前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇流体的力学特性范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】人才培养模式 高层次人才 教学改革 转型
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2016)31-0233-01
一、引言
流体力学是一门基础性很强和应用性很广的学科,它涵盖自然科学的诸多领域。我校于1980年获得流体力学学科硕士授予权,是全军最早的流体力学硕士点,具有深厚的历史积淀和成果积累,承担了我校气象学、海洋学和环境工程等专业流体力学基础教学培训任务,和流体力学硕士生的培养任务。经过30多年的建设与发展,根据部队人才岗位需要,在人才培养中融合了大气、海洋、军事等多学科理论体系,具备了明显区别于国内流体力学学科的特色和优势,在国际或国内流体力学领域具有较大影响力。随着军队综合性大学训练任务和人才培养模式的根本转型,流体力学作为基础性突出、作用面广、应用性强的专业基础学科,对于培养相关专业高素质新型军事人才的重要性也日益突出。
二、军队转型条件下基础学科如何求发展
在军队改革的关键时期,我校传统的人才培养模式也面临着适应新的转变,教学方法也不断创新[1],探索有特色的流体力学人才培养新模式,对于提高学科的自身建设和促进人才培养,都具有十分重要的意义。
1.创新教学理念,注重信息化手段的应用。我们针对流体力学学科特点,在人才培养上提出的教学思路是:强化理论基础,注重专业应用,理论联系实际,达到学研结合的目标[2]。流体力学的特点是概念多、逻辑性强、理论上较难理解,但流体力学的很多现象却与生活和生产实际密切相关。在讲授的过程中要理论联系实际,同时将生活中的例子和他们熟悉的概念引入流体力学课堂,利用生活中的流体力学引导学生学会思考。我们以流体力学学科专业网站为平台,建立并正在完善网络教学应用系统,包括教学公告、课程标准、教学计划、学习方法、学习重点、参考资料和一系列微课等信息资源,学生可以在该网站上了解流体力学最新研究动向和研究热点问题,作为知识的拓展和延伸。同时拟进一步完善和学生讨论交流的相关板块,给学生营造一个全方位、直观的信息空间。教学与网络技术的完美结合是现代信息社会中教学手段的根本性改革。通过网络进行教与学的互动,不受空间和时间的限制,是一种社会性、全民性的学习形式,为加强学生的自主学习提供了现实可能。
2.教学方法改革,完善考核评价体系。借鉴国内外高水平院校在流体力学研究生课程教学上的先进做法和成功经验,以“学为主体”的教学理念指导教学方法改革,采用“小班化”教学模式,贯穿启发式、研讨式、研究式的教学方法,因材施教。在授课过程中一方面强化基础理论的教学,打牢基础;一方面渗透实践的环节、前沿的要求、方法的意识。完善考核评价体系,改变传统的单一题目解答的课程作业形式,布置计算模拟和实验报告等相关作业,实现学研结合。建立课程笔试和日常考核相结合的考核机制,注重过程考核,综合评定成绩。笔试成绩属于总结性评价,又称事后评价,信息来源是课程结束后的考试,主要功能是对教学质量作出评价。日常考核属于形成性评价,这是一种发展性评价,注重对学习过程的关注,以及评价结果对教学的反馈,信息来源主要是学生学习过程中的表现、参与和动手能力的考核。对教学内容、组织形式、考核方法、任务设计等课程教学模式实施整体改革,提高学员的科学素质和学习能力。
3.优化研究方向,紧贴部队需求。学科建设与研究生教育是研究型大学建设的重要任务,二者相辅相成[3]。依托流体力学学科,在前期的几个研究方向的基础上,我们紧贴部队的需求和发展,凝练和优化了几个具有鲜明的军事特色和优势的学科方向,形成了舰潜分层流体动力学与海洋环境适应性研究、湍流机理及数值模拟研究等稳定的特色研究方向。建成了军内领先国内先进的现代流体力学实验室,具有先进的实验仪器设备和关键技术,成为我军新型军事人才培养和高水平科技创新的重要实践基地。
