前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料的优势范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
高分子材料是指由相对分子质量较大的化合物分子构成的材料。按其来源,高分子材料可分为天然,合成,半合成材料,包括了塑料,合成纤维,合成橡胶,涂料,粘合剂和高分子基复合材料。从1907年高分子酚醛树脂的出现以来,高分子材料因其普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展。然而,现在大规模生产的还只是在寻常条件下能够使用的高分子物质,即通用高分子。它们存在着机械强度和刚性差、耐热性低等缺点,而现代工程技术的发展对高分子材料提出了更高的要求。于是新型高分子材料的开发与应用尤为重要。耐高温、高强度、高模量、高冲击性、耐极端条件等高性能的新型高分子材料的开发与应用不但能解决现阶段的高分子材料所面临的问题,而且也将积极地推动高分子材料向功能化、智能化、精细化方向的发展。与此同时,我国十二五计划也将高分子材料的开发研究纳入了其中,作为其重要研究方向之一的新型高分子材料的开发研究必将会极大地推动我国材料技术的发展。
1.国内外高分子材料开发现状
21世纪是一个科学技术飞速发展进步,生产力大幅度提高的新纪元。材料工业与信息工业,生物工程,能源工业一起成为世界经济的四大支柱产业。高分子材料与金属材料和无机非金属材料共同构成了应用性材料科学的最重要的三个领域。高分子材料凭借其独特的优势占领了巨大的市场。
世界高分子材料工业正在高速地发展着。世界合成树脂量从1950年的1.5M工增长到2005年的212M工,每年大概以5%的增长率在迅速地增长。现在塑料的产量早已超过了木材和水泥等结构材料的总产量。合成橡胶的产量也已超过了天然橡胶,而合成纤维的年产量在上个世纪80年代就已经达到了棉花、羊毛等天然和人造纤维的2倍。对于我国而言,目前我国是世界上最大的树脂进口国,每年进口的树脂数量大约是世界树脂总贸易的25%到30%。我国的树脂合成工业正高速地发展当中,树脂合成能力也在飞速地提高中。然而与西方发达国家仍然存在着差距。
2.开发新型高分子材料的重要意义和途径
从上世纪30年代高分子材料的出现开始到现代,世界工业科学不再只是满足与对基础高分子材料的开发研究,从90代开始,科学家们就将注意力集中到了高功能,高智能的高分子材料开发上。现代工业对于新型高分子材料的需求日益强烈。
新型高分子材料的开发主要是集中在制造工艺的改进上,以提高产品的性能,减少环境的污染,节约资源。就目前而言,合成树脂新品种、新牌号和专用树脂仍然层出不穷,以茂金属催化剂为代表的新一代聚烯烃催化剂开发仍然是高分子材料技术开发的热点之一。然而开发应用领域也在不断扩大。在开发新聚合方法方面,着重于阴离子活性聚合、基团转移聚合和微乳液聚合的丁业化。在第二次世界大战中发展起来的高分子复合技术,以及出现于50年代的高分子合金化技术后。新的复合技术和合金化技术层出不穷。同时,也更加重视在降低和防止高分子材料生产和使用过程中造成的环境污染。加快高分子材料回收、再生技术的开发和推广应用,大力开展有利于保护环境的可降解高分子材料的研究开发。
新型高分子材料的开发,不但能够满足现代工业发展对于材料工业的高要求,更能够促进能源与资源的节约,减少环境的污染,提高生产能力,更能体现出现代科技的高速发展。
3.新型高分子材料的应用
现代高分子材料是相对于传统材料如玻璃而言是后起的材料,但其发展的速度应用的广泛性却大大超越了传统材料。高分子材料既可以用于结构材料,也可以用于功能材料。现阶段新型高分子材料大致包括高分子分离膜,高分子磁性材料,光功能高分子材料,高分子复合材料这几大类。
高分子分离膜是用高分子材料制成的具有选择透过性功能的半透性薄膜。采用这样的薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,与以往传统的分离技术相比,更加的省能、高效和洁净等,被认为是支撑新技术革命的重大技术。
高分子磁性材料是磁与高分子材料相结合的新的应用。早期磁性材料具有硬且脆,加工性差等缺点。将磁粉混炼于塑料或橡胶中制成的高分子磁性材料,这样制成的复合型高分子磁性材料,比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等。
光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,应用也很广泛。
高分子复合材料是指高分子材料和不同性质组成的物质复合粘结而成的多相材料。高分子复合材料最大优点具有各种材料的长处,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质。
这些新型的高分子材料在人类社会生活,工业生产,医药卫生和尖端技术等方方面面都有着广泛的应用。例如,在生物医用材料界上,研制出的一系列的改性聚碳酸亚丙酯(PM-PPC)新型高分子材料是腹壁缺损修复的高效材料:在工业污水的处理上,在不添加任何药剂的情况下,利用新型高分子材料物理法除去油田中的污水:开发的聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂复合材料,这些材料比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料;同样,在药物传递系统中应用新型高分子材料,在药剂学中应用,在包转材料中的应用等等。新型高分子材料已经渗透于人类生活的各个方面。
材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,是一个国家工业发展的重要基础和标志。作为材料重要组成部分的高分子材料随着时代的发展,技术的进步,越来越能影响人类的生活,工业的进步。区别于我们已经开发研究成熟的一些传统材料,高分子材料的研究开发存在着无穷的潜力。正如一些科学家预言的那样,新型高分子材料的开发将有可能会带来现代材料界的一次重大革命。
[参考文献
[1]程晓敏,高分子材料导论[M],安徽大学出版社2006,
[2]顾正超,高分子材料开发现状与展望[J],科技与经济,2000.(02).
