首页 > 文章中心 > 流体力学和化工原理

流体力学和化工原理

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇流体力学和化工原理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

流体力学和化工原理

流体力学和化工原理范文第1篇

关键词 计算流体力学;风机;数值模拟;发展前景

中图分类号TP31 文献标识码A 文章编号 1674-6708(2012)73-0209-01

0引言

随着国民经济的的不断进步和发展,风机的产生在国民经济的生产发展中起到很大的促进作用,风机将随着时代的发展,不断更新技术研究,从而能够更好的适应经济发展的需要,传统的风机设计,人们仅靠试验取得数据和经验公式,试验发现问题,改进设计。但由于试验研究方法受到各种条件的限制,很多模拟参数的测量受到很多不良因素的影响,给测量结果带来很大的困难,很容易降低风机数值的实用性,对风机数值测量的误差加大。而现阶段,由于科学技术的不断发展,利用商业CFD软件对风机的全三维流场进行模拟已越来越普遍,也就是利用计算流体力学对风机进行数值模拟的研究,给数值模拟工作带来了很大的便利,通过对计算结果进行了分析,模拟结果有助于理解风机内部的流动规律。

1 计算流体力学的概念分析

计算流体力学(Computational Fluid Dynamics,简称CFD)起源于20世纪60年代,当时的学科兴起跟计算机的技术发展有很大关系,随着人们对其不断的发展和研究,计算流体力学已经被广泛的应用,各种商品化的CFD通用性软件开始应用这类力学研究,同时更是对很多工业领域的生产发展起到很大的作用,计算流体力学以计算机为基础,利用数值的方法进行对流体力学各类问题的研究和模拟,主要在离散格式、湍流模型与网格生成等方面进行相对的数值试验、计算机模拟和分析研究,利用计算流体力学研发出得CFD技术,不仅极大的克服了传统流体力学中不完善的问题,而且还在应用领域得以全面的扩大,很多核能、化工、建筑等领域都有其力学的涉略。风机在以上领域也有其所用之处,为此,计算流体力学对风机的设计和研究也有很大的作用。

2 风机的数值模拟分析

众所周知,风机的国民经济发展的重要工具,其在对生产过程中发出的大量湿、热、工业粉尘、甚至有害气体和蒸汽都有着有效的防护和净化处理的作用,同时还能回收再利用,有效的对资源进行合理的分配整合,其中风机在纺织业的作用较为突出,络筒机的离心风机提供了吸纱的作用,不仅可以免去资源浪费,还能减少纺纱机的能源消耗,有效的提高纺纱质量,具有更多的促进作用。在工业发展中,风机从节能、降低噪声污染的角度来说,尤其更大的促进作用,因此在风机的设计原理上,更多的要注重高效率,但就目前市面上的风机产品,可谓参差不齐,很多规格和品种配套性极差,为此在工业应用上也受到了很大的影响,需要对已有的风机进行改造,数字模拟其实是以电子计算机为工具,把数学模型蕴藏的定量关系展示出来,利用计算流体力学对风机的复杂流动问题的模拟计算,通过数值离散求解流体运动方程,揭示风机流体机理和流动规律,从而研制出新的风机设计,使整个产品从开发到运用都能够达到更为经济和省时的作用。

3 基于计算流体力学的风机数值模拟的应用

利用计算流体力学来研究风机的数值模拟,这种方法对风机的设计提供更为依据原理,对风机的不断完善起到促进作用,其应用范围很广,例如:通过对地铁专用轴流风机的设计来说,这类风机主要应用在地铁车站和隧道区间内,因其受都流量大、压头高和功率大等特点的制约,试验成为了地铁轴流风机的设计检验的一般途径,但是却在人力物力上有极大的消耗,造成设计成本的浪费。为了克服这一弊端,采用计算流体力学的原理,对地铁轴流风机采用进行数值模拟,主要是对地铁轴流风机在不同转速和安装角度进行模拟,通过得出的最后结果进行指导设计方案,并将模拟结果与厂家的试验数据作了对比,酌情查处风机是否有需要改动之处,从而提高风机的设计效率,具有明显的应用价值和经济效益。

