形技术等。

普渡大学的纳米电子学、纳米光子学、计算纳米技术,尤其是计算纳米技术全球领先。

纽约州立大学奥尔巴尼分校专注于纳米工程、纳米生物科学,其纳米技术研究中心是全球该领域最先进的研究机构。

莱斯大学在纳米碳材料领域成果显著,在学校的研究人员中,纳米材料研究人员的比重约为四分之一,是美国纳米材料研究人员最多的大学之一。

此外,美国有很多研究纳米技术的实验室,它们比较愿意招中国大学生,这一点也值得注意。

日本算是最早开展纳米技术基础及应用研究的国家,早在1981年,日本政府就建立了纳米技术扶持计划。美国公布国家纳米技术计划前,曾派人去日本做调查。日本纳米技术的研发特点是企业界是主力军,它们试图将纳米技术融入到产业中。比如,日本企业纷纷斥巨资建纳米技术研究机构,同时建立纳米材料分厂实现产业化。此外,企业与大学、科研院所合作,开发纳米技术。比如,富士通和德国慕尼黑大学合作,三菱公司和日本京都大学合作。

与美国在纳米技术基础研究和生物工程技术领域领先不同,日本在精细元器件及材料的制造方面独占鳌头,日本对纳米材料研究的投入不断加大,也使得去日本读纳米专业是一个不错的选择。

Tips:何去何从

纳米材料专业毕业生有三大去处。选择留学深造或进高校、研究院从事研发;进入纳米材料行业企业;进入传统材料企业。

纳米材料研究分析范文第3篇

【关键词】纳米材料;文物科技保护;应用

0 前言

我国历史悠久,文物资源丰富。随着时间的流逝他们都在经受着不同程度的损害,文物保护工作任重而道远。文物保护是应用自然科学的手段对文物进行调查研究和保护修复,其中材料科学对其起着重要的作用[1]。随着科学技术的不断发展,越来越多的新材料被应用于文物科技保护领域,纳米材料就是其中之一。

纳米材料[2]由纳米微粒构成,纳米微粒的尺寸范围是1~l00 nm,它是由数目较少的原子或分子组成的原子群或分子群,其表面是既无长程序又无短程序的非晶层;而在粒子内部是具有长程序的晶状结构,由于这种特殊的结构,导致了纳米微粒的表面效应、体积效应和量子尺寸效应[3],并由此产生许多与常规材料不同的物理、化学特性,许多高性能产品将有机会在纳米科技领域中实现。

1 纳米复合材料用于文物保护的优势

利用纳米材料特殊的性能,通过把某些纳米材料与传统有机高分子聚合物复合,用于文物保护,主要有以下几大优势:

1.1 疏水疏油性

纳米微粒尺寸小,比表面积大,表面能高,这种表面效应,使其具有很高的物理化学活性和很强的吸附性,可强力吸附气体分子,在材料表面形成一层稳定的气体薄膜,就使得水和油无法在其表面展开[4]。

如今随着工业化的发展,环境污染对文物古迹造成的危害日益严峻,纳米复合材料的疏水疏油性将为发展新型文物保护层材料提供新的方法,该类材料在阻止水蒸气,有机物,酸雨等有害物质对文物的侵蚀方面将会起到不可估量的作用。

1.2 减小光辐射

光辐射是影响文物寿命的重要环境因素,特别是紫外线照射能加速文物的老化[5]。纳米微粒的直径小,材料以离子键和共价键为主要结合力,对光的吸收能力较强,能够有效屏蔽光线,将其应用于文物表面保护,有利于文物抗紫外线和抗老化。例如纳米TiO2[6],被广泛用做抗紫外线吸收剂,具有优良的吸收紫外线的功能。

1.3 透明度好

文物保护用封护材料要求要透明无眩光,能够清晰显示文物本体的面貌。基于纳米材料的体积效应,人类可以通过控制纳米材料的大小与形状,达到对同一种化学组成材料的基本特性如颜色、光、电、磁等性质的控制的目的。比如,TiO2抗紫外线,无毒且透明,可探索用于文物展陈的箱体,灯光等设施,国内已有相关的研究[7]。

1.4 杀菌及防治微生物

细菌等微生物危害会引起文物特别是有机质文物的糟朽霉烂。封护材料要求具有一定的防腐性能。由于纳米材料有强大的吸附性,可用做抗菌材料,纳米二氧化钛,二氧化硅等抗菌性较好[8],可设计制备含有抗菌性纳米材料的复合材料用于文物保护。