4.探索教学、科研和部队实践相结合的培养模式。近几年,我们一直在思考基础学科如何在军校改革的中求机遇、促发展,如何发挥大作用。近两年我们制定了体现流体力学学科特色的最新研究生人才培养方案、包含专业课程标准12门和教学实施计划;以流体力学基础实践平台为依托,开展研究生课程的实践教学,激发研究生的自主创新意识;大力加强研究生课程和教材建设,完成《高等流体力学》研究生教材编写等工作。
在研究生培养计划中,要求研究生学员参加导师的科研项目和参加辅导授课等实践活动。近几年来,本学科培养的研究生学员都参与了导师的科研项目,部分学员还参与了教材编写工作。部分研究生还参加了南海海区海洋调查任务,紧贴部队需求,为以后尽快融入部队适应岗位需要打下基础。我们还积极与国内外高水平院校或科研院所联合培养研究生,为部队培养了许多适应一线岗位任职需求的高质量人才,在研究生创新实践能力方面取得了突出的成绩。毕业的研究生综合素质高,创新能力突出,适应部队能力强。
三、结论
研究生的培养是一个学科点生存和发展的基石,我校流体力学学科在研究生教育方面有着多年的经验,前几辈的老教授和专家为研究生的人才培养付出了毕生的心血,促进了基础学科的内涵建设,使科研层次上台阶、学科队伍创新能力增强、教学成果有效转化、学科文化精神得到传承。在军队院校人才战略工程转型的新形式下,我校传统的流体力学人才培养模式必须面临着适应新转变的改革,探索具有理工大学特色的流体力学人才培养新模式,不仅对于提高学科的自身建设,而且对于促进学科在军事科技创新和培养高质量符合当前军事斗争需要人才方面,都具有十分重要的意义。
参考文献:
[1]刘全忠,王洪杰,宫汝志:关于工程流体力学课程教学改革的探讨,《教育教学论坛》,2014年第1期:41-42.
[2]关晖,魏岗,曾文华:军队院校流体力学“小班化”教学模式改革的探索与总结,《南京航空航天大学学报》(社会科学版)2015年6月,Vol.17(1):116-119.
[3]齐昌政,郝书会,赵弘,汪志明:论学科建设与研究生教育的协调发展,《研究生教育研究》, 2014年第3期:66-70.
千百年来,流体力学以其广泛的适用性形成了独有的科技魅力,随着时代的不断发展,科技的不断进步,在一代又一代流体力学研究者的努力下,流体力学的世界也越发精彩。
执著之树必结黄金之果
邵传平,中国计量学院流体检测与仿真研究所研究员,多年来,由他负责的课题组主要从事钝体旋涡脱落流动控制研究。
所谓钝体旋涡脱落流动是指:当流体以一定速度流过固定的钝物体,如风掠过桥梁、电视塔、电厂冷却塔、高楼等等固体时,会在物体两侧交替地产生旋涡脱落,旋涡的交替脱落使物体表面的流体压力发生周期性变化,从而产生作用于物体的交变力。当流体动力的变化频率与物体结构的固有频率接近时,会发生共振现象,使结构遭到破坏,除此之外,旋涡脱落还会增大流体阻力,产生噪音。
那么,该如何消减旋涡脱落造成的负面影响呢?这既是海洋、土木、水利、电力、航空等领域关注的问题,也是邵传平及其课题组一直致力于研究的对象。
自1998年以来,邵传平课题组先后主持国家自然科学基金项目“法拉第波与钝体尾流稳定性研究”,“涡激振动控制与减阻减振”、“尾流控制机理与方法研究”,“流向振荡柱体尾流不稳定性的控制”等的研究,取得了一连串的科研成果。
在静止钝体旋涡脱落抑制方面,自1930年代以来,人们针对不同的工程问题,提出了不少控制方法,但是这些方法都有局限性,应用范围小。在1990年,Strykowski-Sreenivasan提出在二维钝体下游一定位置放置一个很小的圆柱,可以抑制钝体后面的旋涡脱落,有很好的减阻和减振效果。虽然在当时,这个四两拨千斤的方法在业界掀起了波澜,但是很快,就有研究表明这种方法只有在很低雷诺数(低于一百)流动情况下有效,在工程中缺少应用价值。
邵传平课题组的研究有望弥补这一不足,他们经过反复研究,选择用小窄条作为控制件,取代小圆柱,对圆柱及方柱、板(各种攻角)等钝体的旋涡脱落进行抑制实验,证明在雷诺数高至十万时对所有这些钝体都有很好的抑制效果,并对每种钝体流动情况找出了有效抑制的控制件位置区域,以便于工程应用。