[3]郝敬辉,新型高分子材料物理法处理油田污水[J],油气田地面工程,2010.(07)
[4]黄凯,高分子材料在药物传递系统研究中的应用[J],中国现代应用学2010.(SI)
[5]于金海,应用新型可降解材料修复腹壁缺损的实验研究[J].中国知网论文总库2010.
[6]黄丽,高分子材料[M].化学工业出版社2005.
[7]高分子材料,百度百科.
关键词:高分子材料;加工;形态控制
一、引言
高分子材料的性能与大分子的化学与链结构有着密切的关联,且材料形态也是重要影响因素之一。聚合物氛围结晶、取向等几种形态,多相聚合物择优扩相形态。聚合物制品形态的形成源自于加工中复杂的温度场与外力场作用。由此可见,关于加工过程中高分子材料形态控制具有重要的研究意义。
二、我国高分子材料加工中形态控制研究现状
高分子材料形态与物理力学性能之间的关联十分紧密,这也是高分子材料的重点研究课题。相较于其他材料,高分子材料具有非常复杂的形态,具体表现为高分子链的拓扑结构、共聚构型以及刚柔性非常复杂,在分子设计与结构调整中,可以对一些合成方法加以运用;其次,在高分子长链结构的影响下,其熔体的粘弹性非常突出;此外,高分子具有非常宽的弛豫时间,就是受到很小的应变作用,其产生的非线也会非常强烈。
对于聚合物的成型过程而言,在非等温场、不同强度的剪切与拉伸场的影响之下,就分子尺度而言,其大分子链会发生一系列化学反应;就纳米与亚微米尺度而言,大分子会有结晶与取向现象发生,如此一来就会有超分子结构的形成;而根据亚微米与微米尺度,多相聚合物会有不同相形态的形成,甚至会出现一些缺陷。而这些形态的影响因素非常广泛,例如加工中的外场强弱、作用频率、作用方式以及时间等。然而,现阶段关于这些问题的研究虽然有所深入,但相应的理论体系尚未成熟。此外,随着新聚合物的开发不断深入,在高分子材料加工中涌现出越来越多的成型加工方法,显然这使聚合物加工中的形态控制成为了一个长期的研究课题,对于高分子物理领域的发展无疑有着重要的影响。
在我国,关于新材料的研究起步以跟踪模仿为主,在知识产权与创新理论方面有所欠缺,并且基础研究与技术推广的通畅性也有待提升。其次,相关人员并不重视传统材料的升级与优化,很多高性能材料品种对进口的依赖性依然较强。再者,材料成型与加工设备也没有得到应有的关注,与一些发达国家相比,我国材料研究与整体发展依然存在诸多不足,显然这与国民经济与设备的发展需求不相适应。
聚合物的性能取决于形态,因此,在高分子材料领域中,聚合物形态与性能关系的研究一直以来都受到高度重视,然而在实践中,我们在二者之间的结合方面的研究上依然有所欠缺,具体可以从以下几个方面得到体现:
第一,在剪切速率与剪切应力非常低的情况下,聚合物共混物相形态的演化研究不断深入,然而在实践中,一些主要聚合物成型加工的剪切速率主要在10?~104s-1范围内,显而易见,相关研究成果对实际生产的指导作用依然有所欠缺。
第二,基于不同条件的不同特性聚合物,其共混物形态发展与演化研究依然是主要研究内容,而形态与性能关系的研究依然有所欠缺。
第三,在加工过程中,受到部分特殊外场的作用,聚合物凝聚态结构与相形态结构的研究有待深入。
截至今日,在聚合物及其复合物的成型加工中,就算成型设备与工艺条件属于常规,在外场作用下,人们依然没有彻底了解结构形态受到的影响,仅仅对一些粗略的定性关系有所认识,甚至有的推断还是错误的。以双螺杆挤出过程为例,人们仅对不同螺杆原件组合下外力场作用的不同会改变温度场,进而对产品产量、外观与内在性能产生影响这一规律有所了解。然而这一影响的具体方式却没有清楚的认识,业界研究人员也无法制定出定量的指导方案。在管材生产中,不管是落锤冲击不达标,还是纵向收缩产生波动,都没有搞清楚原因,也无法拿出改进方案,大部分情况下都是凭借经验进行处理。因此,现阶段很多成型设备与工艺控制的效果是否取得理想效果,我们依然难以准确判定。
一直以来,关于生产实践中的问题研究一直没有得到基础工作研究人员的关注。在成型设备与工艺技术的研究与开发中,相关规划也缺乏系统性。现阶段,我国塑料制品年产量超过了2200万吨,塑料机械工业取得了迅猛发展。然而在很多企业生产实践中,整个效率与质量依然有待提升,产生的能耗也没有得到有效控制。鉴于此,高分子材料成型加工将会成为未来高分子材料领域的研究重点,必须将侧重点放在高分子材料制品的研究上来,而不是过分的关注材料这一因素,只有如此,才能够提高高分子材料志制品质量。
三、高分子材料加工中形态控制的研究趋势