2 纳米复合材料在文物保护中的具体应用

纳米复合材料作为一种很具发展前途的新型材料,在多种类别的文物中都已经显示出巨大的应用前景。

2.1 在金属类文物中的应用

纳米复合材料在金属类文物保护中具有广发的应用前景。对于青铜文物来说,青铜病是青铜器保存的大敌,而发生青铜病腐蚀的根本原因是在外界环境的作用下,青铜器本体发生了电化学腐蚀[9]。纳米复合材料的疏水性将有效阻止外界环境中的水分对文物本体的侵蚀,减缓电化学反应的发生。众所周知被称为铜镜中精品的“黑漆古”铜镜,表面层耐腐蚀性能优异,其耐腐蚀机理和形成机制受到了广泛的关注。相关实验和科学仪器分析表明[10],黑漆古铜镜表层就是由单一物相纳米SnO2组成的。

2.2 在石质文物中的应用

石质文物的病害主要来自自然界的风化作用和环境污染的侵蚀,该类文物的保护需要对其表层进行防护。同传统的表面防护剂相比,纳米复合材料优势明显。邵高峰[11]等人研制了一种环保型石质文物防风化材料,他们把纳米TiO2和SiO2改性以后将其分散于水性氟碳树脂中,通过多组实验得到了最佳复合体系,分析数据表明该防风化剂具有很好的防紫外线和防水耐蚀性能,且无毒环保,是一种综合性能良好的防风化材料。

2.3 在纸质文物中的应用

纸质文物由于材质本身和环境的影响易发生严重损害,特别是纸张的酸化加剧了其老化,人们也一直在探索研究各种脱酸技术[12]。意大利的 Rodorico Giorgi 等就成功的将纳米技术应用于纸质文物脱酸[13]。他们通过均相合成等方法制备了氢氧化钙在异丙醇溶剂中的纳米分散体系,将此体系应用于纸质样品中,不仅有效的降低了纸的酸度,同时多余的氢氧化钙通过和空气中的二氧化碳反应,会在纸纤维中形成一个碳酸钙储备层,能够长时期控制纸张的酸度,有利于纸质文物的长期保存。

2.4 在纺织品类文物保护中的应用

纺织品一般属于天然高分子材料,由于天然的降解和氧化作用以及外界环境的影响,变得极其脆弱。该类文物的保存与保存环境息息相关,特别是紫外线和霉菌对其损伤巨大。挑选兼具抗紫外线和抗菌性能的纳米材料,可设计合成纳米液相分散体系。据文献报道,纳米Ti02在古代纺织品保护中的应用研究工作已经展开[14],实验结果表明,经纳米材料处理后的纺织文物有更好的屏蔽紫外线和抗菌能力。

3 纳米材料在文物保护中的应用展望

二十一世纪将是“纳米的世纪”,纳米技术和纳米材料也给文物保护技术的发展提供了新的思路,这方面的研究工作国内外均已展开。作为一种新型学科,其基础理论研究还在逐步发展之中,对于文物这种不可再生资源,纳米材料的真正应用还需要在理论和技术经过反复验证并且相当成熟的时候实施。随着研究的不断深入,纳米材料在文物科技保护中的应用将会更加广泛。

【参考文献】

[1]周双林.文物保护用有机高分子材料及要求[J].四川文物,2003,3:94-96.

[2]白春礼.纳米科学与技术[M].云南科学技术出版社,1995.

[3]张中太,林元华,唐子龙,张俊英.纳米材料及其技术的应用前景[J].材料工程,2000,3:42-48.

[4]王苏新,张玉珍.纳米材料的特性及作用[J].江苏陶瓷,2001,34(2):5-6.

[5]王庆喜.文物环境与文物保护综论[J].湖南科技学院学报,2009,30(6):65-68.

[6]汪斌华,黄婉霞,李彦峰,郑洪平,涂铭旌.纳米TiO2和ZnO的抗老化性应用研究[J].四川大学学报:工程科学版,2003,35(4):103-105.

[7]王君龙,孙红梅,祝宝林.文物防紫外线保护新材料研究[J].渭南师范学院学报,2004,19(2):28-29.

[8]邱松山,姜翠翠,海金萍.纳米二氧化钛表面改性及其抑菌性能研究[J].食品与发酵科技,2010,46(6):5-7.

[9]傅丽英,陈中兴,蔡兰坤,祝鸿范,周浩.溶液pH值与氯离(下转第91页)(上接第62页)子对青铜腐蚀的影响[J].腐蚀与防护,2000,21(7):294-296.