4结论

以上对计算流体力学的风机数值模拟的分析和研究,计算流体力学不仅是对风机的设计有很大的促进作用,更大的提高风机的设计效率,随着科学技术的进步,其作用会越来越大,充分了的利用计算机和数值数学的结合,对流体力学的各类问题进行数值试验、计算机模拟和分析研究,以解决实际问题。从而有助于人们对风机的构造设计进行深入了解和不断完善,依靠合理的计算来优化风机的设计技术,计算流体力学不仅是科学技术革新的依据,更是极大满足了国民经济发展的需要,计算流体力学进行对风机数值模拟的技术研究,更是对设计高效率的风机具有重大意义。

参考文献

[1]黄其柏.离心风机旋转频率噪声的理论与声辐射特性研究[D].西部大开发 科教先行与可持续发展——中国科协年学术年会文集,2009.

流体力学和化工原理范文第2篇

关键词:MATLAB;流体力学实验;雷诺实验

作者简介:郭炜(1975-),女,湖北荆州人,北京石油化工学院机械工程学院,讲师。(北京102617)刘锋(1974-),男,湖北荆州人,中国船级社质量认证公司体系认证部,助理工程师。(北京100006)

中图分类号:G642.423     文献标识码:A     文章编号:1007-0079(2012)14-0106-01

流体力学实验涉及的实验数据较多,数据处理工作量较大,兼有作图,有的要多次重复使用一个或几个公式计算。在传统的实验教学方式下,学生把主要时间花在烦琐的数据计算方面,从而不再关注实验中的现象,整个实验没有充分发挥出实验教学应有的效能,学生没有通过实验加深对理论的理解和运用理论思考实验中的现象。其次,实验作为对理论知识掌握程度的一种量度,在传统的实验教学形式下其反馈周期过长,学生只有在实验报告返回之后才能知道实验过程是否操作正确,不能在实验过程中考虑错误实验数据的问题出现在哪里。因此,对传统实验教学进行创新成为提高实践教学质量的有效方法。

MATLAB是美国Math Works公司于1984年推出的科学计算软件,它以矩阵的形式处理数据,将高性能的数值计算和可视化集成在一起,提供了大量的内置函数,从而广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和程序语言设计工作,使繁琐、枯燥的数值计算变成一种简单、直观的可视化操作过程,能较准确地标记样本数据点和绘出拟合曲线,已成为国际公认的最优秀的科技应用软件。其主要特点如下:语言简洁灵活,库函数丰富;运算符丰富,兼有结构化语句和面向对象编程特性;程序限制不严格,自由度大,可移植性好;图形功能强大,数据可视化简单;有功能强大的学科工具箱和功能工具箱,内部函数丰富;开放性强的源程序,用户易于构建自己的工具箱。

基于上述MATLAB的功能及其特点,在流体力学实验中引入MATLAB软件,以上问题不但可以得到解决,而且可以提高学生应用计算机处理数据的能力。根据流体力学实验的教学内容,结合MATLAB软件的特点与功能,我们在流体力学实验教学中进行了实验设计。以流体力学中的雷诺实验为例,简要介绍了MATLAB语言在数据输入、数值计算以及图形可视化方面的功能,展示了MATLAB在流体力学实验数据处理中简洁、快捷与直观等特点。

一、MATLAB在雷诺实验中的应用

在流体力学的教学中,为了使学生理解和掌握流体运动的两种主要状态――层流和紊流的判别,雷诺实验占有很重要的地位。

1.实验原理

实际流体的流动会呈现出两种不同的型态:层流和紊流。它们的区别在于:流动过程中流体层之间是否发生混掺现象。在紊流流动中存在随机变化的脉动量,而在层流流动中则没有。圆管中恒定流动的流态转化取决于雷诺数,d是圆管直径,v是断面平均流速,是流体的运动粘性系数。