在强迫振荡柱体绕流的旋涡脱落抑制方面,邵传平课题组在国内外尚无研究先例的情况下,另辟蹊径,分别采用窄条方法、尾部喷射方法和隔离板方法对高雷诺数流向振动柱体尾流进行抑制研究,取得重要进展。研究表明,尾部喷射对非锁频和每种锁频旋涡都有抑制效果,找出了每种旋涡的有效喷射速度范围;窄条对非锁频和两种锁频旋涡具有抑制效果,最高可减阻30%,减小脉动升力60%以上,找出了各种旋涡脱落下窄条的有效位置区;而隔离板方法对非锁频和一种锁频旋涡有效果,找出了隔离板的有效位置区。
旋涡抑制机理与旋涡脱落生成理论密切相关。国际上关于静止钝体旋涡脱落的生成,经历了背压吸引论,到剪切层相互作用论,再到绝对不稳定性和尾流整体失稳论,正从猜测到理论逐步深化;而关于振动柱体旋涡脱落的产生机制,目前还处于探索阶段。
对此,邵传平认为,振荡柱体绕流存在两种旋涡脱落产生机制,除了上述的绝对不稳定性机制外,还存在信号放大机制。他们研究了高雷诺数湍流尾流中涡粘性对扰动波信号的影响,定义了扰动波的涡粘系数,并用实验数据分别求出了未加控制和施加控制以后的涡粘系数在振动柱体湍流尾流中的分布情况。将涡粘系数代入扰动波发展方程(稳定性方程)并求解,得到的结果是:未加控制时扰动放大的频率区域很宽,产生旋涡脱落的机会很大;而控制以后扰动放大的频率区域很窄,产生旋涡脱落的机会很小,从而明确了振动柱体旋涡脱落的产生和抑制机理。
上述成果发表在AIAA Journal,Journal of Fluids and Structures, Journal of Fluids Engineering, Journal of Visualization, Acta Mechanica Sinica, 及《中国科学》,《力学学报》,《力学进展》等杂志上,得到国内外同行的认可。
百尺竿头须进步
十方世界是全身
以往取得的成绩非但没有使邵传平就此功成身退,这些成果反倒使他对自己的专业产生了更加浓厚的兴趣,甚至为了研究工作不受影响,2008年,他离开了中科院力学所,进入了具有新建低速风洞、低速水洞和较好配套实验仪器的的中国计量学院工作,主要从事流动控制与植物流体力学研究。最近,邵传平开展了植物空气动力学仿生方面的研究,主持国家自然科学基金项目“树叶气动特性研究”。
近年来,人们越来越意识到风灾是对树木危害最大的非人为因素,远大于森林火灾造成的损失,因此树木风灾以及树木空气动力学方面的研究在国际上越来越受到重视。为此,邵传平把握时代脉搏,申请了国家自然科学基金面上项目“树叶气动特性研究”,希望通过研究可以更加的深入的了解多种常见树叶气动特性(包括形状重构)及影响参数,寻找树叶气动失稳(突然变形、振动)的临界条件及产生原因。另一方面,也希望可以了解人造树叶的气动特性,探讨树叶气动仿生的条件。
拿到这一课题,邵传平靠的不是运气。翻开他的履历,硕士期间,他的研究方向为水动力学,从事具有自由表面的粘性绕流研究;博士期间的研究方向为风工程,在导师孙天风教授指导下,从事多钝体压力分布,尾流场测量以及流动显示研究;博士后期间他从事海洋工程与流动稳定性实验研究;在中科院力学所任副研究员期间,他从事生物流体力学、微重力流体力学,以及流动控制等方面的研究工作,先后完成3个国家自然科学基金面上项目:“法拉第波及钝体尾流不稳定性的实验与数值模拟”,“涡致振动控制方法研究”,“尾流控制机理与减阻减振”;2008年,进入中国计量学院后,他主要从事流动控制与植物流体力学研究,主持在研国家自然科学基金项目“流向振荡柱体尾流不稳定性的控制”。
这些经历,使他对这一项目研究所需要的风洞实验设备非常熟悉,积累了丰富的流体实验研究经验。项目组自2009年以来,已先期开展了树叶气动特性的风洞实验研究,取得一些新的发现,为本项目的顺利进行打下了良好基础,同时为本项目研究目标指定了方向。
在硬件设施方面,邵传平所在的中国计量学院全力支持,除标配的风洞实验设备如热线风速仪、PIV、激光多普勒测速仪,电子压力扫描阀之外,学院在今年还购买了数字图像相关位移测量仪,定做了一台测量树枝和树叶瞬时升阻力的六分力动态天平,为流动控制实验和树叶气动特性测试提供设备。同时,课题组还与一家公司合作研制了烟线发生器、氢气炮发生器,分别用于风洞和水洞的流动显示实验。
在数值模拟方面,中国计量学院流体研究所已订购最新型的曙光工作站,能够满足流固耦合计算需要。
一切准备就绪,科研活动也得以顺利展开。
