前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物燃料和生物质燃料的区别范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
生物质能是一种以生物质为载体的能量,这种能量直接或间接地通过绿色植物的光合作用,把太阳能转化为化学能蕴藏在生物质内部。生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。生物质能资源通常指农业废弃物、林业废弃物和畜禽粪便等现有的废弃型资源,此外还包括专门种植的能源植物。二氧化碳(CO2)是导致温室效应的主要气体,而生物质燃烧所释放出的二氧化碳(CO2)大体上相当于其生长时通过光合作用所吸收的二氧化碳(CO2),因此生物质能利用的二氧化碳(CO2)排放可被认为是零。
生物质气化顾名思义,是将固态的生物质转变为气态的生物燃气利用,这个过程是通过生物质在高温条件下与氧气和/或水蒸气反应,转化为氢气(H2)和一氧化碳(CO)等可燃气体。生物质气化和我们比较熟悉的燃烧虽然都是在高温条件下进行,但还是有重要的区别。燃烧是在氧气充足的条件下生物质完全燃烧,其中蕴藏的化学能全部转化为热能,反应产物为二氧化碳(CO2)和水(H2O);而气化则是在缺氧条件下生物质不完全燃烧,尽可能地减少二氧化碳(CO2)和水(H2O)的生成,从而将生物质的能量以化学能的形式保留在氢气(H2)和一氧化碳(CO)等可燃气中。
生物质气化产生的可燃气,也称为生物质气化燃气,利用范围非常广泛,既可以用来集中供气、替代化石燃料,还可以用来发电,甚至可以进一步变身成为液体燃料。
将生物质气化燃气通过集中供气系统,供给到居民家里,可以供居民进行炊事和采暖。自1994年山东省桓台县东潘村建成中国第一个生物质气化集中供气试点以来,山东、河北、辽宁、吉林、黑龙江、北京、天津等省市陆续推广应用,在2000年前后达到了一个高峰。相关规范和制度正逐步完善,生物质气化集中供气应用在中国农村能源建设中稳步推进。
生物质气化燃气还可以替代工业锅炉/窑炉使用的化石燃料。工业锅炉和工业窑炉是我国能源消耗和污染排放的大户。而生物质气化产生的可燃气体,可不经净化直接应用于燃料品质要求较低的工业窑炉,如钢厂的轧钢加热炉,水泥厂的水泥回转炉;经过净化后的燃气可应用燃料品质要求较高的工业窑炉,如发电厂、陶瓷厂的窑炉。广州能源所及其合作公司已将生物质气化成功应用于工业锅炉、钢材煅烧炉、熔铝炉、熔铜炉、不锈钢退火炉等,燃烧效率可达到99%以上,节能减排效益显著。利用生物质气化燃气代替化石燃料,既节能又环保。
我国目前生物质气化应用最广泛的领域是集中供气以及中小型气化发电,少量用于工业锅炉供热。农村集中供气工程解决了农作物秸秆的焚烧和炊事用能问题,而生物质气化发电主要针对具有大量生物质废弃物的木材加工厂、碾米厂等工业企业。我国的秸秆气化主要用于供热、供气、发电及化学品合成。
(1)秸秆气化供热。秸秆气化供热是指秸秆经过气化炉气化后,生成的燃气送人下一级燃烧器中燃烧,为终端用户提供热能。秸秆气化供热技术广泛应用于区域供热和木材、谷物等农副产品的烘干等,与常规木材烘干技术相比具有升温快、火力强、干燥质量好的优点,并能缩短烘干周期,降低成本。
(2)秸秆气化供气。秸秆气化供气是指气化炉产生的生物质燃气通过相应的配套设备为居民提供炊事用气。秸秆气化供气又分为集中供气和单独供气两种类型。
①秸秆气化集中供气。生物质气化集中供气系统是20世纪90年代以来在我国发展起来的一项新的生物质能源利用技术。它是在农村的一个村或组,建立一个生物质气化站,将生物质经气化炉气化后转变成燃气,通过输气管网输送、分配到用户,系统规模一般为数十户至数百户供气。目前,我国已广泛推广利用生物质气化技术建设集中供气系统,以供农村居民炊事和采暖用气。
在秸秆气化集中供气系统中,气化炉的选用是根据不同的用气规模来确定的,如果供气户数较少,选用固定床气化炉;如果供气户数多(一般多于1000户),则使用流化床气化炉更好。秸秆燃气的炉具与普通的城市煤气炉具有所区别,国内此类炉具的生产厂家也较多,效果较好,可以满足用户要求。
②户用秸秆气化供气。该种方式为一家一户的农村居民使用,户用小型秸秆气化炉,产生的燃气直接接人炉灶使用,系统具有体积小、投资少的优点。但也有明显的缺点:由于气化炉与灶直接相连,生物质燃气未得到任何净化处理,因而灶具上连接管及气化炉都有焦油渗出,卫生很差,且易堵塞连接管及灶具;因气化炉较小,气化条件不易控制,产出气体中可燃气成分质量不稳,并且不连续,影响燃用,甚至有安全问题;从点火至产气需要有一定的启动时间,增加了劳动时间,而且该段时间内烟气排放也是个问题。
③秸秆气化发电。我国在生物质气化方面有一定的基础。早在20世纪60年代初就开展了这方面的研究工作,近20年来加快了生物质气化发电技术的进一步研究。开发的中小规模气化发电系统具有投资少、原料适应性和规模灵活性好等特点,已研制成功的中小型生物质气化发电设备功率从几千瓦到5000千瓦。
气化炉的结构有层式下吸式、开心式、下吸式和常压循环流化床气化炉等,采用单燃料气体内燃机和双燃料内燃机,单机最大功率已达500千瓦。
农业废弃物气化发电技术经过近年来的研究、探索,分别解决了流化床气化、焦油裂解、低热值燃气机组改造、焦油污水处理和系统控制及优化等各种核心技术,在技术的产品化和标准化研究、提高农业废弃物气化发电站的成套性和实用性方面取得较大进展,形成了具有我国特色的农业废弃物能源利用方式。我国的生物质气化发电正在向产业规模化方向发展,在国内推广很快,而且设备还出口到泰国、缅甸、老挝等东南亚国家和地区。目前已签订的中小型农业废弃物气化发电项目总装机容量40兆瓦以上,成为国际上应用最多的中小型生物质气化发电系统。
[关键词]废弃食用油;生物燃料;回收模式
[中图分类号]F124.5 [文献标识码]A [文章编号]1673-0461(2014)02-0051-05
一、引 言
废弃食用油生物燃料化已成为现实中极为关注而理论上亟待解决的问题。当前学术界着力从目标规划、法规管制等视角研究这一问题,主要涉及回收体系重构以及餐厨废弃物管理,而较少关注废弃食用油回收模式的选择,实质上,不同的回收模式意味着生物燃料企业、回收商与餐馆的资源承诺及风险水平是迥异的,进一步影响了各利益相关者的收益及运营决策,因而研究废弃食用油生物燃料化的回收模式具有一定的理论与现实意义。