第一,基于常规的成型设备条件,聚合物及其复合物典型制品成型或型材生产在成型加工时,在设备与工艺条件改变的情况下,其形成的外场会有所差异,进而发生相应变化,例如塑化、结晶、赋型以及流动等,这些变化会改变制品形态、结构以及性能。
第二,极端的加工条件极端会改变聚合物及其复合物的形态结构变化规律,例如结晶结构、晶体大小等,在这类条件下,还需要尽可能对大尺寸高分子晶体的制备进行探究。
第三,在对新外场条件的分析、推断以及设定之下,通过对聚合物及其复合物结构形态与性能受到的影响研究,才能够围绕新的成型方法或具有特殊性能的高分子材料的制备进行探索,进而实现高分子材料性能的改善,并将节能性、经济性等方面的优势充分发挥出来。
四、结束语
总而言之,在未来工业领域的发展中,高分子材料的应用具有重要意义,而高分子材料加工中的形态控制则成为发展高分子技术的关键。作为相关研究人员,必须结合高分子材料加工中的形态控制研究与实践中存在的问题,采取相应的改进与优化对策,提高高分子加工整体水平,如此才能够从真正意义上推动我国高分子材料加工领域的进步。
参考文献:
[1]李忠明,马劲.加工过程中高分子材料形态控制的研究进展[J].中国科学基金,2004,18(3):154-157.
[2]李又兵,申开智.形态控制技术获取自增强制件研究[J].高分子材料科学与工程,2007,23(1):24-27.
关键词:功能高分子材料;双语教学;英语能力
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)30-0113-02
功能高分子是除了其力学性能外,还具有物质分离,光、电、磁、能量储存和转化,生物医用等特殊性能的材料,在航空航天、生物医药、新能源等高新科技领域有着重要的应用。《功能高分子材料》是我校高分子材料专业的一门专业选修课,主要任务是使学生掌握功能高分子的基础知识、设计方法、制备策略和应用,通过分类介绍这一领域的最新进展,让学生对功能高分子材料有一个比较全面的认识。为了响应国家教育部在双语教学上的战略部署,适应国际经济一体化进程,各个高校的高分子材料专业纷纷进行了双语教学探索,其中开展较多的是《高分子化学》、《高分子物理》等专业主干课程,通过这些课程的双语教学可以培养高分子材料方面的国际化专业人才,对我国高分子学科的发展、高分子材料工业的进步均具有非常重要的意义[1]。但是,我校属于地方性新建本科院校,高分子材料专业全面开展双语教学较为困难,特别是一些专业基础课开展双语教学并不合适,因此,将《功能高分子材料》作为试点,逐步推进双语教学[2]。
一、开展《功能高分子材料》双语教学的目的
通过选用优秀的外文原版教材、参考资料,配合双语教学过程,可以让本校高分子材料专业学生学习到国外优秀的“原汁原味”知识,接受不同教学观念的熏陶和融合[3]。在完成专业知识学习、提高英语应用能力的同时,领略国外教学提出、分析和解决问题的方式,提高专业思维能力,培养创新精神,使学生的知识结构和能力结构更加优化合理[4]。《功能高分子材料》双语教学一般安排在高分子材料专业的大三第二学期开展,对于这一阶段的学生,本专业有较大比例的学生开始准备考研,选择进一步深造。为了以后我们培养的毕业生能很好地开展科学研究,查阅英文学术期刊、数据库,在国际学术会议上与本领域的知名专家、教授进行学术交流等,积极开展《功能高分子材料》的双语教学无疑是重要的环节。另外,高分子材料相关工业在长三角地区发展迅速,外资企业云集,学生通过《功能高分子材料》双语课程,接触和掌握了相关专业术语,就能在就业过程中体现优势,争取机会。
二、双语教学与专业英语教学的关系
近年来,高校相继开设了双语课程,所以专业英语是否取消成为了焦点。我校高分子材料专业尚未以双语教学取代专业英语。我们在制定培养计划及专业课的教学大纲时,统筹考虑英语应用能力的培养,不只局限于专业英语和一两门双语课教学,而应将专业英语和专业课的双语教学结合起来,系统考虑专业知识教学任务和双语专业课的教学任务,合理分配相关知识点。专业英语学习内容主要涉及的是专业基础知识的部分内容,如高分子化学中的合成方法、高分子物理中的性能测试等,不涉及《功能高分子材料》的相关内容,而且上课主要以翻译为主。不过我们认为以双语教学代替专业英语是必然的趋势[5]。
三、英文能力对功能高分子材料双语教学的影响