[10]刘世伟,王世忠,王昌燧,周贵恩.“黑漆古”铜镜表层的结构分析[J].中国科学技术大学学报,2000,30(6):740-743.

[11]邵高峰,许淳淳.环保型石质文物防风化剂的研制[J].腐蚀与防护,2007,28(11):562-565.

[12]奚三彩.纸质文物脱酸与加固方法的综述[J].文物保护与考古科学,2008,20(z1),85-94.

纳米材料研究分析范文第4篇

【关键词】纳米材料生物医学生物安全性

一、引言

纳米材料主要是指结构单元在纳米尺寸范围(1~100nm)内的一类材料,由于表面原子具有很大的比表面积,其表面能极高,从而获得较多的表面活性中心,化学性质十分活泼,因此纳米材料通常具有特异的性能。纳米材料的发现始于20世纪80年代初期,随后人们逐步发现其在光学、磁学、电学和力学方面具有比普通材料更加优越的特性,进而得到了多个领域的关注并逐渐发展起来,广泛应用于生物医学、环境、航空航天和石油钻探等领域的研究。尤其是在生物医学方面,基于纳米技术的药物和传感器已经应用到实际的医学应用中,而且能够得到是理想的治疗和诊断结果。通过从纳米尺度进行精确地制备纳米材料,人们打开了更小的微观世界,特别是生物体细胞层面上的化学反应都发生在纳米的度,纳米材料的使用能有效地检测或调控微观的生理和病理过程。纳米材料发展对医学诊断和医学治疗具有重大意义,已经成为医学界关注的热点和前沿,具有广泛的应用前景和产业化发展空间[1]。

二、纳米材料在医学诊断中的应用

2.1纳米生物传感器

纳米生物传感器是一种由纳米材料制成的检测装置,主要根据将检测到的信息按一定规律变换为电信号或以其他的形式输出,使人们能定量定性地分析检测物质。生物传感器的研发中人们使用纳米材料,能够提高生物传感器的灵敏度以及检测范围。同时以纳米材料制备的新型传感器具有稳定性好,成本低,生物相容性好等优点,在医学的临床诊断方面得到了高度重视,特别是作为一项新兴的前沿技术,纳米生物传感器的研发能够进行早期癌症的诊断。纳米传感器可以利用高灵敏度的特点,在血液中可通过微小的电流变化反映出癌细胞的种类和浓度。这种对癌细胞进行的精确分析,有望实现特殊疾病的无创、快速诊断,今后人们只需将纳米材料注入人体内,便能在短时间内完成确诊。

2.2纳米生物成像技术

在临床诊断中,通过对生物体内的细胞或特定组织进行直观的图像分析,能够迅速高效且准确地获得生理和病理信息。随着纳米技术的飞速发展,新型的纳米材料被不断制备出来,并且广泛应用于生物医学成像领域。碳纳米管具有良好的发光性能,而且毒性极低,具有良好的生物相容性,能够制备成生物荧光探针用于癌细胞的成像[2]。氧化铁磁性材料具有良好的超顺磁性,能够应用于核磁共振成像的研究中,由于其能在生物体内特异性的分布,该部位的肿瘤与正常组织的对比度能够显著提高。目前氧化铁磁性材料可作为造影剂广泛应用于临床的肿瘤及其他疾病的诊断[1]。另外,稀土离子掺杂的纳米材料具有良好的光学性质,能够实现多种颜色的可调发光,同时能够避免生物体自身产生的荧光干扰,极大地提升光学成像效果。总之,在未来的生物成像领域,新型功能的纳米材料将发挥至关重要的作用。

三、纳米材料在医学治疗中的应用

3.1纳米载药技术

纳米载药是指首先制备纳米级的载体,荷载药物后输入人体,最终在人体内控制释放的技术。作为一种新型的给药技术,纳米载药是多学科包括药理学、化学、临床医学交叉研究发展的产物,其最大的优点是具有靶向性和缓释性。靶向性可以使给药更加精确,不仅可以在增加生物体局部药物浓度的,而且同时可以控制其他部位的药物浓度,减少对其他组织部位的副作用。缓释可在保证药效的前提下减少药量,同时减少用药频率,进而减轻药物引起的不良反应。对于某些难溶性药物,纳米药物载体可有效减小药物粒径,从而增加其溶解度和溶出度,提高药物的溶解性提高治疗效果。另外,纳米载体提供了封闭包覆环境,药物能在到达作用部位之前尽量保持自身结构的完整性,维持较高的生物活性。目前,能够作为药物载体的纳米材料有介孔二氧化硅、纳米多孔硅和碳纳米管等,尽管短时间内对生物体无毒性,但其在生物体内的降解情况不理想。为了提高药物载体的降解特性,人们开始关注更易体内分解的高分子纳米材料,如聚合乳酸、乳酸-乙醇酸共聚物、聚丙烯酸酯类等,这些材料能在人体内可水解,降解成无毒产物,是十分有发展前景的药物载体。