圆管中定常流动的流态发生转化时对应的雷诺数称为临界雷诺数,又分为上临界雷诺数和下临界雷诺数。上临界雷诺数表示超过此雷诺数的流动必为紊流,它很不确定,跨越一个较大的取值范围。有实际意义的是下临界雷诺数,表示低于此雷诺数的流动必为层流,有确定的取值,圆管定常流动的下临界雷诺数取为Re=2300。

2.实验数据处理

在实验中把颜色水注入实验台管内,为了测量下临界雷诺数,将实验台调节阀打开,使管中呈完全紊流,再逐步关小调节阀使流量减小。当流量调节到使颜色水在全管刚呈现出一稳定直线时,即为下临界状态。整个实验过程,调节阀门,水流速度由大到小,紊流状态测2次水量和时间,下临界状态测1次水量和时间,层流状态测2次水量和时间,每个状态均用体积法测定流量。5次实验数据记录表如表1。

在雷诺的实验中,编写简单的MATLAB的* . m 文件,对实验数据进行处理,求出雷诺数,并做出雷诺数与流量的关系曲线图如图1所示。

二、讨论

从上面的程序可以看出,用MATLAB语言编写应用程序处理实验数据比C及Fortran更加简单易用,编程如同列算式一样,不易出错,且利于调试和修改,数据和处理结果可视化。因此可成为高效的处理流体力学实验数据的帮手。从实践效果看,利用MATLAB软件进行流体力学实验教学对于学生理解和掌握课程的基本原理内容是非常有帮助的,同时随着该软件计算功能的进一步增强和课程实验设计的深入开展,充分利用以MATLAB为代表的计算软件包进行专业课程的辅助实验教学不但提高了学生的学习积极性,加深了学生对实验原理的认识,而且十分有助于对专业课程课堂理论教学内容的理解和掌握,对学生熟悉和应用MATLAB软件也起到一定的积极作用。

参考文献:

[1]张铮,杨文平,石博强,等.MATLAB 程序设计与实例应用[M].北京:中国铁道出版社,2003.

[2]胡敏良.流体力学[M].武汉:武汉理工大学出版社,2003.

[3]曹桂萍,孙杰,潘亮,闫亭亭.雷诺实验的创新性教学[J].高师理科学刊,2011,31(2):110-112.

[4]乔善平,商树桓,阎虹.用计算机模拟雷诺实验的体会[J].实验室研究与探索,2002,21(2):39-40.

流体力学和化工原理范文第3篇

论文关键词:力学,土木工程,力的平衡,建筑力学

1 力学的基本内容

力学在高中物理中的概念定义为物体间的相互作用[1]。一个物体受到力的作用,一定有另外的物体施加这种作用,前者是受力物体,后者是施力物体。各种力可以用两种不同的方法来分类:一种是根据力的性质来分类的,如重力、弹力、摩擦力、分子力、电磁力等等;另一种是根据力的效果来分类的,如拉力、压力、支持力、动力、阻力等等。而力的合成、分解和平衡也是力学原理中的重要内容,贯穿于整个力学,是整个物理学学习的基础,也是高中学习的重点、难点和考点。力学原理来源于实际生活,故在实际应用中可以用力的方法简化问题,解决问题,突出力学的实际效果。

2 力学与建筑力学的联系

建筑力学是应用于土木工程中的基础理论,它由理论力学、材料力学和结构力学三大部分组成。理论力学主要研究物体受力的分析方法和物体在力的作用下的平衡问题[2];材料力学研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限[3];结构力学主要研究工程结构受力和传力的规律,以及如何进行结构优化[4]。不管是理论力学、材料力学还是结构力学,都是以力学为基础的,是力学的扩展应用。

但是,从另一方面看,力学的发展也离不开建筑工程的推动和促进。比如在建筑中出现了极端条件下的工程技术问题,这是无法用实验方法来直接测定。而建筑工程这个天然的实验环境就正好验证了这些力学的原理,并提出了新的力学问题,推动了理论的发展。