双语教学的效果受到英语能力、专业知识、教学方式三个关键因素的影响,其中英语能力是基础因素。近年来,地方性新建本科院校的学生英语四、六级通过率也很高,但专业英语词汇积累量缺失,所以在双语课程学习的初期,往往觉得非常困难,甚至产生抵触情绪。因此,双语教学模式应当循序渐进,随着课程的进行逐步加大英语比例,使学生逐渐适应双语环境,消除排斥心理。另外,教师的英语水平也是双语教学的关键因素。担任双语教学的教师一般都具有扎实的专业知识,英语基础较好,但普遍存在英语口语水平不高的问题,这给双语教学的开展带来一定的障碍。因此,要求授课教师认真对待每一节课,在教学实践中使自己的口语得以提高,同时建议教材、板书采用全英文,但讲解以中文为主,否则极易将专业课上成外语课,影响学生对专业知识的理解和掌握。
四、《功能高分子材料》双语教学实践
1.教材与参考资料。双语教学必须选择合适的教材,目前国内《功能高分子材料》没有统一的双语教材,各个高校都是针对自己的专业特色选择相应的教材或者自编教材。由于原版英文教材在结构体系和侧重点等方面与我校高分子材料专业存在差异,我们在进行《功能高分子材料》双语教学过程中,对原版教材进行了适当的取舍,编制了与原版教材配套的英文参考书,并且每年对教材更新一次,及时反映学科的前沿信息。另外,由于学生对专业词汇比较陌生,为了让学生可以更好地预习,编制了相应的专业词汇表。所采用的英文原版教材课后无练习,因此也编制相应的英文课后练习。在编制过程中,考虑学生的实际情况,降低了习题难度,让学生能独立完成,增强对英文作业的兴趣和信心。
2.教学过程与考核。我们从专业词汇、英文文献、专题讲解、综合设计四个方面逐步开展《功能高分子材料》双语教学。采用多媒体课件进行授课,全英文电子课件不仅可以将文字直观地展示给学生,便于学生理解,在一定程度上弥补学生英语听力的不足,而且可以营造一种英语氛围,促使学生把专业知识和英语进行融合。而且每次上课把下节课的PPT发给学生,让学生预习新出现的专业词汇,扫清听课过程中所遇到的词汇障碍,可大大提高课堂效率。授课时,根据本专业学生实际情况,初期我们采用中文讲授,中后期逐渐过渡到英文讲授。不一味地追求英语在课堂讨论、课后作业等环节的覆盖率,不能为了实施双语教学而牺牲专业课的教学效果。原版英文教材采用演绎的方法安排教学内容,打破了条条框框的限制。提出问题,激发读者思考,再加以总结,从问题中得出相应的概念或原理。功能高分子材料涉及多门学科,内容广泛,双语教学难度大,只有发挥学生的主体意识,充分调动其积极性,互动起来,让学生主动参与教学过程,才能取得很好的教学效果。因此,我们引导学生转变思维模式,既强调教师的主导作用,又突出以学生为学习主体,主动理解和掌握知识。在教学中,促使师生相互作用,让教学过程成为双方主动介入的过程。例如,我们组织学生以小组形式参与讨论一类功能高分子材料的研究进展,鼓励学生用英文制作PPT和专题发言。对于期末考试,目前我们采用英文出题,中文回答,但鼓励英文答题并进行加分。
3.文献检索、计算机软件和学术讲座的辅助作用。了解先进功能高分子材料,需紧跟本领域前沿发展情况,而最新的研究成果基本都会以英文的形式出现在国际刊物、会议以及互联网上,查阅相关英文资料是获取这些最新信息的主要途径。因此,在不同的授课阶段,循序渐进布置一些与专业内容相关的文献检索,通过这些途径逐步培养学生的英文文献阅读能力,积累专业词汇。高分子材料专业经常使用专业软件进行绘制物质结构、书写化学反应方程、处理实验数据、分析测试图谱等工作。这些软件以英文版居多,涉及较多的专业词汇,让学生经常使用这些软件,可以无形中掌握大量专业词汇。另外,在课程中,我们邀请专业外教为学生进行高质量的英文学术讲座,使学生就学习到的知识与这些外教进行交流沟通,增强他们使用英语的信心。并可使部分本科生就自己出国留学的一些问题有所了解,消除他们在此方面的茫然,进而更大程度地提高学习专业英语的兴趣。
4.存在的问题。学生选修双语课程的积极性是开展双语教学的前提。目前,本校学生大范围地接受双语教学并不现实,这使得双语教学的推广非常被动。如何全面调动学生参与双语学习,是推动双语教学在本专业顺利开展急需解决的问题。
我们对每届学生做了调查问卷,根据结果我们不断完善《功能高分子材料》双语教学的各个环节。学校也加大了对双语教学的支持力度,从多方面给予教师扶持,定期组织交流与研讨,并增加了针对性的进修机会。通过近几年的《功能高分子材料》双语教学实践,发现在地方性新建本科院校开展像《功能高分子材料》这样的专业选修课的双语教学是提高教学质量的重要举措,对学生考研和就业都将产生积极影响。希望通过我们的努力,力争培养出具有一定专业英文能力的创新应用型人才,服务地方经济和国家的发展。
参考文献:
[1]刘应良,张丽,徐慎刚,石军,曹少魁.《高分子化学》双语教学的“战略性”思考[J].高分子通报,2013,(8):80-85.