为推进餐厨废弃物资源化利用,国家发展改革委、财政部、住房城乡建设部联合印发了《关于同意北京市朝阳区等33个城市(区)餐厨废弃物资源化利用和无害化处理试点实施方案并确定为试点城市(区)的通知》(以下简称《通知》),批复了北京市朝阳区等33个城市(区)的实施方案并确定为试点城市(区);随后中央政府印发了《关于印发循环经济发展专项资金支持餐厨废弃物资源化利用和无害化处理试点城市建设实施方案的通知》(发改办环资〔2011〕1111号),给予6.3亿元循环经济专项资金支持,并提出支持餐厨试点工作的具体支持内容、支持方式和实施程序等。在33个废弃食用油资源化试点城市中,大体形成苏州、宁波、兰州三种,另有其它类型的回收模式,尤以南京市为代表,本文将其称之为南京模式。通过比较典型的回收模式将有助于政府调整餐厨废弃物管理的政策,推进废弃食用油生物燃料化。
二、文献述评
涉及废弃物回收模式的研究多以家电或电子产品为分析对象,侧重于:
第一,逆向物流回收模式选择及评价。相关研究一般将回收模式分为第三方负责回收、零售商负责回收、生产商负责回收三种,建立模型比较不同模式下回收主体利润、回收率等指标。例如姚卫新(2004) 通过博弈模型及仿真研究,指出较之于其他两种模式,第三方回收模式中制造商和零售商的利润均为最小;Savaskan等(2004,2006)研究了制造商和零售商在再制造闭环供应链中如何决策以及制造商如何选择回收渠道的问题,通过比较各个回收模式的批发价、零售价、回收率和整个渠道的利润评价每个渠道的优劣。刘晓峰(2007)将网络分析法应用于物流回收模式选择评价,从经济、社会及技术三个主要方面提出了基于网络分析法( ANP) 的评价选择模型。同样是分析三种模式,徐兵,吴明(2012)构建了一主两从博弈结构的两层规划模型,并通过模型分析最优直销价、零售价和回收再制造率决策,研究表明,生产商负责回收时的回收再制造率最高。
区别于以上学者的研究,吴容,江玮璠(2010)将回收模式分为私人简单回收模式、生产商负责回收模式、生产商联合体负责回收模式、第三方负责回收模式四类,建立了一套评价指标体系,采用数据包络分析方法对四种回收模式进行选择,数值仿真验证了该方法的有效性与可行性。针对报废汽车的回收,贺政纲(2013)将模式分为消费者自行送至回收拆解中心、制造商回收、销售商回收、第三方回收等几种,结论同姚卫新、徐兵等人的研究相反,即应当采用基于第三方回收企业为主体,其他回收主体相结合的回收模式。
另有少数学者如王莉,刘应宗(2009)分析了我国餐厨垃圾回收模式存在的问题,研究认为建立完善的餐厨垃圾回收体系是实现餐厨垃圾资源化利用的前提。
第二,特定条件约束下的回收模式选择研究。在生产商延伸责任( EPR) 的约束下,产品的回收模式较传统的回收模式有了根本性的改变,为此魏洁与李军(2005)研究了生产商延伸责任约束下生产商负责回收( MT),生产商联合体负责回收( PT) 和第三方负责回收( TPT )三种回收模式,通过建立数学模型和实例验证对不同回收模式下的最优零售价和生产商利润进行比较研究;由于生产商利润在一定程度上依赖于需求函数或者需求是否具有确定性,因而考虑需求的影响可能有助于推进回收模式的选择研究。基于此,刘羽欣与陈伟达(2008)对需求函数为非线性的不同回收模式下的产品最优价格和生产商最大利润进行了比较分析;而郭军华等(2012)以新产品及再制造产品的需求均为不确定为前提,分别建立了制造商回收、零售商回收及第三方回收三种不同回收模式下的再制造闭环供应链模型,并给出求解的优化条件,结果表明:制造商主导的再制造闭环供应链中,第三方回收模式下制造商利润最高;制造商回收模式下新产品及再制造产品的零售价均最低。部分学者分析了市场结构或市场力量约束下逆向供应链回收模式选择问题,如Choi(1996)与Seong(2003)考虑了制造商领导的Stackelberg 博弈、零售商领导的Stackelberg博弈、制造商和零售商N ash 均衡博弈三种市场结构;而易余胤(2009)则考虑制造商领导、零售商领导以及市场无领导者三种力量结构下具竞争零售商的再制造闭环供应链博弈模型,结果表明,从环保的角度看,制造商领导的市场结构更优,但消费者和整个行业偏好零售商领导的市场结构。
政府的监控及补贴对于不同回收模式下各博弈方收益的影响也引起学者的极大关注。例如,周永圣,汪寿阳(2010)考虑了政府监控下的三种回收模式,研究表明:当零售商负责回收处理退役产品时,生产商将会设定退役产品的单位回收激励价格等于政府给他的单位惩罚价格;当生产商委托第三方物流回收处理退役产品时,生产商为使其利润达到最大,将设定退役产品的单位回收激励价格等于单位惩罚价格与单位回收成本之和的一半。王文宾,达庆利(2008,2010)以电子类产品的回收作为研究对象,将政府的奖惩机制作为约束条件,博弈模型及数值仿真结果表明,奖惩机制下逆向供应链的回收率提高;奖惩机制下回收商的利润大于无奖惩机制情形的利润,回收商的积极性提高;适中的目标回收率水平和较大的奖惩力度搭配能够增加制造商的利润,提高制造商的积极性;奖惩机制下废旧产品的回购价提高,新产品的销售价降低。
综上可见,相关文献针对废弃物再制造或资源化回收模式问题进行了大量、有益的探索,但仍存在以下缺憾:①从研究对象来看,大量的研究集中于废旧家电的再制造问题,对于餐厨废弃物的回收模式选择研究极为匮乏;②现有的餐厨废弃物的回收尚未能考虑回收模式在不同试点城市的差异性。实质上,不同的模式如苏州模式、宁波模式、兰州模式以及多数城市采取的回收模式,制造商与回收商的资源承诺、市场力量、决策先后顺序可能存在差异,进一步影响各利益相关者的收益,因而研究主要试点城市的废弃食用油回收模式,在一定程度上弥补了以上研究的缺憾。
三、废弃食用油生物燃料化的回收模式比较
废弃食用油生物燃料化过程中,原料回收主要包括苏州模式、宁波模式、兰州模式及南京模式,其中苏州模式运营良好,但仍有待改进之处;南京模式在一定程度上代表了国内多数城市的废弃食用油回收,从企业运营的实践来看,相当一部分生物燃料企业因高成本或者原料供应中断而亏损。具体回收模式分析如下:
(一)苏州模式
苏州模式的特点在于收储运一体化,即并不存在独立的回收商,而由生物燃料企业(或资源化处理企业)将市场上的回收小贩纳为企业员工,上门回收(见图1):
总体来看,苏州模式具有以下特征:①以行政管制减小非法生产厂商获得原料供应的可能性。在原料供应阶段,苏州政府采取没收黑车与截获废弃食用油并举的方式打击非法生产厂商,减少餐饮业的废弃食用油流向源头,在一定程度上致使餐馆主动与生物燃料企业或资源化企业联系。②以技术管制稳定原料供应与提高企业生产水平。目前生物燃料企业一般给予收购废弃食用油的小槽罐车或卡车配置GPS定位系统,如车辆偏离设定路线,公司将展开调查;而如果员工私自出售泔脚、地沟油,将被开除。公司的生产过程由视频摄像头监控,直接连通苏州市环境卫生管理处监控中心。技术管制还体现为回收车车载称重系统的装置,能够有效地记录进入回收车废弃食用油的数据,当餐馆的废油异常减少时,相关部门将着手调查。此外,生物燃料企业生产过程中的技术标准设定也是技术管制的一种体现,比如对于废水、废渣的要求。③以成本最小化来激励生物燃料企业。苏州模式下,生物燃料企业将收运队伍内部化,即采用招聘等方式吸纳收运人员为企业内部员工,这可以减少企业与餐馆的交易成本;同时考虑到收运成本高昂,苏州政府给予生物燃料企业补贴,补贴价位每吨118.8元。④以奖励与零收费制度规范餐馆。按照中央政府的相关政策,餐饮业将餐厨垃圾交给政府,应上缴垃圾处理费。倘若私下卖给非法生产厂商,则餐馆可以获取赢利。苏州则制定政策强制餐馆免费将废弃食用油交予资源化企业,为弥补餐馆的收益,则给予其相应的奖励。
尽管苏州模式有效地推进了废弃食用油生物燃料化,但是仍然存在如下不足:①缺乏严厉惩罚机制导致仍有部分废弃食用油去向不明,生物燃料企业的原料供应仍然不足。严厉的惩罚机制包括数额巨大的罚款,酒店评级与废弃食用油回收挂钩等。②缺少更为实效的餐馆反哺机制。当前针对餐馆的激励限于数额不多的奖励,苏州政府正酝酿更为实效的天然气反哺机制,及按照废弃食用油的供应量返还餐馆相应比例的天然气。③缺少产业链末端的生物燃料销售激励机制。由于销售终端激励机制缺乏,导致生物燃料产成品销售不畅。这些激励机制具体包括强制销售、给予消费者以税收优惠等。
(二)南京模式
南京模式为回收商与生物燃料企业分离的模式。该模式下回收商多受生物燃料企业的委托,建立回收网络,配置回收人员;而生物燃料企业并不直接参与废弃食用油的回收。南京的模式优点在于第三方回收商可以利用自身的技术与网络优势,提供专业化的服务;并能够降低生物燃料企业的回收搜寻成本。然而,较之于苏州模式,南京模式存在以下缺陷:①生物燃料企业及回收商之间的信息不对称导致前者收购成本可能上升。由于生物燃料企业与餐馆并不是直接接触,回收商可能隐匿回收真实原料供应价格信息。②回收商可能隐瞒生物燃料企业将废弃食用油售予非法生产厂商。由于信息的不对称,且可能存在的监管不力,导致回收商将废弃食用油私下售予非法生产厂商而获利,进一步加剧了生物燃料企业的原料供应短缺。③部分地区回收与资源化处理量均与补贴挂钩导致回收产品的质量下降。政府适度补贴对于降低生物燃料企业的成本,稳定原料供应极为必要。但是具体实施过程中部分地方政府对回收商与资源化处理企业均给予补贴,且前者的补贴程度依据回收的餐厨废弃物量;而后者则依据处理的餐厨废弃物量,其后果是回收商为提高餐厨废弃物重量而增加补贴,严重影响了原料供应的质量(见图2)。
(三)宁波模式
宁波模式与苏州模式有相似之处,即生物燃料企业上门回收,不存在第三方物流回收。其主要特点为“政府引导、法制管理、集中收运、专业处置、社会参与、市场化运作”,具体体现为:①运用市场化机制遴选有资质生物燃料企业。宁波市通过公开招标遴选三家废弃油脂处理企业,提高了中标企业的技术门槛。②政府提供回收运输工具,即政府出资购买餐厨垃圾回收专用车,租给回收企业使用。③负责管理收运工作的职能部门职责清晰。宁波模式运营过程中,收运工作由各区环卫部门负责组织。④餐馆缴纳适当的运费。为争取餐馆的配合与支持,政府规定免收餐厨垃圾处理费、免费提供专用垃圾桶,以远低于成本的价格收取运费(见图3)。
显然,由于遴选的企业具有一定的技术水平,且不存在第三方回收商,宁波模式减少了回收的成本,专业化处理餐厨垃圾能力较强;而生物燃料企业的寡头垄断地位也决定了其在市场决策中的话语权。但是较之于苏州模式,宁波模式的缺陷也较为明显,即缺乏技术管制及对餐馆的激励机制。苏州模式中,每个餐厨回收车均安装有GPS定位系统、车载称重系统,可以有效监控废弃食用油流向,这一点是宁波模式不具备的。与此同时,苏州模式中,餐馆不需缴纳餐厨垃圾处理费与运费,甚至在未来可能获得天然气作为激励。而宁波模式中,餐馆仍需缴纳一定的运费,进而降低了生物燃料企业获取原料的可能性。
(四)兰州模式
兰州模式区别于其他几种模式之处主要在于政府将餐厨废弃物资源化处理视为特许经营项目,以BOT方式授予甘肃驰奈能源有限公司特许经营权,由该公司负责投资建设餐厨废弃物资源化处理项目(见图4)。其特点主要包括:①产业链上游政府实施严格行政管制与技术管制政策。政府严厉打击非法回收商及非法收运餐厨废弃物,并以企业通过年审作为与生物燃料企业签约的必要条件。针对技术管制,兰州模式同样在餐厨垃圾收运车里安装GPS定位系统与通信系统,与工厂调度中心联网。②通过与研究机构合作、中外合作推进企业的技术创新能力与创新产出。为提升企业生产技术水平,甘肃省科学院、甘肃驰奈生物能源系统有限公司联合组建了兰州市生物质能工程技术中心,建立微生物领域研究平台;重点开展了城市餐厨废弃物资源化利用、无害化处理的工艺设计和系统集成及关键设备的研发工作。与此同时,与欧洲生物质能研究机构签订了技术研发合作协议,围绕生物质能关键技术研发、工艺开展联合。目前公司在餐厨废弃物处理设备方面已取得23项国家实用新型专利证书,为餐厨废弃物处理环保设备制造和应用推广奠定了技术基础。③BOT的市场化运作模式理论上有效激励了生物燃料企业。BOT模式下,生物燃料企业在特许期内负责项目设计、融资、建设和运营,并收回成本、偿还债务、赚取利润,特许期结束后将项目的所有权交予政府。由于政府承诺给予餐厨废弃物处理以补贴,理论上这种模式可以减少生物燃料运营成本,激励生产。