综上所述,力学原理是建筑力学的前身,建筑力学是在力学的基础上发展起来的,是对力学的进一步应用和扩展。反过来,建筑力学的发展又对力学原理进行了验证和补充。但是力学并不是建筑力学,它们是交叉学科,有可以共同解释的部分,但是也有互相不能解释的。例如,力学原理可以解释高温气体、气体激光器和核物理等领域的科学问题,而建筑力学解释不了。而用力学方法去解释固体的塑性、强度、损伤和断裂等方面,却遇到了极大的困难。

3 力学在土木工程实践中的应用实例

我国的石拱桥在全世界都闻名遐迩,那么简单石块堆砌的桥梁怎么保持得稳定,怎么实现得力的平衡,下面以一个简单的例子介绍力学原理在土木工程中的应用。假设石拱桥的简化图如图1所示,整个石拱桥由4块石块构成,左右对称结构,第1、4块石块直接和地基相连,第2、3石块分别与1、4石块相连,试用力的平衡原理对这一石拱桥进行分析。

首先,对第1石块进行受力分析,其受力分析图如图2所示。第1石块受3个作用力,分别为石块的重力G1,支座的反作用力F0和第2石块给它的反作用F21。用正交分解法进行力的计算。列方程式如下所示。

其次,对第2石块进行受力分析,其受力分析图如图3所示。水利工程论文第2石块亦受3个作用力,分别为石块的重力G2,第3块石块给它的反作用力F32和第1石块给它的反作用F12。用正交分解法进行力的计算。列方程式如下:

由于第3石块、第4石块和第1石块、第2石块是对称的,其受力分析是一样的,只不过方向相反,故不对这两石块进行再次分析。

由上例可以看出可以用力的平衡原理计算桥梁在静止状态下的内力值,通过分析每一石块的受力,计算出最大受力值,利用最大受力值作为可控力的范围,可以保证桥梁的安全性,当然这里没有考虑石拱桥承载汽车等荷载的情况,但是思路是一样的。这样根据力的平衡的计算,就可用于设计桥梁时选择截面尺寸,合适的建筑材料,以及怎么使桥梁经济化。

4 力学在建筑领域内的发展

力学在建筑工程中的发展,主要是与建筑专业的结合形成了多种建筑力学理论。力学和建筑理论的结合主要体现在以下几个方面。

第一,形成了建筑理论力学。

理论力学是一般力学各分支学科的基础,是研究物体机械运动基本规律的学科[2]。它通常分为3个部分:静力学、运动学与动力学。

静力学主要研究物体在力的作用下处于平衡的规律,以及如何建立各种力系的平衡条件[2]。静力学还研究力系的简化和物体受力分析的基本方法。这些都用到了力学原理中力的合成、分解和平衡,而且这些问题可以用平行四边形法则、三角形法则和正交分解法则进行计算。同时,也涉及到力学原理中的惯性和牛顿三定律等内容。而从动力学方面来讲,由于动力学研究的是物体机械运动与受力的关系。所以,动力学亦是以牛顿运动定律、万有引力定律为研究基础的,这恰恰也是力学原理的知识点。

第二,形成了建筑固体力学。

固体力学是力学中研究固体机械性质的学科,主要研究固体介质在外力、温度和形变的作用下的表现。一般包括材料力学、弹性力学、塑性力学等部分。固体力学与力学原理联系紧密,力学原理中的拉力、压力和阻力等是材料力学的理论基础,例如材料力学的主要研究内容之一是对杆件进行力学分析,杆中的内力计算涉及到力的合成、分解和平衡等内容。力学原理中的弹力结合建筑原理形成了新的学科 —— 弹性力学;而力学中的动力、摩擦力等延伸为固体力学中的动力学等等。随着计算机的飞速发展,分子动力学等微观模拟方法、复杂结构的仿真分析将更大规模更迅速地在固体力学和工程设计中得到应用和发展,这也涉及到了力学的基础知识。固体力学的上述发展,必将推动科学和工程技术的巨大进步。