[2]肖慧萍,曹家庆.结合《功能高分子》课程学习状况的问卷调查和考卷分析谈对双语教学的思考[J].江西化工,2006,(4):207-209.
[3]卢秀萍.“高分子粘合剂”双语课程的教学改革与实践[J].高分子通报,2008,(11):78-81.
关键词: 聚合物材料 成型加工 教学改革 课程建设
聚合物的成型加工是获取高分子材料制品、体现材料特性和开发新材料、新产品的重要手段,是高分子学科的重要组成部分,已形成独特的理论体系和技术方法[1]。因此,聚合物成型加工课程与高分子化学和高分子物理课程一起,成为高分子材料专业学生最重要的专业基础课程。为使学生以大工程的整体观来了解和掌握聚合物的成型加工,这门课程将涉及诸多内容,包括影响聚合物性能的物理化学因素、添加剂的分类和作用、配方设计方法、聚合物流变学、成型加工设备、成型工艺条件及控制等。如何使学生通过本课程的学习,具备高分子材料科学的专业知识和专业素养;培养学生解决实际问题和创新科研的能力,为以后从事高分子材料制品的研发、设计和生产工作奠定坚实的理论与实践基础,一直是广大高分子专业教师在教学过程中关注的重点[2]。这需要我们在多方面进行改革。
1.课堂教学改革
1.1明确培养目标,强化理论基础。
江苏大学高分子材料与工程专业成立于2002年,最初聚合物成型加工课程主要围绕塑料和橡胶的主要品种及其制品的生产原料、成型工艺、加工方法、材料、性能和产品质量控制等内容开展教学。我们在总结前几届毕业生从事工作的实际情况和企业对本专业毕业生在知识结构、能力要求的基础上,于2012年再次修订了本科生培养计划。本科院校需要培养既有一定理论基础,又具备较强实践能力的高素质应用型人才,这与高职类院校主要培养服务于生产一线的操作型、技能型人才不同。具体到聚合物成型加工这门与实践联系紧密的课程,在教学过程中,仍然要重视对基础理论知识的讲解,让学生不仅“知其然”,更“知其所以然”。除了高分子物理、高分子化学及聚合物流变学等聚合物成型加工的基础理论外,成型加工技术本身也存在系统的原理知识,不容忽视。教师在课程教学中应注意结合本学科前沿研究领域和最新研究动态、介绍重点科技成果,丰富和活化教学内容,使教学跟上时代的步伐,让学生能够掌握更多、更新的专业知识。
1.2围绕课程主线,精心组织教学内容。
在成型加工课程学习中,学生需要系统学习和掌握聚合物的加工流变性能、聚合物加工过程中的物理化学变化、助剂的作用及配方设计原理、各种物料的混合和分散机理,以及成型加工的设备和工艺等。与其他课程相比,聚合物成型加工的课程内容较为庞杂而分散,理论知识的半经验性较强,这给课堂教学带来了一定的困难。因此,抓住课程内容的主线,突出理论重点就显得尤为重要。
根据聚合物成型加工涉及的主体内容,本课程主要围绕“高分子材料—成型加工—制品性能”这条主线来组织教学内容。教学过程中,要着重讲明高分子材料的成型加工不是简单的工艺操作,高分子材料、成型加工、制品性能这三方面是相互关联的,制品的性能取决于高分子材料和成型加工方法及工艺的选择,而制品的性能又反过来指导聚合物的改性、应用及加工,优化成型工艺。因此,如何抓住教学主线,让学生全面掌握高分子材料、成型加工及制品性能各自特性及相互关系,使学生融会贯通、举一反三,是这门课程教学的重点。
在教学过程中,始终围绕教学主线,从高分子材料的结构与性能和材料的加工原理出发,以成型加工的工程观点为着眼点,剖析各种高分子材料成型加工的共性和区别,这样可以使原本较为分散的理论知识相对集中并系统化,让学生更为清楚地了解和掌握抽象概念和半经验理论所反映的实质问题。比如在讲解聚合物材料的压制成型时,分别介绍了适用的热固性塑料、橡胶及复合材料的特性及成型工艺性能,不同加工方法和成型工艺条件生产制品的特点及控制条件,并通过具体的例子说明了成型加工工艺与制品性能的相互关系。这样的讲解生动地体现了“高分子材料—成型加工—制品性能”这条高分子材料成型加工的主线,使教学内容由庞杂繁多变得简单易懂,通过理论结合实际,强化了学生的专业知识,教学效果良好。
1.3结合课程特征,采取灵活教学方法。
聚合物材料制品的性能既与聚合物本身的性质有关,同时又在很大程度上受到成型加工过程的影响。这其中不但涉及很多高分子化学和物理的理论问题,而且与生产实际密切相关。因此,本课程是一门理论性和实际性都很强的课程,如何在教学过程中将基础理论和生产实际结合起来,用理论知识来解释具体生产中遇到的实际问题,或以实验和实际生产中的具体例子来说明基础理论,使学生在学习过程中掌握专业知识,是本课程教学的核心问题。
因此,我们根据聚合物成型加工课程具有很强的综合性和实践性的特点,借助于江苏大学目前多数教室都安装了多媒体教学设备的优势,将图像、声音、动画和视频等各种多媒体信息引入到教学过程中,利用工厂和车间的场景图像、成型设备的实物照片、加工工艺过程的动画仿真模拟等信息对授课内容进行补充和深化。这样不但可以丰富课堂内容,增加信息量,而且可以大大加深学生对基础知识的理解和印象,使学生对成型加工原理和工艺获得理性和感性的双重认识,从而提高教学效率。