本书的第1版很受欢迎,经过修订和扩充的第2版内容更加具有综合性。内容不仅包含当今比较热门研究领域的相关知识,如基本等离子体现象、库伦散射、电磁场中带电粒子漂移、等离子体磁场约束、等离子体的动力学和流体力学理论、等离子体波和不稳定性等,还包含一些新的研究主题,有涨落驱动等离子体传输、偏滤器(Divertor)物理、中性原子回旋和运输、杂质等离子体运输等,书的最后对未来聚变反应堆的发展进行了展望,讨论了其方案设计。
全书由19章组成:1.聚变、等离子体、库仑碰撞和电磁波理论的概念;2.带电粒子在电磁场中的各种运动形式;3.等离子体中带电粒子在磁场中受到的磁约束;4.等离子体动理论;5.等离子体流体理论;6.等离子体平衡的特性;7.等离子体的几种波动形式,如阿尔芬波、朗缪尔波、离子声波;8.等离子体的不稳定性;9.等离子体碰撞传输机制、经典输运形式、流体理论中的环形效应、多流体传输机制等;10.等离子体回旋的形式和特性;11.等离子体湍流输运的形式和特性;12.等离子体在加热和电流驱动下的特性;13.等离子体与物质的相互作用;14.偏滤器的模型和操作机制、热电电流和漂移物对偏滤器(Divertor)的影响;15.等离子体边缘的粒子输运、L模式和H模式的区别、热不稳定性和极向速度自旋加快的相关知识;16.中性粒子运输的基本原理、扩散理论、积分输运理论、碰撞概率方法、接触面电流零点法、离散纵坐标法和蒙特卡罗法;17.等离子体的能量平衡机制和聚变等离子体动力学的相关概念;18.等离子体的各种运行限制,包括实证密度限制、磁流体力学不稳定限制等;19.聚变反应堆和中子源的相关知识。
本书内容丰富,综合性强,且深入浅出,层次分明,可作为高层大气物理学、空间探测技术、空间物理学等专业的研究生教材,也可作为相关领域研究人员的参考书。
【关键词】燃气动力开关;热力系统;流体网络
The Exploration of Applying the Fluid Network Theory to Analyze the Control Feature of Gas-driven Switch
ZOU Hua-jie
(Changzhou vocational institute of mechatronic technology, Changzhou Jiangsu 213164,China)
【Abstract】The control feature of gas-driven switch has great relationship with its thermodynamic system. Therefore, the fluid network model of its thermodynamic system was established and simulated according to the fluid network theory. The fluid network of thermodynamic system in the model was compared to complex DC circuits,based on reasonable assumptions,and Kirchhoff law was introduced into the calculation of the fluid network model of thermodynamic system, that made the calculation of the fluid network model of thermodynamic system become simple and Accurate. The results showed that the similar simulation results are consistent with the numerical simulation method, which is verified that the model is reliable and the modeling method is feasible.