第三,形成了建筑流体力学。

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。中国有大禹治水疏通江河的传说,秦朝李冰父子领导劳动人民修建了都江堰,至今还在发挥作用。大约与此同时,罗马人建成了大规模的供水管道系统,这些都是流体力学在建筑工程中成功应用的案例。流体力学的发展主要是为了尽可能多地开采地下石油和天然气,而化工流程的设计,很大程度上也归结为流体运动的计算问题,又或者是测定地下流水对建筑物的影响等。总之,流体力学对建筑工程的发展有着不可替代的作用。流体力学的主要内容,包括物体浮力定理和浮体稳定性在内的液体平衡理论,这也为流体静力学奠定了基础。而浮力和液体平衡理论也恰恰是力学原理的内容。

综上所述,力学原理是形成建筑理论的基础,它与建筑理论的结合是多方面的,从而形成了多种建筑力学。力学原理与建筑工程的其他学科也有交叉,如流体弹性力学、爆炸力学等等。这些不同的力学学科贯穿于整个土木工程的寿命期,从设计、施工、后期维修保养,直到最后的爆破消亡,都会运用到力学的原理去解决工程中的实际问题。

5 结语

建筑的发展和力学是有密切关系的,可以说没有可靠的力学支撑,就不能保证建筑结构的安全,就不能建造出那么多的优秀建筑物和构筑物。而力学原理与建筑力学的结合,也是发展现代高科技建筑的必然趋势,它们互相替代,互相促进,互相发展。相信有了力学的支撑,建筑工程会越走越远,会有越来越多优美坚固的建筑屹立在东方大陆上。

参考文献

[1] 张大昌.物理1[M].人民教育出版社,2010:50.

[2] 范钦珊,陈建平.理论力学[M].高等教育出版社,2010:1-7.

[3] 孙训方.材料力学[M].高等教育出版社,2009:1-3.

流体力学和化工原理范文第4篇

关键词:卓越计划;《石油化工过程及装备》;过程装备与控制工程;课程建设

“卓越工程师教育培养计划”(简称“卓越计划”)是贯彻落实《国家中长期教育改革和发展规划纲要(2010-2020年)》和《国家中长期人才发展规划纲要(2010-2020年)》的重大改革项目。东北石油大学在2011年被批准为教育部“卓越计划”第二批试点高校,其中过程装备与控制工程专业是首批入选专业。经过5年多的改革与实践,专业建立了以培养“石油石化行业卓越工程师”为目标的人才培养模式,并开展了与之相适应的专业改革和建设,取得了较好的效果。其中,《石油化工过程及装备》是过程装备与控制工程系根据“卓越工程师”培养要求,对该专业课程进行调整和整合出的一门专业主干课程。该课程既具有较强的理论性又紧贴工程实际,对学生毕业后从事设备专业及相关工作具有举足轻重的作用。本文从《石油化工过程及装备》的课程定位出发,对案例分析的运用、师资力量建设、突出实践教学地位以及开发仿真课件和网络平台、改革考核机制等措施进行探讨,以适应过程装备与控制工程“卓越人才”培养目标需要、适应市场需求。取得的经验和成果可为同类院校相近专业开展卓越工程师教育培养计划提供借鉴。

一、课程描述

《石油化工过程及装备》是研究石化设备工艺设计和结构设计的专业课。该课程整合过程装备流体力学、过程流体机械中流体力学基础部分和机器工作原理部分、化工原理,并加入化工过程反应动力学,融入石油石化特色,形成了一门集流体力学、反应动力学、质量传递动力学、传热动力学和各类型石油石化装备结构设计的综合性课程,分上下两册,计划学时为128学时。在装备专业卓越工程师教育体系中,该课程不仅是学习后续课程及在各个学科领域中进行理论研究和实践工作的必要基础,是卓越工程师教育实训环节之一――石油石化设备设计实训的先导课程,而且对学生综合能力的培养,提高学生专业素养以及整体的素质,为在未来的学习工作中提高科研能力和创新能力都起着重要的作用。因此,建设好《石油化工过程及装备》课程对于进一步提升本学科培养水平及影响力具有重要的意义。