为进一步将课堂教学与实际生产结合起来,在教学中紧密贴近工厂实际,江苏大学高分子材料与工程专业专门安排了两门为期各两周的课程设计,即高分子材料生产工艺设计和聚合物反应工程及设备设计。让学生在专业教师的指导下,针对具体的通用或特种高分子材料(如聚乙烯、聚丙烯、聚氯乙烯、聚氨酯等)及其制品,设计出相关聚合物材料及其产品项目内容,包括原料品种、型号选择、工艺流程及设备确定、产品质量检测,以及厂房布局和规模,等等。通过课程设计,可以有效地让学生系统地掌握所学知识,并获得一定的灵活应用的能力,为后期的毕业设计乃至毕业后走上工作岗位打下基础。
2.实验实践教学改革
前面已经谈到,聚合物材料成型加工是一门实践性很强的专业课程,仅凭课堂教学是难以真正实现教学目标的,并且容易使学生学习时感觉枯燥,实际工作时不能学以致用。因此,这门课程的实验是不可缺少的。只有让学生在实验室和工厂中实地了解和直观认识成型设备、工艺控制和生产线管理,对聚合物成型加工的整个工艺流程进行整体和全面的认知,他们才有可能创造性地利用学习的理论知识来真正解决生产中遇到的具体问题[3]。
目前江苏大学高分子材料与工程专业建有约200m2的专业实验室,购置有注塑机、挤出成型机、高速混合机、平板硫化仪等成型加工设备,以及拉伸实验机、冲击实验仪、硬度仪、紫外老化仪、高低温实验箱等各种材料及制品性能检测仪器。利用这些仪器设备,我们围绕课程主线,将聚合物材料的制备、成型加工、结构表征及性能测试等方面有机地联系起来,开设了一系列的综合性实验。比如,在聚合物的注射模塑成型实验中,要求学生从原料的选择开始,分析原料的结构和性能特点,有针对性地设定成型加工工艺参数,并在注塑成型得到制品后,对其熔点、熔融指数、热变形温度及力学性能等进行表征和测试。通过对这些聚合物原料—成型加工工艺—制品性能数据之间关系的分析与总结,使学生形成科学研究的思路,掌握解决实际问题的方法。
此外,聚合物材料成型加工具有很强的工程应用性,需要学生建立起大工程的整体观。要达到这样的教学水平和目标,仅靠课堂的学习和实验室实验是不够的,还应该让学生到工厂、车间参观实践,实地了解成型设备、工艺控制及生产线管理等,使学生对工业化生产有具体、直观的感受。
针对这样的问题和现状,本专业积极与周边高分子材料企业加强联系和交流,目前已建成近10个实习实践基地,涉及聚合物成型加工领域的各个方面,包括模压发泡成型、压延成型、注射成型、挤出成型等。通过与这些企业的合作,学生可以现场实地对各种成型加工涉及的原料准备和处理、设备、工艺流程、质量控制等实际生产过程进行近距离的感受。在此基础上,组织学生针对成型过程中的某一感兴趣的内容,或参观实践中发现的具体问题进行资料查阅和文献调研,对涉及该内容和问题的基本原理和基础知识进行更深入的学习,在此基础上提出解决问题的思路和方案并验证。这样就使学生真正将基础理论与实际应用结合起来,掌握科研的方法,培养科学的思维,成为真正有创造力的人才。
参考文献:
[1]周达飞,唐颂超.高分子材料成型加工(第二版),北京:中国轻工业出版社,2006.
[2]李宝铭,张星,郑玉婴.高分子材料成型与加工课程建设初探,化工高等教育,2010,3:39-42.
[3]程丝,王新波.高分子材料专业聚合物加工实验的改进与探索,高校实验室工作研究,2009,2:50-51.
关键词 高分子材料与工程 工程实践 专业实习 生产实习
中图分类号:G642 文献标识码:A DOI:10.16400/ki.kjdkz.2016.09.025
Exploration and Practice on the Practice Mode of Polymer
Material and Engineering Specialty
LI Zhijun, YU Rentong, ZHAO Yinmei
(College of Materials and Chemical Engineering, Hai'nan University, Haikou, Hai'nan 570228)
Abstract Production practice is an important practice in Higher Education of engineering. Through the in-depth reform of the professional practice mode, the engineering practice ability of polymer materials and engineering specialty of Hainan University has been effectively strengthened, and the comprehensive quality has been improved.