与理论上相对应的是,该模式实际运营举步维艰,政府补贴未能有效落实导致生物燃料企业收购成本增加;政府着力于对非法回收商管制及运输阶段的技术管制,而忽视建立针对产业链源头餐馆的严格惩罚机制。在政府要求餐馆上缴垃圾处理费的情境下,缺乏激励机制的餐馆必然将部分餐厨废弃物私下售予非法生产厂商以获利,进而导致生物燃料原料供应严重匮乏,回收率低下。
进一步地,从回收成本、回收效率、专业化程度、技术支持与管制、对餐馆的反哺机制几个维度比较四种回收模式,显然较有竞争力的为苏州模式与南京模式,但由于南京模式不具备技术支持与管制,对餐馆也缺乏反哺机制,因而是次优模式的选择(见表1)。
关键词:纤维素原料;纤维素酶;预处理;水解;发酵;生物能源乙醇;精馏和脱水;产业化
长期以来我国能源生产以煤炭、石油、天然气等化石能源为主,不仅消耗了大量的自然资源,而且对环境造成了严重污染。根据国家统计局的中国统计年鉴的数据显示,2003年能源生产总量为1.7亿t标准煤,2012年为3.3亿t标准煤,增幅达93%,我国迫切需要一种可再生能源来代替化石能源。在美国、巴西及欧洲已形成新的可再生能源-燃料乙醇产业。随着粮食价格的不断上涨,土地资源日益紧张,以粮食为原料的生物液体燃料技术发展前景并不乐观。而木质纤维素是地球上最丰富的可再生资源,发展纤维素生物乙醇成为我国和其他能源发达国家的必然选择。木质纤维素是地球上最丰富的可再生资源,以其作为原料生产生物乙醇是最具发展前景的生产路线,利用现代化生物技术手段开发以纤维素为原料的生物能源,已成为当今世界发达国家能源战略的重要内容。
1纤维素乙醇主要技术
路线纤维素乙醇的工艺技术路线主要包括预处理、水解、发酵、蒸馏脱水等几大环节。其中关键步骤是酶水解,该过程具有反应条件温和、过程可操纵性、对环境友好等优点。
1.1纤维素原料的预处理方法
目前,纤维素原料的预处理方法可分为物理法、化学法、物理化学相结合法以及生物法等。
1.1.1物理法
常见的物理法预处理技术包括机械粉碎法、高温热水处理法、微波辐射、射线处理等等,该类处理方法操作简单,无环境污染,但需要较高的动力,其耗能约占糖化总过程耗能的60%以上。机械粉碎法:用振动磨等物理外力将纤维素原料进行粉碎处理,可以破坏木质素和半纤维素与纤维素之间的结合层,但是木质素仍然会被保留,其结果降低三者的聚合度,改变纤维素的结晶构造。该处理方法可提高反应性能和提高糖化率,保证酶解过程中纤维素酶或木质素酶发挥作用。高温热水处理法:即酸催化的自水解反应,原理就是在高温(200℃以上)且压力高于同温度下饱和蒸汽压时,使用高温液态水去除部分木质素及全部半纤维素,但高温作用会使产物有所损失,并产生一些有机酸等次级代谢产物抑制酶解与发酵过程。按照水与底物的进料顺序不同,可分为以下3种,即流动水注入、水与物料相对进料及两者平行进料,这3种方式都是利用沸水的高介电常数去溶解所有的半纤维素和1/3~2/3的木质素,但反应需要的pH值要求较高,一般控制在4~7之间,来减少副作用。
1.1.2化学法
稀酸预处理和浓酸预处理:浓酸具有腐蚀性,生产过后需要回收,因此大大增加了成本,所以稀酸水解应用的范围广,稀酸水解一般是在高温高压下进行,稀酸能够断裂纤维素内部的氢键,使得纤维素易水解且提高木聚糖到木糖的转化率,虽然该方法较其他方法比较而言有很高的转化率,但是据Selig等研究表示,在高温条件下(如140℃处理时),在纤维素表面可能会形成一些木质素与碳水化合物复合物形成的球状液滴。碱预处理技术:该方法原理是破坏木质素和碳水化合物之间的连接,破坏生物质的结晶区,使木质素溶于碱液从而促进水解的进行。常用的碱包括Ca(OH)2和氨水等。Chen等采用价格便宜的Ca(OH)2处理TK-9芒草秸秆半纤维素,其水解率大于59.8%,木质素的去除率为40.1%。Kim等发现利用NH4OH、在60℃条件下、采用1∶7的料液比处理废弃秸秆9h可以去除70%~80%的木质素,若酶用量充足,可以将所有的纤维素水解掉。
1.1.3物理化学方法
氨冷冻爆破法:类似于蒸汽爆破法,其区别之处在于氨处理对设备的要求和所需的能耗降低,在蒸煮的过程中加入氨,同时还要注意氨的有效回收,其原理是液氨在50~80℃、1.5MPa条件下,采用物理方法,将压力骤降,使液氨蒸发,使木质素晶体爆裂,破坏木质素与糖类的连接,脱去部分木质素,使得木质素的结构得以破坏,增加纤维素表面积和酶解的可及度。随后向系统加入固液混合物,经过蒸发的氨通过压缩可以得到有效回收。Alizadeh等采用柳枝为原料,将葡聚糖的转化率从20%提高到90%,木质纤维素原料的酶解速率得到较大提高,另外该方法避免了酶的降解,无干扰抑制物的产生,因此处理过后无需处理。
1.1.4生物方法
自然界中有多种能够分解木质素的微生物,其中分解能力最强的是木腐菌,包括3种:百腐菌、软腐菌、褐腐菌。百腐菌能分泌胞外氧化酶包括漆酶、过氧化酶、锰过氧化酶等,因此百腐菌是自然界最主要的木质素降解菌,这些木质素降解酶能有效、彻底地将木质素降解成为水和二氧化碳。
1.2发酵酶解
发酵酶解技术是木质素生产纤维素乙醇技术的关键,国内研究人员经过多年的探索,取得了较好的进展,如生产成本下降,生产工艺流程简化。酶解发酵主要将五碳糖或六碳糖经过微生物发酵同时转化为乙醇。利用木质纤维素原料生物转化乙醇主要有4种途径:分步水解和发酵(SHF)、同步糖化发酵(SSF)、同步糖化共发酵(SSCF)和直接微生物转化(DMC)。
1.2.1分步水解和发酵(SHF)
分步水解和发酵的原理是,2个过程独立进行,其优点就是各步能在各自适宜的温度下(50~55℃酶解,35~340℃发酵)进行,有利于反应完全,纤维素酶首先将纤维素原料水解,再将得到的C5或C6分别发酵生产乙醇,也可共发酵产乙醇,该途径最大的缺点就是酶解过程中的水解产物积累会抑制酶的活性,导致水解不彻底。世界上第一座纤维素乙醇示范装置是加拿大Iogen公司于2004年在渥太华建立的,该公司以纤维素为原料利用SHF工艺,固液分离水解糖,利用工程菌生产乙醇,产能1800t/年。瑞典的O-Vik公司以木屑为原料采用SHF工艺建立的乙醇厂,成本只有0.46欧元。美国的Verenium则以甘蔗渣为原料,采用稀酸水解,采用基因工程大肠杆菌发酵生产乙醇,1t干生物质年产100加仑乙醇。