二、课程目前存在的不足

《石油化工过程及装备》有坚实的资源基础和建设经验,但是要符合卓越工程师培养的要求,将单元设计捏合成有机的整体,并将各个资源合理搭配使用,仍然需要做大量的工作。

课程参考书目的建设。迫切需要在现有条件下,对《石油化工过程及装备》课程参考书目进行整合和革新,以满足卓越工程师培养计划要求,符合课程发展和专业发展的需要。

石油化工过程及装备实验课程体系的建设,对流体流动和化工单元操作的实验需要进行开发与整合,形成系列化的实验教学体系,辅助学生对课程教学内容的消化与吸收。

课程多媒体资源建设。需要在化工原理,过程流体机械,和过程装备流体力学基础上,整合多媒体资源,革新教学CAI课件。

建设适合本课程的实践教学条件和教学环境。在对课程内容进行整合和细化的基础上,对课程设计进行调整,以实现对学生整体观和大局观的培养。

三、课程改革与实施

根据“卓越工程师”培养计划要求,针对上述存在的不足,经过多次系内和课程改革团队会议讨论,研究和修改,已经完成了对课程的整合以及新课程教学大纲的建设工作。目前主要着力于课程教学内容细节的优化,并在石油化工过程与相应装备应用间确立明确的逻辑关系,以其实现课程内的良好过渡,为学生更好的吸收、消化石油化工过程中所涉及到的单元操作基础知识、计算分析过程和工程应用案例打下坚实基础。在以上思路下,围绕《石油化工过程及装备》课程改革有如下实施路径。

(一)提高案例分析在课程内容中的比重

《石油化工过程及装备》工艺计算部分公式繁多,为了方便学生学习并掌握此门课程,通过导入案例、案例实际应用和完成大作业等方式,在教学实施过程中引入典型案例的方法。一方面以案例为切入点,引出相关的原理、技术等;另一方面根据实际案例分析来讲解例题,使学生深入理解基本原理,更重要是让学生掌握如何利用所学理论知识去解决工程实际问题。例如“导热速率方程式”一讲当中可选择锅炉导热的案例,锅炉炉墙属于多层平壁导热,里面炉管属于圆筒壁的导热,再比如选择管道以黄夹克作保温,若已知管道内外侧的工业温度,可让同学们计算所需要多厚的黄夹克作保温等实例。

(二)加强实践环节,提高学生实践能力

《石油化工过程及装备》课程的实践教学主要体现在课程匹配实验、石油石化设备设计实训和本科毕业设计这3个环节。安排必修实验教学8学时。石油石化设备设计实训当中包含一周的典型设备工艺设计,学生运用给定的工艺参数进行工艺计算,确定设备的特性尺寸。这一周课程设计和毕业设计中某些题目涵盖了换热器工业计算、塔设备工艺计算以及搅拌釜工艺计算等。同时聘请大庆石化、大庆油田设计院工程师作为学生校外指导老师,举办多次科技讲座,为学生讲授设备工艺设计过程等专题,并到油田、石化等单位现场各科室全面参观学习。另外,吸收部分学生参与专业教师创新团队的科研项目,对学生进行产学研结合教育,使其具有相应理论知识和较强实践能力,使其成为为经济社会发展服务的专门人才。

(三)研制课程仿真实验课件、开发课程资源共享平台

在“卓越计划”实施的过程中,随着高校视频资源建设的逐步推进,如何使建设的资源得到充分利用成为探索的主题,而资源平台的建设发挥着至关重要的作用。因此,在课程建设中,制作与实验教学相匹配的仿真实验课件,构建课程资源库、开发课程资源共享平台,实现资源的网络化服务。学生可以在《石油化工过程及装备》实验课实际操作之前,在网络平台的CAI课件上进行学习操作方法、操作步骤,避免实际操作中出现问题。营造一种符合现场实际的仿真教学环境,辅助学生对课程教学内容的消化与吸收。平台运行后,不断革新技术、后期管理和维护具备可持续性,保证学习效果的积极性和长效性。

(四)建设一支适应“卓越工程师”培养要求的教师队伍

“卓越计划”必须以建设一支具有丰富实践经历、满足人才培养要求的高水平教师队伍才能保证“卓越计划”的顺利实施并取得预期成果。因此,师资队伍方面,课程负责人在本专业具备丰富的教学经验和现场实践经验,青年教师具备博士学位,课程团队积极从事教学改革与教学研究,并针对本课程制定教学改革规划,制定青年教师培养规划,具体措施如下。