Key words Polymer materials and Engineering; engineering practice; professional practice; production practice
近些年来,我国的工科高等教育获得了长足的进步。据教育部统计数据显示,工程科技类人才的培养规模已达到总体教育规模的1/3~1/2。然而,我国工科院校培养的工程师的整体水平与美国、德国和日本等发达国家甚至一些发展中国家都有很大差距。为了加快提高我国工科高等教育的质量,《国家中长期教育改革和发展规划纲要(2010-2020年)》明确指出要建立学校教育和实践锻炼相结合的人才培养体系。专业实习是高校课程体系中专业教学的必要环节,对于提高学生的工程实践与创新能力具有特殊的重要意义。海南大学高分子材料与工程专业始创于1958年,是海南省的特色优势专业。海南大学高分子材料与工程系对其高分子材料与工程专业本科生的专业实践教学模式不断进行探索与实践,为达到良好的实践育人的效果及培养高质量的高分子材料与工程专业的毕业生奠定了扎实的基础。
1 高分子材料与工程专业实习的必要性
高分子材料与工程学科的特点是理论与实践密切结合。1935年,Wallace H. Carothers通过己二胺和己二酸进行缩聚反应成功合成出聚酰胺66(PA66),有力地证明了高分子的存在,使人们信服于Staudinger的大分子理论,从而使得高分子科学真正建立起来。此后高分子材料迅速渗透入人们的衣食住行并在国民经济、社会发展和国家安全中承担着重要而不可或缺的作用;早在1994年,全球三大合成高分子材料的产量便达到1.4?04万吨,从体积上超过了钢铁。近年来,对高性能化、功能化、精细化、复合化、智能化材料的需求更给高分子学科提出了需要在实践上的创新与突破。实践的需要及实践中的发现推动了高分子科学的不断发展,而不断完善的高分子学科理论体系又对高分子行业的生产实践起到指导作用。可见,高分子学科的诞生、发展都深深扎根于实践的土壤,而专业实习的实践特性则为高等院校的高分子学科专业的发展提供了必要的支撑作用。
高等工科教育的目标是培养拥有扎实的基础知识与专业技能,同时具备较强工程实践能力的高级人才。专业实习促使学生将所学的专业知识与生产实际相结合,强化动手能力,更重要的是可以培养学生独立分析问题、解决问题的工程实践能力与创新能力。20世纪20年代,英国H.E. Palmer、A.S. Homby等人提出了情景教学法,专业实习属于情景教学的一种。传统的课堂教学以教师的讲述为主,有些内容难以达到生动形象的描述,难以通过直观、丰富多彩的形象材料激发学生的学习兴趣。通过专业实习,激发学生的学习热情,启发学生更深刻地理解所学的理论,进而实现知识与应用的融会贯通。如我校2011级高分子材料与工程专业的学生们在海南某塑料制件生产厂家进行专业实习时,针对其注塑车间生产的少量产品存在缺陷的实际问题,及时与企业的技术人员及车间负责人进行了交流与探讨,学生们根据所学专业知识并结合企业生产的实际情况对该问题进行了分析并提出若干条合理化解决问题的建议。在实习实践过程中,学生们的学习热情得到了激发,所学理论得以在实践中践行,学生们解决实际问题的能力得到了提升,同时也得到企业的技术负责人及车间负责人的认可与欣赏。
2 专业实习工作的有效推进
由于专业实习在学生综合培养中具有特殊的重要性,如何有效提升专业实习的成效就成为进一步推进我校高分子材料与工程专业发展而需要解决的首要问题。海南大学高分子材料与工程系的高分子材料与工程专业于2013年获批成为教育部“卓越工程师教育培养计划”试点专业,拥有热带岛屿资源先进材料教育部重点实验室、海南省高校高分子工艺实验室教学示范中心平台和海南天然橡胶产业集团股份有限公司牵头建设的海南省先进天然橡胶复合材料工程研究中心。在探索专业实习人才培养模式的过程中,我校高分子材料与工程系充分利用丰富的校内外实习基地资源,实习基地的软件和硬件建设齐头并进,初步建立了具有本专业特色的本科生实习模式,实习模式示意图如图1所示:
2.1 校内实习基地与校外实习基地建设齐头并进
对高校学生实习不具义务的现实使得一些单位不愿主动承担专业实习工作,这也是当前全国工科专业学生实习面临的普通难题。海南大学高分子材料与工程系通过多年的积累,已与海南省内近二十多家企业建立了良好的专业实习合作关系。尽管如此,由于学生在企业的单次实习时间仍然有限,所以作为企业实习的补充,充分利用校内实习基地既有的检测仪器及成型加工设备对学生进行一定学时的前期工程实训显得尤为重要。在校内实习基地,学生们能有充分的时间动手操作工业生产中常用到的设备,如挤出机、注塑机、开炼机、密炼机、平板硫化机等,也能熟练掌握红外光谱仪、热分析仪、偏光显微镜、电子拉力试验机等仪器的操作规程及对企业生产的诸多产品的结构与性能进行测试、表征及分析,能在遇到问题的时候方便地查阅资料并针对问题及时与指导教师进行交流。校内基地的实训为后续的校外基地实习奠定了坚实的基础,这也使得学生们能迅速适应校外基地的实习任务并得以进行更高层次的生产实际操作能力和创新能力的培养。