3.2纳米生物医用材料和纳米生物相容性器官

纳米材料和生物组织在尺寸上存在着密切的联系,如核酸指导蛋白质合成过程种形成的核糖核酸蛋白的尺寸就在15-20nm之间,影响人体健康的病毒尺寸也在纳米的范围之内。纳米材料和生物医学的紧密结合,制备纳米医用复合材料及相容性器官,广泛应用于生物医学治疗的研究中,如制备人造皮肤、血管以及组织工程支架等[3]。在人造骨中,纳米钛合金具有促进骨细胞发育的功能,使骨细胞紧密贴壁生长,同时加速材料和组织的融合。同时,纳米级的羟基磷灰石或聚酰胺复合骨充填材料可以有效填补骨缺损,具有良好的生物相容性,并且能够促进骨细胞生长。根据血液中的红细胞具有运载氧气的功能,人们开发出纳米级的人造红细胞,实现了比普通红细胞更高的氧气运载能力。如果人体心脏因意外而停止跳动,可以立刻注入人工的纳米红细胞,提供更加充足的氧气[4]。此外该技术在贫血症和呼吸功能受损的治疗中发挥着重要的作用。

四、纳米材料的生物安全性问题

随着科技水平的不断提升,纳米材料在生物医学领域越来越广泛,但是纳米材料与人类接触的过程中依然受到安全性问题的困扰。某些纳米材料可以穿透皮肤,透过细胞膜破坏正常细胞引发炎症,造成免疫、生殖和脑部组织的损伤,如超小的TiO2纳米颗粒能引起严重的呼吸道组织变化,导致上皮组织渗透性增加,引起多种炎症。此外,许多物质在普通条件下并无生物毒性,而在降低到纳米尺寸下材料因难以通过正常代谢途径排出体外表现出蓄积毒性,因此纳米材料的生物安全性是亟需解决的问题。目前已经很多科研工作者积极致力于研究纳米材料的安全性问题,研究发现碳基纳米材料(如碳纳米管和石墨烯)会引起生物体内细胞膜磷脂的破坏,造成结构损伤破坏,引起细胞的功能异常;金属氧化物(氧化锌和二氧化钛)易发生氧化还原反应,因该过程会释放电子,会产生一定的细胞毒性,而且其纳米材料的尺寸越小,其比表面积越大活性越高,产生的电子所引起的毒性越强[5]。为了真正实现纳米材料在临床医学中的应用,人们采取了一系列策略降低纳米材料的毒性,如对纳米材料进行表面修饰提高其生物相容性,降低材料的使用剂量和暴露时间,调整纳米材料的反应环境,以及开发可降解的纳米材料。但是大多数纳米材料的毒性问题依然没有彻底解决,其生物安全问题依然是限制纳米材料临床使用的重要因素。

纳米材料研究分析范文第5篇

现在用于文物保护的材料主要包括人工合成高分子材料以及天然高分子材料两种,其中对于人工合成高分子材料的使用更加普遍。在保护彩绘类文物通常所使用的材料为PrimalAC33、B72、有机硅等,它们具有颜色变化小、粘结性好、耐老化等特点。但是PrimalAC33的Tg仅为14℃,所以在常温下此材料会因为太软而容易吸灰;同时B72在老化后其可逆性会变差,并且会变得脆、黄。由于上述材料的种种不足,在当今文物保护中对于新材料的研发变得十分重要。而使用物理或化学的方法在高分子材料中混合纳米材料,使其既有纳米材料又具有高分子材料的性能,则现今的文物保护中具有重要作用。将纳米材料的量子尺寸效应用于文物保护中具有很大的优势,相比较宏观大块的材料而言它具有独特的光、热、电、力、光以及化学特征,主要表现如下:

一、同步增强增韧效应

纳米材料的比表面积很大、粒径很小,因此与其它材料具有很强的结合力,在制作复合材料时不仅能提高材料的强度还能够增强材料的韧性。对分散有纳米TiO2的PMMA进行拉伸实验,可知若加入的TiO2为5%,则拉伸强度会增加60%;若加入的TiO2为15%,则拉升强度增加90%。通过实验可知,使用纳米材料能够提高有机质文物的强度,例如年代久远的纺织品、骨角象牙、纸张等,有助于对其进行长期保存。

二、透明及防遮盖特性

纳米材料的粒径都小于100nm,而可见光的波长则为400nm至750nm,因此根据Mie理论可知纳米级材料TiO2相对于可见光而言是透明的特性。所以用纳米材料TiO2所制成的符合材料涂抹是无色、透明的,将其涂在文物的表面可以不改变文物原来的性状。但如果在制备复合材料时纳米材料发生的团聚,那么就可能是材料的实际粒径大于纳米级,降低符合材料的透明性。因此在制备复合材料时必须要保证纳米材料均匀的分散在基体材料之中。

三、抗紫外线和耐老化特性

紫外线对文物具有很大的危害作用,紫外线的照射能够使彩绘文物褪色、变色以及表面的彩绘脱落,能够使的银器变黑,同时使纤维类文物产生光解。而因为一些纳米材料具有抗紫外线的特征,在保护文物免受紫外线损害方面起到了非常重要的作用。例如ZnO、TiO2等纳米材料,它们本身具有半导体的特性,可以通过吸收或者散射紫外线来减小紫外线的通过率。同时,纳米颗粒的量子尺寸效应使其在吸光时产生“宽化”和“蓝移”现象进而增强了对紫外线的吸收作用。

四、疏水疏油性

纳米材料的表面具有很高的化学活性,非常容易与周围的气体小分子结合,从而形成一层非常薄的气体膜,这层薄膜阻止了水分子与油分子吸附在材料的表面,因此使得材料呈现出疏水疏油的特性。纳米材料的这种应用在古代的“黑漆古”铜镜就有所应用,研究发现在“黑漆古”铜镜的表面有一层大约10um的表层,该表层含有纳米SnO2微粒,有效的阻止了外部的空气和水分对文物表面的腐蚀。运用纳米材料的双疏性可以对防止酸雨等对室外文物破坏。

五、抗菌防霉性

根据纳米材料的有效成分可以将其分为光催化型、金属离子型、稀土激活光催化复合型等3类,它们都具有抗菌防霉的作用。其中,都属于光催化纳米材料,它们在文物保护中使用的更为频繁,这类材料的作用机制是利用了纳米粒子的光催化作用。纳米半导体通过以下两种方式进行杀菌:一是光生空穴与光生电子直接与细菌的细胞壁、细胞膜以及细胞内的相关成分产生反应;另一种方式则是和自由基(等)与脂类、酶类、蛋白类、核酸等生物大分子反应,直接作用于生物的细胞结构,或者经过一系列的氧化链式反应后对生物的细胞结构进行破坏。纳米材料的这种性能有利于处于潮湿环境中的丝织物、纸质物等有机物进行保护,极大的保护文物免受防霉杀菌剂以及空气净化剂带来的损坏。

六、呼吸性

材料的呼吸性是指,保护材料在不仅能够阻止外界的液态水进入文物,同时也可以文物让内部的水分通过气体的形式从内部散发,使得文物内外的湿度达到一个相对平衡的状态。对于石质的文物来说,其自身的毛细孔就可以保证文物与外界进行水分交换。一旦使用了高分子保护材料,由于材料具有防水性,会使得文物内部与外界不能很好的进行水分交换,进而在文物的内部会产生了一个很明显的湿度梯度。如果外界的温度发生了变化,那么在不同的湿度交界处就会存在显著的收缩膨胀应力,如果文物长期受到外界温度的变化,这种应力差将对文物产生一个非常大的破坏。

如果将纳米颗粒加入到高分子材料中,使得文物内部产生了很多的微小空隙,进而增加了文物透水透气的性能;并且使用纳米材料也不会影响文物本身的毛细空气,可以保证文物能够顺利的与外界进行水分交换。经实验证明,加入了纳米材料的高分子材料其不仅具有良好的透气性,其本身的憎水水也没有受到影响,所加入的纳米粒子越多材料的通透性就越好。纳米材料的这种性能对于一些石质类、陶瓷类文物的保护作用非常明显,可以增加文物的透气性,防止其内的盐分在温湿度环境下溶解结晶,进而产生往复作用力作用在文物的孔壁,使得文物表面剥落。

七、总结