1.青年教师的培训。鼓励课程组教师参与国内外专业课程教学研讨和访问交流,并定期把青年教师送到外院校、设计院等单位进修培训,积累现场工作经验,为学生讲授课程时以现场实际为导向,掌握本学科发展前景。

2.提高青年教师教学水平。教研室定期开展教学研究活动,省规划办、省高教学会立项时,鼓励青年教师积极参与立项,要求青年教师撰写教研论文。教研内容主要涉及本学科人才培养模式、课程体系设置等方面。通过学习和研讨,让相关教师具备坚实的过程设备设计、化工原理等专业知识,掌握所承担的课程在教学环节中的作用,以及与其他课程的衔接关系。

3.青年教师讲课比赛。积极推举教师参加各级教学新秀评选和各类赛课活动,以此促进教师的成熟和教学进步。通过以上措施加强师资队伍建设,从而更好地推动课程建设。

(五)考核机制的改革

本门课程采用多样的考核方式,考查学生分析问题和解决问题的能力,不再采用单一的闭卷考试模式。课程组成员将《石油化工过程及装备》考核分为闭卷考试占60%、平时成绩占40%,平时成绩由三部分组成:实践部分20%、大作业10%、研究性学习10%。闭卷考试类型包括选择填空题、分析题、计算题等。实践部分主要用于考查学生的实际操作能力、合作学习能力等,这部分内容由实验操作过程和实验报告质量确定。大作业是案例教学的一个重要环节,学生通过完成大作业,提高其独立思考能力与理论联系实际的能力。研究性学习主要是学生加入装备大学生创新团队、参与教师所研究的科研项目,培养学生创新能力。

流体力学和化工原理范文第5篇

    1.1核心课程体系构建的原则

    钦州学院开设化学工程与工艺专业有良好的机遇,同时也有多方面的挑战。要办好钦州学院化学工程与工艺专业,贯彻学院打造五大品牌专业的精神,需要从紧密联系北部湾区域经济建设方面着眼,努力办出具有石化特色的化学工程与工艺专业,重点建立一套紧密结合石化下游产业链、注重过程开发和工程实践能力培养的核心课程体系。在核心课程设置方面,确立夯实专业基础、强化工程意识、注重实验技能、拓宽专业口径,注重石化特色的原则。

    1.2核心课程体系的内容与相互关系

    所谓化工过程,主要包含分离过程和反应过程两种过程。与这两种过程紧密相关的一系列化工类课程共同构成了化工类课程的核心。按照“门数适宜,重点突出,相互支撑,形成一体”的要求,选择化工热力学、分离工程、传递原理、反应工程和化工工艺学等五门理论课以及与这五门理论课相关的化工专业实验课作为核心课程,建设具有石化特色化学工程与工艺专业的核心课程体系,全力打造化学工程与工艺这一品牌专业。在这五门理论课程中,分离工程和反应工程分别研究各类分离过程和反应过程,它们构成了化工过程课程最核心的部分。化工热力学是化工过程研究、开发和设计的理论基础,是化学工程的重要分支之一,与化学反应工程、分离工程关系密切。化工热力学的核心价值在于研究过程进行的方向和限度,为分离过程和反应过程提供相平衡、反应平衡数据,并对化工过程进行热力学分析[1]。反应工程是与工程实际紧密联系的课程之一,它广泛地将化工热力学、化学动力学、流体力学、传热、传质以及生产工艺、环境保护、经济学等反面的理论知识和经验综合于工业反应器的结构和操作参数的设计和优化中[2]。