天生的市场敏感性使得企业对产品具有更完备的把握性,如果说校内基地的实训是沙盘演练,校外基地的实习则是实战演习。对于校外实习基地的选择我们遵循以下原则:(1)专业性强、生产规范并具备一定的生产规模;(2)有指导生产实习的技术实力及经历;(3)具有产学研合作的兴趣及能力;(4)企业内部及外部环境安全。高分子材料与工程系还借助多种渠道如专业教师与企业的技术合作、校友关系、橡胶及塑料行业相关协会等成功实现了与多家企业的专业实习对接并建立了稳定的签约实习基地。激烈的市场竞争、技术的更新换代以及对专业知识人员的渴求使得一些具有前瞻性的企业对学生的专业实习表现出强有力的支持,甚至海南省的一些中、小型塑料行业的企业也主动提出按技术工人待遇解决学生的食宿问题,公司的管理者也更愿意在学生的实习活动中发掘人才并培养人才。
2.2 夯实内功,深化软件建设
海南大学高分子材料与工程系与时俱进,在专业实习的软件建设上不仅对学生布置了贴切实习单位实际的新任务,而且对专业指导教师提出了更高的要求。作为专业实习实践层面上的补充,高分子材料与工程系引进了与实习内容相关的仿真软件,如从哈尔滨工业大学引进了塑料成型工艺软件和复合材料成型工艺软件,在指导教师的讲解下,学生们通过对仿真软件中成型加工原理、工艺及设备操作等的认知,再加上相关知识点的视频资料学习,学生能迅速能缩小理论与实际间的差距。
实习的整体效果很大程度上取决于准备工作的充分程度。专业指导教师由具有丰富的指导实习经验的老教师和有热情及责任感的青年教师组成,共同编写各实习点的实习学习手册,通过老教师的传帮带,青年教师明确了在学生实习过程中自己的责任和义务,掌握了实习企业的管理及生产特点,以及必须注意的一些关键环节问题。专业实习指导教师不但要熟悉《突发公共卫生事件应急条例》和《学生伤害事故处理办法》,还要制定师生都要严格执行的《师生实习期间管理办法》。另外,赴专业实习点前,学生务必在《专业实习安全知情书》上签字。
2.3 综合全面地进行双向考核及评价
现代社会对学生提出了更为全面的素质要求,如学习能力、动手能力、创新能力、人际交往能力、适应社会能力等等。海南大学高分子材料与工程系对学生的实习考核除了实习报告和开放式考试的固定形式外,还辅以其它形式多样的综合考察途径,如是否勤学好问,是否积极参与企业的科技创新研究及活动,是否能融入企业文化、乐意参与企业的文体活动等等。生动活泼的实习氛围是激发学生实习热情的“强心剂”,如举办有师生及企业相关人员共同参与的“假如我是一名车间主任”的模拟竞选演讲活动。学生们围绕“一个合格的车间主任所应具备的综合素质”进行阐述,不仅能站在我是企业人的角度给予实习单位在生产管理、技术践行及人员调配等方面提出合理化的建议中增强就业自信心,还能通过企业相关负责人的点评认识到自己需努力的方向。通过多形式的考核,专业指导教师与学生都能及时发现问题,从而有的放矢地进行改进与完善,进而达到提高学生综合素质的目的;同时,企业也能更深层次地考核需要引进的对位专业人才。另一方面,学生对课程的反馈与评价也有利于任课教师将课程改革推向深入。校教务处网上问卷调查表明同学们对该课程的满意率达到96.35%,线下问卷调查的典型反馈与评价如表1所示:
3 总结和展望
实践证明,我们对本专业的实习教学模式进行的探索能卓有成效地提高学生的工程实践能力及就业能力(2015年度该专业本科生一次性就业率达到93.24%),多年来反馈的信息表明,我校高分子材料与工程专业的毕业生普遍(下转第51页)(上接第49页)为用人单位看好,未来我们将积极借鉴国内外其它高校在实践教学方面的办学经验,不断完善和发展既符合我校实际又能适应国家经济、科技、社会发展对高素质人才的需求的高分子材料与工程专业实习模式。
海南省中西部高校提升综合实力工作资金项目(02M4 097001004002);海南省自然科学基金(514204);海南大学教育教学研究项目(hdjy1224)
参考文献
[1] 王芳,张红,陈丰秋.化学工程与工艺专业工程实践教学模式的探索与实践[J].化工高等教育,2012(2):76-78+85.
[2] 余晓,孔寒冰.能力导向的工程实践模式比较与评价[J].高等工程教育研究,2011(3):28-34.
[3] Jeffrey G.Dunn, Robert I.Kagi, David N.Phillips. Developing Professional Skills in a Third-Year Undergraduate Chemistry Course Offered in Western Australia[J].Journal of Chemistry Education,1998.75(10):1313-1316.
[4] Martina H.Stenzel, Christopher Barner-Kowollik. Polymer Science in Undergraduate Chemical Engineering and Industrial Chemistry Curricula: A Modular Approach[J].2006.83(10):1521-1530.