1.2.2同步糖化发酵(SSF)
同步糖化和发酵,即在同一个反应容器里,纤维素酶解与葡萄糖的乙醇发酵同时进行,微生物能直接利用酶解产生的糖,这样避免了对纤维素酶的反馈抑制作用,SSF是目前生产乙醇最主要的方式,国内外的中试装置上基本都采用此方法,主要代表就是瑞典Lund大学,采用木屑为原料,利用工程酵母发酵,其原料转化率可达90%,提高乙醇产量。在生产过程中,原料在经过预处理之后,加入纤维素酶和酵母共发酵,不能被酶解的木质素则被分离出来,通过再利用提供能量,通过乙醇蒸馏工艺进行回收。
1.2.3同步糖化共发酵(SSCF)
SSCF法是SSF法的改进,最主要的优势在于对戊糖的利用。半纤维素中含有丰富的戊糖,如木聚糖、阿拉伯聚糖,在SSF法中大量戊糖并未能转化成乙醇;如果在发酵过程中接种能够将戊糖转化为乙醇的微生物,将大大提高发酵液中最终乙醇含量。Su等研究发现,利用重组的Zymomonasmobilis发酵玉米秸秆,在SSCF法中,当葡萄糖存在时,缩短了木糖的发酵时间;但葡萄糖与木糖会竞争相同的膜转运蛋白,而且蛋白优先转运葡萄糖,在培养基中葡萄糖含量降低到一定程度后,菌种才开始利用木糖进行发酵。现阶段SSCF法采用混合菌种发酵居多,在下一步研究过程中,应开发能够同时利用戊糖和己糖发酵产乙醇的新菌种。
1.2.4直接微生物转化(DMC)
直接微生物转化又称为统合生物工艺,即原料中木质纤维素成分通过某些能够产生纤维素酶的微生物群生产乙醇的工艺,同时该微生物还能利用发酵糖生产乙醇,这就要求该种微生物同时具有以下3个步骤:产纤维素酶、酶解纤维素、发酵产乙醇。目前,研究最多的就是粗糙脉孢菌和尖镰孢菌这2种真菌,该菌有独立的纤维素酶生产,在有氧和半通氧2种状态下,分别产水解后的底物和发酵糖为乙醇,方法简便,和普遍使用的SSF相比,无需额外酶的加入,能够同时利用五碳糖或六碳糖,具有很广的应用前景。Mascoma公司利用酵母和细菌共同完成产生纤维素酶和发酵产乙醇的工艺步骤,酶生产单元大大减少,在中试装置上使用该技术,降低了成本,减少了费用。
1.3精馏和脱水技术
精馏和脱水技术主要是提纯产物乙醇,其工艺类似于淀粉燃料乙醇的生产过程。精馏和脱水技术可以借鉴淀粉质原料燃料乙醇生产工艺中已经发展成熟的工业化技术,木质纤维素类原料发酵液中乙醇浓度比较低,一般情况下均在5%以下,致使精馏操作能耗高。有研究者建议,在木质纤维素水解液乙醇发酵工艺中耦合渗透蒸发技术来提高进入精馏系统发酵液中乙醇浓度,但是渗透蒸发系统本身的动力消耗也比较大,而且渗透蒸发所用的透醇膜容易被菌体污染的问题也很突出。
2纤维素乙醇发展展望
2.1纤维素乙醇产业化发展的局限
目前,木质纤维素类生物质制备生物乙醇因其在生产、能耗和政策支持3个方面存在问题,不能实现大范围的工业化生产。生产技术方面存在工艺流程和预处理技术2个方面的限制,能源利用率存在成本和产出之比高低问题,以及存在政府是否颁布相应的支持条例的问题。首先,从原料上来看,木质纤维素由于自身坚固的细胞壁结构和难以水解的结晶纤维素,使得生产燃料乙醇需要较高的成本费用,其次,从生产工艺流程来看,制备燃料乙醇要经过预处理、酶解、发酵等过程,在预处理过程中,不同的处理方法针对不同的原料有不同的处理效果,虽然对燃料乙醇提供了有力的支持,但是也存在不同程度的局限之处。在水解和发酵方面,一般采用的技术工艺是分步水解和发酵(SHF)、同步糖化发酵(SSF)、同步糖化共发酵(SSCF)和直接微生物转化(DMC)。分步水解和发酵的反应特点是纤维素水解和水解液发酵可以在不同的反应容器中进行,所以两者可以选择适宜条件。其缺点在于,水解产物糖对纤维素酶有反馈抑制作用,使水解不完全,同时在转移产物过程中,由于在不同容器中进行,易造成微生物污染。而SSF则与此相反,在酶水解糖化纤维素的同时加入能产生乙醇的纤维素发酵菌,使两者在同一装置中连续进行,工艺大大简化,又能消除底物葡萄糖对纤维素酶的反馈抑制作用。但是也存在局限因素,如木糖的抑制作用、酶解温度和发酵温度不一致等。研究最多的假丝酵母菌、管囊酵母菌能够将木糖转化为乙醇,解决此难题。同步糖化共发酵(SSCF)是由该方法衍生出的新工艺,同样具有广阔应用前景。中国科学院生化工程国家重点实验室陈洪章等在了解了SSF法之后,提出秸秆分层多级转化液体燃料的新构想,在秸秆不经过添加化学药品的低压爆理之后,采用发酵-分离乙醇耦合系统,多级转化燃料乙醇和生物油,降低成本费用和酶的用量,简化生产工艺,提高酶解效率。
2.2纤维素乙醇产业化发展的趋势目前,国外纤维素乙醇产业化研究正进入一个关键时期,中国在这方面也有很好的基础,为了更快地实现产业化,应当吸取国外石油化工的实践经验,坚持生物精炼和乙醇联产的创新模式,促使纤维素乙醇实现产业化。该模式即实现原料的充分利用和产品价值最大化,就是所谓的“吃干榨净”,具体含义指利用玉米生产燃料乙醇,还能生产相关产品,如玉米油、高果糖浆、蛋白粉、蛋白饲料和其他系列产品,这样既提升了纤维素乙醇经济附加值,又能取得良好的经济和社会效益,一举两得。燃料乙醇将很快进入全球的成品油市场,在替代汽油供应方面发挥不可替代的作用。
在未来几年,随着中国对石油进口依赖度加深,扩大国内燃料乙醇产能已经成为必需。但是由于粮食生产乙醇的工艺不适合我国采用,因此,纤维素乙醇研究已经成为目前研究工作的重点。纤维素乙醇研究工作涉及物理、生物工程、化学等多个领域,为了早日实现纤维素乙醇产业化,应当提出相应的发展战略,首先,应该制定生物质能源产业的国家和地方的发展战略,政府应采取鼓励政策继续加大科研资金投入;其次,利用己糖发酵菌种的构建及木质纤维原料生物量全利用等方面来提升纤维素乙醇的经济效益:最后,要建立工业示范装置,为纤维素乙醇产业发展提供实践经验。纤维素乙醇作为主要的生物能源,应加快以纤维素乙醇为核心的综合技术的开发,整合多方力量,实现优势互补,使其在我国能源结构转变中发挥重要的作用。
参考文献:
[1]阮文彬,丁长河,张玲.纤维素乙醇生产工艺研究进展[J].粮食与油脂,2015,28(11):20-24.
[2]闫莉,吕惠生,张敏华.纤维素乙醇生产技术及产业化进展[J].酿酒科技,2013(10):80-84,89.