    分离工程是化工专业基础课程,讲述的是如何将混合物进行分离与提纯的学科。作为专门研究分离方法的分离工程课程对学生工程素养的培养有很重要的作用。该课程阐明了化工分离过程的本质规律,重点研究分离方法的工业化途径,设备设计放大效应,最优分离路线的工业化,及最优操作条件。在选择具体分离方法时,不仅要考虑技术上的可行性、经济上的合理性,而且要考虑能耗、环保、设备放大和开发成本等诸多问题[3]。传递原理旨在研究化工动量、热量及质量(俗称三传)的传递现象,用一种统一的观点来处理三种传递现象,并研究动量、热量和质量传递之间的类似性,是研究分离机理、分离效率和宏观反应动力学的基础理论,同时也是反应器放大研究的基础理论之一。与化工热力学不同,传递原理是一门探讨传递速率的课程,它对过程开发、过程设计、生产操作、优化控制及过程机理研究都有重要的使用意义[4]。化工工艺学重在工艺过程的分析,即在特定条件下,进行分离过程、反应过程的比较选择、整合优化。化工工艺学是大学基础化学、化工热力学、化工动力学、反应工程、分离工程等专业基础可和专业课的综合运用。化工热力学和传递原理旨在加强专业基础,化工专业实验、反应工程和分离工程重在强化工程意识,化工工艺学拓展了专业适应面,可以突出石化特色。

    2核心课程体系的优化

    为了保障以上核心课程体系的顺利实施,建议结合钦州学院化学工程与工艺现有的教学计划,从下面几个方面作出适当的调整。

    2.1加强数理基础教学力度,适度拓展

    新世纪的工程人才必须有熟练应用数学、科学与工程等知识的能力,有进行设计、实验分析与数据处理的能力。在两年的教学实践中,学生普遍反映数理基础不够扎实,一些数学问题不知所云,比如热力学计算中要应用迭代法求解状态方程、精馏过程计算、反映工程中的偏微分方程求解等等,问题大都源于数学基础较薄弱。因此建议加开线性代数、运筹学、概率论与数理统计、数值计算、C程序语言、数学物理方法,流体力学等数理和计算机基础课程。多所兄弟院校也早就开设了这些基础课程。线性代数和运筹学的开设可以解决反应器设计过程的优化问题;概率论与数理统计是实验数据处理和理解反应工程中一些基本概念的基础;数值计算和C程序语言两门课程是工科学生重要的基础课程,加开这两门课程也是落实我校化学工程与工艺专业培养计划中对学生计算机水平的要求,对学生的就业能力的提高有好处;数学物理方法和流体力学是传递工程等课程的基础,加开这两门课程可以大大的提高学生工程数学能力,为就业和进一步深造打下更坚实的数理基础。考虑到Matlab在科学和工程计算领域的突出作用,建议开设Matlab在化工中的应用的相关课程[5]。化工热力学和化工原理是反应工程的基础,故将化工热力学和从第四、五学期调整至第三、四学期;化工原理和反应工程两门课程共同构成了化学工程最核心的部分课程,将化工原理从第四、五学期调整至第二、三学期,反应工程从第三学期调整至第五学期,也是考虑到化工原理是反应工程的基础。同时,将计算机模拟与仿真删去,将其中的知识分散到加开的MATLAB在化工中的应用和数值计算这两门课程中。从上表2中还可以看出,加开的课程中,突出了数理课程的基础,同时,适度的拓展经济和计算机相关的课程,也增加化工制图和电工学等实践性较强的课程,这对培养学生的工程实践能力是必不可少的。

    2.2整合化工专业实验

    为了整合学院教学资源,最大限度地利用现有的一切教学设备,建议从各门化学工程与工艺核心课程的专业实验中选出一些经典的、与石化行业紧密相关的进行重新编排,单独设置一门大学化工基础实验课程,分成三个学期展开教学。另外,考虑到传统的化工专业实验教材以单一验证实验为主,无法满足新世纪综合素质人才培养的要求,可将化工实验按由浅入深的原则划分成验证型实验、设计型实验和综合型实验三个层次。尽量精简验证型实验,增加设计型实验和综合型实验。可以从教师的一些科研项目中选出一部分让学生参与,将这些项目设计成设计型或综合型实验,这样,通过学生的亲身体验科研过程,培养了正确的科研习惯,为学生的就业和进一步的深造打下好的基础。