【Key words】Gas-driven Switch; Thermodynamic system; Fluid network; Control feature
0 绪论
如图1所示,文献1中所提出的燃气动力开关,设计了流阻自动调节结构,能自适应输入燃气的变化,保证活塞运动稳定,并且通过活塞运动到位,接通开关。针对燃气动力开关流体动力控制特性的热力系统,王晖从数值计算的角度出发,建立了该开关的复杂气体动力学数学模型,并通过计算求解方程组的方法对开关的流体动力控制特性进行了分析[1]。由于数值模拟法涉及到较多而又复杂的数学方程,会给数值计算过程带来一定的困难。本文拟应用流体网络理论,建立计算简洁、准确的燃气动力开关热力系统流体网络模型,为灵活进行各种工况下的开关流体动力控制特性分析打下基础。
图1 燃气动力开关结构示意图
流体网络理论是由研究管内流体传输与瞬变而发展起来的一门应用科学。它可以用来分析发生在工业动力装置、控制测量装置和生物医学工程等各种流体管路系统中功率和信息的传输过程, 以及由于扰动引起的各种流体瞬变现象。它主要涉及两个学科的内容:一是流体力学,二是电气网络和传输线理论[2]。
流体网络-电相似法遵循从流体力学方程出发,推导出流体网络中每个元件和管路与电气网络中相对应的等值数学模型,从而建立起流体网络的等效线路,最后用网络分析的方法得到各个节点上压力和流量的瞬态特性[3]。本文正式基于这一思想,建立燃气动力开关热力系统的等值数学模型,再应用基尔霍夫定律,建立该电路模型的数学模型,最后通过数学模型求解,对开关的流体动力控制特性进行仿真分析。且与数值计算法进行比较,验证模型可靠和建模方法可行。
1 流体网络原理与燃气动力开关等效模型
1.1 流体网络原理
流体动力控制问题可抽象概括为压力(P)、流量(Q)两个变量与流阻(R)、流容(C)、流感(L)三个参量之间的关系问题。弄清它们之间相互联系、相互制约的内在规律后,就能揭示流体动力控制系统所固有的、决定其性质的根本属性。这就为建立简洁、正确的数学模型打下了基础,也为把机、电、液系统统一起来进行综合研究提供了理论依据。
1.1.1 流阻
流阻与电子线路的电阻相似,它可以改变流体的流量,而在它两端产生压力降。在流体呈层流状态时,流阻的大小与两端的压降成正比,与流过的流量成反比,可表示为:
1.1.2 流容
在一个包含可压缩流的系统中,任何体积一定的容器都具有与它相联系的流体容量。容器内压力的变化会引起其中流体质量的变化,容器内流体质量随压力的升高而增加,即容器内将产生质量的积聚。
流容就可定义为流体质量变化与引起它变化的压力变化之比值,即:
1.1.3 流感
在流体网络中,任何发生高速瞬态流动的地方,由于流体惯性使流体质量加速或减速而引起压力变化。我们把流感定义为管段两端引起的压力变化与流量变化率之比,即:
1.2 燃气动力开关等效模型
2 等效电路模型求解
根据等效电路模型有关的系统对应参量[4],燃气动力开关等效电路模型如图3所示。
3 模型验证
对以上模型求解,将获得燃气动力开关工况下的压力分布数据。本文对高温环境工况下进行了计算,并将计算结果与文献1中的数据进行对比。
由于在活塞运动阶段输入的燃气压力随时间变化的曲线如图5所示。其数学表达式近似为P(t)=21+18t,经过拉氏变换后为P(s)= + ,即传递函数的输入为Xi(s)= + ,则其输出为Xo(s)= + 。最后我们将输出进行反拉氏变换即得到了输出XO(s)关于时间t的关系式xo(t)。
由于在活塞运动的整个过程中,R1、R2、C1、C2的值是不断变化的,从而系统的传递函数是不断变化的。在对输出XO(s)进行反拉氏变换时,可以考虑将R1、R2、C1、C2离散后得到某一时刻的特定值,分别分析这些时刻时的输出值xo(t),最后将分析得到的这些时刻时的输出值xo(t)综合起来即得到了活塞运动整个过程的系统输出xo(t),如图7所示(实线为计算值,虚线为文献1数据)。