关键词:生物质能源;竞争手段;农产品贸易保护;粮食安全
中图分类号:F303.4文献标识码:A文章编号:1001-6260(2009)03-0053-08
一、引言
20世纪90年代以来,不可再生能源的枯竭问题开始真正显现,世界经济,尤其是发达国家的经济发展面临“缺血”威胁。为应对这一挑战,美欧等能源消费大国和巴西等农产品贸易大国开始大力发展新型的可再生能源――生物质能源。6①由于美欧及巴西等国的第一代生物质能源发展是建立在对农业资源大量占用和农产品大量消耗的基础之上,能源与农业及农产品因此被直接联系在一起。2003年以来,随着粮价的快速上涨,各界普遍认为生物质能源的快速、大规模发展是高粮价的“罪魁祸首”,生物质能源生产大国的美国更是成了众矢之的。多数国家都出于国内供给安全考虑,对农产品贸易,特别是粮食贸易采取了限制性政策,新一轮农产品贸易保护主义也因此抬头,这给农产品贸易自由化和缺粮国的社会稳定蒙上了一层新的阴影(SDC,2008; Schmidhuber,2007; FAO,2008),也引发了各界对生物质能源发展动机的质疑(Jull,et al, 2007; Berndes,et al, 2007; Thomas,et al, 2008)。
x
生物质能源发展与粮食安全的矛盾或冲突的凸现,需要我们对美欧及巴西等国发展生物质能源的真正动机及诱因进行科学评价,认清其本质及其对世界粮食安全的影响,为中国积极介入未来生物质能源及与此相关的农产品贸易规则的制定和掌握决策的主动权提供依据。
二、生物质能源的发展动机与支持和保护措施评价
(一)发展动机
应对原油价格上涨,降低能源进口依赖固然是发展生物质能源的一个“合理”动机,但各国的动机绝不仅仅于此,而且这也不一定是最主要的动机。从实践看,不同国家面临的内外部环境不同,其发展生物质能源的优先动机或核心目的也存在较大差异。OECD秘书处在2007年和2008年分别对其30个成员国和印度、巴西、印尼和马来西亚等发展中国家的调查表明,发展生物质能源的优先动机集中于四个方面。
1.减少温室气体排放,改善生态环境
美欧等发达国家提出发展生物质能源的一个最重要理由就是履行《京都议定书》,减少温室气体(Green House Gases,GHG)排放,改善生态环境。客观地说,通过大量种植能源作物发展生物质能源固然能减少温室气体的排放和改善生态环境,但据权威测算,它所减少的仅仅是CO2排放量,所减少的CO2排放量占总温室气体排放量比例还不到1%。而温室气体除了CO2外,还包括因工业发展直接或间接排放的甲烷、氧化亚氮、氢氟碳化物、全氟碳化物、六氟化硫等。从对生态环境的破坏看,后者的危害性可能更大。另外,虽然生物质能源的使用能减少温室气体排放量,但因目前第一代生物质能源技术的制约,生物质原料转化center过程同样会产生大量温室气体(OECD,2008a)。考虑到这一点,发展生物质能源的环境改善效应将会缩水。不仅如此,生物质能源发展诱发的土地用途改变和过度经营还会导致土壤营养径流量流失,生物多样性也会受到一定影响,因而生态系统自身的修复能力会不断下降(Braun, 2007;Marland, et al, 2008)。所以,发达国家提出的“减少温室气体排放,改善生态环境”的优先目标的可靠性就很值得怀疑。这样,合理解释就应该是这些国家以一个“合理”的借口,转移其所承担的国际义务,而不是保护国际环境资源。其实,经济实力雄厚的发达国家完全可以选择“花钱换减排”的“京都模式”来免除自己承担的义务ZW(“京都模式”是《京都议定书》中规定的一种独特的贸易,即如果一国的排放量低于条约规定的标准,则可将剩余额度卖给完不成规定义务的国家,以冲抵后者的减排义务。ZW),但很少有国家采取这一独特贸易来转嫁自己的义务。特别值得一提的是,作为世界上最大的温室气体排放国和最大生物质能源生产国的美国在2001年宣布退出《京都议定书》,这更加彰显了其真正的动机。
2.降低能源进口依赖,保障能源供给安全
能源短缺问题是全球面临的共同问题,但不同国家受之影响的程度存在较大的差异。对于广大的发展中国家而言,由于其工业化程度低,经济发展对能源的依赖性相对较小。但对美欧和日本等工业化发达国家而言,情况则全然不同。所以就这点看,发达国家发展生物质能源具有一定的合理性,但这一合理性并不能掩盖其真正的目的。其实,目前世界能源危机的根本原因不是原油本身,而是国际政治旧秩序复苏的结果。美欧等国为了维护自己的世界经济和政治霸主地位,从经济、政治和军事上对中东和拉美主要产油国进行制裁、军事打击和军事威胁,影响了原油的可持续性供给。特别值得指出的是,布什执政以来的中东政策和国内的原油战略储备政策搅乱了世界原油市场,造成原油价格上涨和能源危机的提前到来。
从更深层面看,能源短缺问题的实质就是经济增长方式的科学性问题。如果我们从不可再生能源的消耗量和可持续利用世界能源角度对各国经济增长方式进行重新划分,那么发达国家的经济增长是一种典型的粗放式增长,而且这种粗放式增长模式决定了他们必须要能始终控制能源市场。以原油消费和进口为例,2006年30个OECD国家原油消费占世界总量的58.1%,美国、EU和日本三大经济体原2油进口量占世界总进口的64.4%,而广受指责的中国人均石油消费仅为美国的8.7%、新加坡的2.8%ZW(环球能源网:“2006年世界石油储量、产量和消费量统计评论”,tp://oilgas.省略/。
3.刺激经济发展,增加就业
由于生物质原料的种植、加工和转化具有劳动密集型特征,对增加就业具有一定作用,因而对20世纪90年代以来就业压力凸显的发达国家具有一种政治上的吸引力和舆论上的支持率(Markandya,et al, 2008)。其实,发达国家经济与就业问题的根本原因不是原油价格,而是其产业结构调整和发展中国家竞争力提高。随着发展中国家总体竞争力的提升,发达国家为了维持其竞争力,将多数“夕阳产业”以直接投资方式“恩惠”于发展中国家。由于转移出来的多是就业贡献较大的价值链低端部分,这样其国内的就业压力必然出现。不仅如此,由于转移出来的多是价值链中污染程度较高环节,因而发展中国家的环境问题、温室气体问题也开始显现,这就为发达国家要求发展中国家履行《京都议定书》找到了最好的理由,也为其自己不履行减排义务找到了一个“公平”的托辞。
4.培育新的农产品市场,促进农村发展
这一目标是巴西等少数热带发展中国国家提出的发展生物质能源的优先目标。从表面上看,由于生物质能源的发展建立在农业原料和农产品的基础之上,在国际农产品贸易自由化受阻的情况下,生物质能源发展的确能为其过剩的农产品提供新的出路。另外,能源作物的大规模种植和相适应的农产品加工业的发展对于协调国内区域发展差异、推动农村发展也具有一定的推动作用。但从深层次看,由于这些国家多为农产品出口大国,农业资源丰裕,因而它们的选择实际上成为变农产品出口为新型生物质能源出口,改变与发达国家斗争的一种新形式。
与具备技术或资源条件国家不同的是,大多数发展中国家由于缺乏发展生物质能源的技术和大规模的资本投资,因而高成本的生物质能源是其经济发展的一种“奢侈品”,其经济的增长只能寄希望于价格日益高涨的化石能源。虽然这种发展的中短期成本相对较低,但这一被动抉择的长期成本将是高昂的。因为从长期看,化石能源的枯竭是一种必然的趋势,其价格超过生物质能源价格只是时间问题。最后的结果就是发展中国家的经济发展将由对化石能源的依赖转向对生物质能源的依赖,这种依赖实质上就是对少数生物质能源大国的依赖。所以,土地资源的制约使得未来能源供给的唯一希望就是生物质能源技术能发生“跳跃性”的进步,否则发展中国家经济发展将会面临“断血”的困境。应对“断血”的唯一选择就是用原料换能源,即发展中国家将会沦为发达国家生物质能源的原料产地,新一轮的经济“殖民化”可能会出现。
综上所述,对于美欧等发达国家而言,发展生物质能源的核心动机不像是应对能源危机,而更像是抢占未来可再生能源市场。对于巴西等热带发展中国家而言,发展生物质能源的核心动机是规避农产品贸易保护,改变与发达国家的斗争形式和斗争领域。
(二)支持与保护措施
目前生物质能源的生产成本普遍高于化石能源,还难以与化石能源展开竞争。Tyner等(2008)在综合考虑美国可再生燃料生产授权、税收减免和贸易壁垒等因素的情况下,研究了原油价格和玉米乙醇生产的补贴情况。结果表明:在目前的技术水平下,美国生产玉米乙醇的每蒲式耳玉米的补贴值是1.60美元左右(Tyner,et al, 2008)。在农产品价格高位运行的情况下,各国为了鼓励生物质能源发展,采取了一系列的政策和措施。这些措施涉及生物质原料进出口和生物质能源的生产、国内销售、消费等各个环节。
1.生物质原料的生产支持
为了降低农业能源作物和其它生物质原料的生产成本,一些国家采用直接补贴形式。最具有代表性的就是欧盟(EU)2003年共同农业政策(CAP)改革方案中的能源作物援助计划(ECA)。根据该计划,EU根据2003年的产出水平建立了一个分离支持给付系统,该系统将已经存在的多种给付形式合并为一种单一农场给付形式(SFP),要求其各成员方按照45欧元/公顷的标准对农业生物质原料和林木生物质原料生产者提供直接补贴(OECD, 2008b)。除此之外,对那些不适合种植食用农产品的土地,由政府提供机械,鼓励农民种植能源作物。
2.生物质原料的转化支持
由于生物质原料转化的初始投资成本高于化石能源,而其收益具有不确定性,因而许多企业不愿投资生物质原料的转化。为解决这一问题,不少国家采用资本拨付的形式,由政府直接承担转化设备或其它固定资产的一部分投资,或为企业提供无需备案的信贷担保,以刺激生产者的积极性。这种支持最典型的国家就是美国。美国1980年的能源法案中就建立了乙醇燃料的生产转化支持系统。根据该系统,联邦政府通过免税、许可证和有条件选择投标人等办法对生产者提供支持,鼓励企业提高转化效率。近年来,美国一方面借鉴EU的模式,对达到质量要求的能源按产量单位提供直接补贴,另一方面要求企业转化的原料中必须有一定比例的农业原料(即原料定额计划),对达到要求的企业给予额外支持。由于生物质原料的转化实际上是农产品加工的一种形式,因而这种直接对企业投资的支持与O的 “黄箱补贴”并没有本质上的区别。
3.生物质能源的价格支持
为了保证生物质能源生产企业的利润,美国、EU和巴西等国均对生物质能源提供了最低价格保护,要求经销商对生产者支付的价格不得低于最低价格。这种价格有两种形式:一是不变的季度最低价格,这种价格一般多个季度保持不变,目的是为了降低生产者的不确定性;二是可调整的最低价格,该价格可以经常性调整,以防止不可测因素引致的生产成本变化。在多数情况下,对因不可测因素引起的成本增加和批发价销售造成的损失,政府通过环境改善奖励和绿色奖励的形式进行追加补偿。这种价格支持与O明确禁止的“黄箱补贴”并没有本质上的不同,但因其适用对象是绿色的可再生能源,因而游离于O框架之外,成为一种“合法”的措施。
4.生物燃料销售与消费支持
为了鼓励生物质能源产业部门的发展,美欧等国还在销售和消费方面制定了一系列的强制性政策措施,以为本国生物质能源产业的发展提供市场支持。从销售环节看,美国的销售最具有代表性。根据联邦政府的规定,所有汽油销售企业必须销售一定比例的乙醇汽油或直接要求这些企业按照一定比例将乙醇汽油和传统汽油混合后销售(比例一般为5%),同时对销售者征收燃料特许税。被征税的企业接下来就可以以销售混合燃料为由,获得政府的税收信贷支持。对于那些完全享受税收信贷支持的企业,政府还为之提供所得税抵免。从消费环节看,为了刺激消费,多数国家一方面以强制消费的方式,要求公共运输部门和消费者必须购买一定数量的生物燃料,并对购买者免征燃料消费税。另一方面,在挪威、瑞典和丹麦三国,政府对购买生物燃料的普通消费者和企业免征CO2排放税,并提供所得税方面的优惠。
5.生物质原料和生物质能源的进出口限制
进出口限制也是各国扶持生物质能源产业发展的一个重要措施。其中EU的最为典型。2007年EU各国对加入甲醇的成品乙醇进口每百升征收10.2欧元进口税,没有加入甲醇的成品乙醇每百升征收19.2欧元的进口税,生物柴油进口每百升征收6.5欧元的进口税。除了成品燃料进口税外,为保障国内生物质原料,尤其是农业原料的生产,鼓励地方生产企业使用国内原料,EU各国对农业原料和农产品(主要是小麦、糖类、玉米、油菜籽)进口也广泛征收进口税。特别值得指出的是,EU还专门制订了限制生物质能源及其原料进口的非关税壁垒,这就是2007年出台的燃料品质标准(FQS)。FQS指的是液态燃料中可再生燃料与不可再生燃料的混合比例,这一比例不是固定不变的,而是根据EU生物燃料的生产成本和生产技术变化经常调整。 ZW)由于目前各国乙醇汽油和生物柴油的主要原料是玉米、小麦、糖类和油菜籽(菜籽油),因而这种贸易限制实质上就是农产品贸易保护。
6.生物质技术R&D支持
未来生物质能源的市场前景取决于其竞争力的高低。为了降低生产成本,增强生物燃料的价格竞争力,许多国家都制订了庞大的R&D支持计划。计划的主要目标是改进现有的生物质能源生产技术和开发以农业秸秆和其它有机废物为原料的第二代生物质能源技术。例如,2008年美国能源部提供了3.85亿美元的研发补贴,用于纤维素生物质能源技术的开发。加拿大2008年也为生物质能源的发展提供了22亿美元的巨额支持,其中很大一部分用于第二代生物质能源技术的商业化推广。
综上可见,这些支持与保护政策措施除了直接补贴和研发补贴类似于O的“绿箱政策”规定外,其它的政策措施均属于O明确禁止和严格限制的范畴,因而必然会扭曲生产和消费。其实,这些措施的出台决非偶然,而是发展中国家、凯恩斯集团、美欧和日本这些利益集团农产品贸易保护与反保护博弈的结果。所以,从这个意义上看,与生物质能源相关的直接或间接支持和保护措施均是农产品支持与保护措施的一种特殊形式,是新一轮农产品贸易保护主义抬头的表现。只是由于其与绿色能源的生产密切相关,因而披上了“绿色”的外衣(Steenblik,2007)。
三、生物质能源发展对世界粮食供求的影响
目前各国发展的是第一代生物质能源,其使用的原料主要是玉米、小麦、糖类和油料ZW(美国的主要原料是玉米和大豆油,EU的主要原料是玉米、小麦、大麦、菜籽油和大豆油,巴西的主要原料是甘蔗和大豆油,加拿大的主要原料是小麦和玉米,中国和印度的主要原料是玉米,马来西亚、印尼的主要原料是棕榈油。2003年以来,全球生物质能源发展规模急剧增长。2007年全球液态生物燃料的产量达到3600万吨,其中乙醇汽油2857万吨,生物柴油7.56万吨。在所有生产国中,美国和巴西的产量分别占世界总产量的43.73%和29.37%。
由于美国是世界最大的粮食生产和出口国,而其生物质能源的主要原料又是与小麦、稻谷两大主要粮食存在直接资源竞争关系的玉米,因而其生物质能源战略成为了世界的焦点,国际社会普遍关注美国的玉米乙醇战略对国际粮食供求的影响。统计资料显示,因大规模发展生物质能源,美国三大粮食作物的种植结构发生了较为明显的变化。与2003年相比,2007年美国三大作物的总种植面积下降了1.51%,其中小麦的种植面积下降了3.87%,稻谷下降了8.33%,但玉米的种植面积却上升了21.99%。种植结构的改变导致其三大粮食出口全面下降,其中玉米下降28.17%,小麦下降9.13%,稻谷下降4.29%,总量达到1661.50万吨ZW(根据美国农业部生产、供给和分配数据库(USDA-PSD)资料整理得到(tp://fas.usda.gov/psdonline)。
从逻辑上看,生物质能源的发展对粮食安全的影响包括三个方面:一是总量效应。2003年以来世界小麦、玉米和大米的产量仍然在增长,但因生物质能源的发展耗费了大量的玉米、小麦和粗粮,世界食用粮供给下降。其中,最大粮食出口国的美国,其2003年的三大粮食出口占世界总出口的比重是38.97%,而2006年则降至34.54%。二是结构竞争效应。以美国为例,由于目前美国生物质原料以玉米为主,高度的保护、支持和进出口限制导致玉米种植面积大幅增加,产量增长明显,而与玉米“直接争地”的小麦和其它粮食作物的种植受到了明显的影响。三是示范效应。美欧和巴西等国生物质能源的大规模发展对其它国家产生了严重的影响。出于对未来能源市场不确定性的担忧,印度、马来西亚等发展中国家已经开始发展生物质能源,农业资源极度稀缺的日本和韩国也制订了庞大的生物质能源发展计划。
综上可见,生物质能源的大规模发展已经给世界粮食安全造成较严重影响,但未来的影响会更大。根据2007年美国新能源法案,到2020年美国生物乙醇产量将达到360亿加仑,这大约要耗费1442.91万吨玉米(相当于2007年美国玉米产量的41.2 %)(消耗量根据2007年的数据估算得到。按照美国2007年的玉米单产计算,玉米种植面积要增加152.17万公顷。耕地资源的有限性和用途的竞争性使得小麦和稻米的种植面积必然会下降。由此可以推断,未来世界的粮食供求形式将会进一步恶化,粮食安全这一人类最基本的权利将会受到前所未有的挑战。而挑战者却是少数国家,尤其是美、欧和巴西等农产品贸易大国。所以从道义上看,生物质能源的发展是少数国家把国家利益置于人类生存权之上的一种表现。