图6 输出燃气压力曲线
由图6可知,在活塞运动的整个过程中,输出燃气压力介于6.4MPa和6.55MPa之间,其相对差为2.3%,这个值很小,说明输出的燃气压力变化很小,即在活塞运动的整个过程中,活塞底部受到的压力基本上没有变化,从而保证了活塞运动的稳定性,进而保证了开关接电的安全性和可靠性。计算结果与文献1数据相比,曲线趋势是一致的,数值相差0.3MPa以内,相对误差在5%内,验证了模型可靠和建模方法可行。
4 结论
本文应用热力系统流体网络原理,建立了燃气动力开关流体网络模型,并进行了仿真计算,与相关文献数据进行比较后的结果验证了本文所建立模型可靠和建模方法可行。
【参考文献】
[1]王晖,陈荷娟.弹底引信燃气动力保险开关的启动特性[J].系统仿真学报,2007,19(21):4871-4873.
[2]罗志昌.流体网络理论[M].北京:机械工业出版社,1988.
Abstract: Through the introduction of concept of aerodynamics and aerospace technology in modern aerodynamics, the future directions of development of modern aerodynamics and aerospace issues that may be obstacles are analyzed and the technical problems are researched and studied in-depth, which is helpful for our country carrying out deeper aerodynamic research and development.
关键词:空气动力学;航空航天;发展
Key words: aerodynamics; aeronautics and astronautics; development
中图分类号:[O355] 文献标识码:A文章编号:1006-4311(2010)36-0227-01
0引言
空气动力学是研究物体在同气体做相对运动时的气体流动规律、受力特性以及伴随发证的物理变化,是力学的一个分支。空气动力学是建立在流体力学的基础上,伴随喷气推进技术和航空工业也逐渐发展起来的一门学科。
今后十年或更长一些时间内,航空航天技术必将有更大发展,正在研制和有可能开始投入研制的航空航天飞行器将主要有:高机动性作战飞机、无人侦察作战飞机、武装直升机、大型高速民航机和军用运输机、可重复使用的高超声速空天飞行器、微型飞行器、地效飞行器、智能控制可变形体飞行器等。上述这些飞行器的研制,对空气动力学发展提出的许多具有挑战性的课题,它们一般都涉及高度非定常、非线性、包括物理/化学变化效应,跨越力、热、电磁多种学科,从微观到宏观多种尺度的时/空瞬变流场等,都有很大的难度。空气动力学涉及的多学科、多目标优化,已成为重要的研究领域。下面给出几个空气动力学未来发展需要重点研究的几项课题。
1湍流理论、涡结构、转披和分离机制及主动涡控制技术