四、结论及其对中国的启示
能源是经济发展的动力,化石能源的枯竭趋势和科学技术的进步催生了生物质能源的发展。但通过对现行国际生物质能源的发展格局和国际农产品贸易格局的比较发现,目前各生物质能源大国发展生物质能源的核心动机似乎不仅仅于此,抢占未来可再生能源市场和规避农产品贸易保护则更像是其真正的目的。原油价格的高涨和大幅波动以及发展生物质能源的多重效应更为这些国家大规模发展生物质能源找到了最佳的借口,也为这些国家推行农业支持和农产品贸易保护提供了“合法”的理由。由于现行的生物质能源发展模式是一种典型的农业原料导向模式,因而其大规模发展必然对世界的粮食供求和农产品贸易自由化产生深远的影响,进一步恶化广大发展中国家的经济发展环境。
作为一个发展中国家,中国同样面临着能源安全和粮食安全的双重压力。发展生物质能源固然是中国应对国际能源危机的一个选择,但因生物质能源的开发和利用与粮食生产存在明显的资源竞争关系,这样中国就面临着一个两难境地。从实际情况看,虽然中国已经掌握了开发利用生物质能源的技术,而且大量的研究也表明中国生物质能源的开发潜力巨大。但是所有这些条件和潜力在粮食价格日益高涨后都不能成为中国目前大规模发展生物质能源的理由,只能是一种战略规划。因为目前中国的生物质能源开发除利用玉米、油料作为原料外,利用其它原料的成本远高于传统的化石能源。这样,生物质能源的开发必然会影响国内的粮食生产与供给。因此,中国必须处理好生物质能源发展与粮食安全的关系,要坚持发展能源农业必须始终将粮食安全摆在重要位置,对以粮食为原料的生物质能源发展要严格控制(Li, et al, 2001)。
但是严格控制不等于中国应该放弃生物质能源的开发权利。对中国而言,生物质能源的发展必须立足于技术路线,以第二代生物质能源的开发为重点ZW(第二代生物质能源主要是以非粮农作物、木本油料植物、秸秆与农林废弃物为原料。对于玉米乙醇项目,一定要在不影响粮食安全的前提下继续抓好试点工作,并就其对粮食安全的影响进行科学评估。同时,对生物质能源领域和农产品贸易领域可能出现的一些新问题要积极研究,为参与未来相关国际规则的制定奠定基础。
参考文献:
FAO. 2008.飞涨的粮食价格:事实、看法、影响以及需要采取的行动[EB/OL]. HLC/08/INF/1,3-47,tp://省略.cn/.
夏天. 2008. 粮食真的能源化了吗?来自农产品与原油期货市场的经验证据[J]. 农业技术经济(4):11-18.
BERNDES G, HANSSON J. 2007. Bioenergy expansion in the EU: costeffective climate change mitigation, employment creation and reduced dependency on imported fuels [J]. Energy Policy,35:5965-5979.
BRAUN J V. 2007. The world food situation: new driving forces and required actions [R]. Food Policy Report, No.18:1-27.
JULL C, VAPNEK J. 2007. Recent Trends in the law and policy of bioenergy production, promotion and use [R]. FAO Legal Papers, NO.#68:5-18.
LI JINGJING, ZHUANG XING, DELAQUIL P. 2001. Biomass energy in China and its potential [J]. Energy for Sustainable Development,4:73-80.
MARKANDYA A, SETBOONSRANG S. 2008. Organic crops or energy crops? options for rural development in Cambodia and the Lao People's Democratic Republic [R]. ADB Institute Discussion Paper , No. 101:29-31.
MARLAND G, OBERSTEINER M. 2008. Largescale biomass for energy, with considerations and cautions: an editorial comment [J]. Climatic Change, 87:335-342.
OECD. 2008a. Biofuel support policies: an economic assessment [J]. Agriculture & Food, 12: 1-149.
OECD. 2008b. Economic assessment of biofuel support policy [EB/OL]. tp://省略/dataoecd/18/48/41014580.pdf:12-13.
SCHMIDHUBER J. 2007. Biofuels: an emerging threat to Europe's food security? impact of an increased biomass use on agricultural markets, prices and food security: a longerterm perspective [EB/OL]. tp://notreeurope.eu/, Notre Europe Policy Paper:3-53.
SDC. 2008. Biofuel, opportunity or threat to the poor [EB/OL]. tp://deza.admin.ch/ , Issue Paper:1-9.
STEENBLIK R. 2007. Biofuels-at what cost? government support for ethanol and biodiesel in selected OECD countries [EB/OL]. tp://省略,IISD Publications .
THOMAS F, RUDDYL M H. 2008. Impact assessment and policy learning in the European Commission [J].Environmental Impact Assessment Review, 28:90-105.
TYNER W E, TAHERIPOU F. 2008. Policy options for integrated energy and agricultural markets [C]. The Transition to a BioEconomy: Integration of Agricultural and Energy Systems Conference,The Westin Atlanta Airport,February:12-13.ZK)
Remark on Development of Biomass Energy in the World:
A View on its Motivation, Support Measures and Impacts on World′s Food Security
YAN Fengzhu1,2QIAO Juan1
(1.College of Economics & Management, China Agricultural University, Beijing 100083;
2. Department of Economics & Management, West Anhui University, Lu'an 237010)