流动现象大致可以分为层流和湍流两大类。对层流的研究已经达到了相当成熟的阶段,而对湍流的研究则一直进展缓慢。19世纪初人们认为湍流是一种完全不规则的随机运动,因此,雷诺首创用统计平均方法来描叙湍流运动。1937年泰勒和冯・卡门对湍流下过定义,认为湍流是一种不规则运动,它在流体流过固壁或相邻不同速度流体层相互流过时产生。后来欣策在此基础上予以补充,说明湍流的速度、压强、温度等量在时间与空间坐标中是随机变化的。从20世纪70年代初开始,很多人认为湍流并不是完全随机的运动,而是存在一种可以被检测和显示的拟序结构,也称大涡拟序结构。它的处理与随机的小涡结构不同,它在切变湍流的脉动生成和发展中起主导作用。但是人们对这个说法仍存在争议,有人认为这种大尺度结构不属于湍流的范畴,而有人认为这是湍流的一种表现形式。目前大多数人的观点是:湍流由各种大小和涡量的涡旋叠加而成,其中最大涡尺度与流动环境密切相关,最小涡尺度则由赫性确定;流体在运动过程中涡旋不断破碎、合并,流体质点轨迹不断变化;在某些情况下,流场做完全随机的运动,在另一些情况下,流场随机运动与拟序运动并存。
2气动光学与气动声学
气动光学研究空气动力流场中密度、温度、压力等参数的不均匀变化和脉动特性引起的光线偏折、相位变化等造成的图像偏移、抖动、模糊、强度衰减以及光波在大气中传输时产生的折射、散射、吸收等现象对光传播和光学成像影响。
气动光学对进攻性或防御性高速成像制导武器的目标自动跟踪和瞄准误差有重要影响;对空中侦察、照相的影响是引起图像模糊和定位误差;对激光武器的影响是引起瞄准误差以及靶的聚焦能量衰减,最终造成损伤、摧毁作用的减弱。
流场特性预示是气动光学效应的研究基础。目前,包括激波、剪切层、喷流、湍流、旋涡运动及其相互干扰作用的各种复杂流场变化以及气动加热形成的热辐射影响预示方法都有自己的局限性,必须进一步深人研究和开发满足不同需求的高速流场数值预示方法包括雷诺平均NS方程、大涡模拟和直接数值模拟方法的研究,开展化学非平衡/高温辐射流场的藕合计算方法研究。要大力发展湍流流场试验测试技术,精确测量流场中的各种湍流平均量和脉动量以及它们的时空分布特征。建立和发展高速流场中气动力/热耦合环境下的模拟验证设备和相应测试手段,进一步探索高温流场红外辐射机理及其试验预测方法。要进一步深人研究目标图像和光波传输特征等基本气动光学参数的理论计算及数值仿真及气动光学传输效应验证试验方法,开展流场控制原理、气体热辐射抑制原理及气动光学效应的校正工作。气动声学研究空气动力流场中喷流、激波、分离流、旋涡、边界层压力等脉动引起的噪声辐射及其他声学效应。气动噪声是决定飞行器结构疲劳动强度和仪器舱噪声振动环境的主要因素,对物体表面边界层转挨和阻力特性也有密切的联系。主要研究内容包括:湍流边界层压力脉动特性和噪声产生的机理,激波振荡、分离旋涡、波涡干扰、喷流及其与外部流场的相互作用,物体表面沟槽、空穴、突起物和部件间干扰产生气动噪声的机制、理论和数值预测以及试验研究方法,气动噪声的主动、被动控制技术,噪声抑制机制和降噪原理和方法研究等。
3MAV与低Re数流动
低Re数空气动力学是微型飞行器研制的基础。由于微型飞行器尺度小,飞行速度低,对应的R。数范围为102-104量级。在这样的低R。数下是层流主导的流动,对流动参数的变化非常敏感,在飞行过程中,微小的参数变化都可能使翼面上出现层流分离,形成很大的分离泡,而且一旦分离就很难再附,气动特性明显下降,最大升阻比一般只有3-5左右。在这种条件下,如果按照传统的气动理论设计出的微型飞行器,有效载荷能力非常小,很难满足任务要求。
人们从仿生学研究中得到启示,鸟类和昆虫在飞行过程中能够产生比现有理论预示大得多的有效升力,因此,探讨新的高升力机制成为微型飞行器研制中的关键气动力问题之一。因内外在这方面都开展了很多研究,对扑翼、旋翼和其他仿生飞行模式,进行了广泛的研究,揭示了高升力产生的新机制。微型飞行器面向实用化遇到的另一个重要问题是如何在较大的外界环境干扰(如强风、大气湍流等)下保持稳定飞行,常规的空气舵面控制对非常小尺度、低Re数情况,很难提供足够的控制力,看来,人们也许会从昆虫和鸟类翅膀在飞行中的柔性变形和对外界扰动的自适应外形变化中得到启示。此外,已有的分析计算结果已经表明,低Re数情况下,非定常效应起着非常明显的作用,可以在很大程度上改变流场特性。这些都是有待深入研究的问题。
参考文献: