首页 > 文章中心 > 土壤重金属污染分析

土壤重金属污染分析

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇土壤重金属污染分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

土壤重金属污染分析

土壤重金属污染分析范文第1篇

【关键词】土壤;重金属;污染源;等标污染负荷

一、问题的说明

现对A城市为例对土壤地质环境进行调查。将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10厘米深度)进行取样和编号,并用GPS记录采样点的位置。应用专门仪器测试分析,获得每个样本所含的多种(8种)重金属元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。列出采样点的位置、海拔高度及其所属功能区、8种主要重金属元素在采样点处的浓度、8种主要重金属元素的背景值。

我们引用2011年全国数学建模大赛附录中的A城市城区土壤重金属的调查数据,建立数学模型,研究地区重金属污染源的确定方法。

二、问题的求解方法

由于土壤重金属污染呈扩散传播,既污染源附近重金属富集程度最高,距污染源越远,元素浓度越低,所以,污染最严重的地点既是污染源,运用等标污染负荷法,通过对污染物和污染源进行标化计算,得出一个量化指标,使指标的值在0~1之间,采用这个共同的指标能够来衡量各个重金属污染源或污染物污染能力的大小。

等标污染负荷法模型的建立与求解:

(1)处理数据。

每相邻五个取样点通过求取平均值,合并成一个较大取样点(即每五平方公里一个取样点),求得64个合并取样点,用于分析数据。

(2)建立模型。

1)进行符号说明:

(将As、Cd、Cr、Cu、Hg、Ni、Pb、Zn分别记为元素一至元素八)

1、Aij―样本点i的第j种元素的污染物浓度

2、Bj―第j种元素的自然值;

3、aij―区域内第i个取样点第j种重金属元素的等标污染负荷量aij (即污染物浓度与背景值之比:aij=Aij/Bj)

4、bi―样本点i的等标污染负荷量(即该取样点所有的重金属污染物等标污染负荷量之和:bi=(i=1,2,3,…64)

5、c―城区内的等标污染负荷量(即区域内所有取样点的等标污染负荷量bi之和:c=)。

6、ai―城区内样本点i等标污染负荷量的比值(即每个取样点等标污染负荷量bi与区域内的总等标污染负荷量c之比:ai=(i=1,2,3…64)

7、di―i个等标污染负荷量的比值a按从小到大依次叠加

8、x―取样点横坐标

9、y―取样点纵坐标

10、h―取样点海拔

补充:将bi和c带入公式ai=可得

ai=(i=1,2,3…64)

2)整理数据带入相应公式可得每个样本点等标污染负荷量的比值a

3)将城区内的等标污染负荷之比值ai由大到小依次排列,并将比值从小到大依次叠加得到di

4)将di从小到大排列,我们将最高的8个di列入下表得到表5-1:

样本号i 8 4 6 9 5 52 37 2

di值 0.607 0.635 0.662 0.691 0.719 0.777 0.84 1

表5-1等标污染负荷量的比值a按从小到大依次叠加

由表可知,取样点2的叠加值di超过90%。

5)于是从附录中找到2号取样点的5个原始样本的数据。

分别为i=6、7、8、9、10号样本。

再在这5个点中找出污染最重的区域。

上面的研究是对64个点的分析,下面的研究只对这五个点进行研究即可,研究方法和原理与上面的相同。

6)通过计算可得:

第八点污染最为严重,可将第八点作为污染源。

所以,该城区污染源为点x=2383m,y=3692m,h=7.及其附近区域。

7)在样本点较少或者用计算机进行计算时,不必进行第一步的样本点合并,直接求出di超过90%的原始样本点,作为重点污染源。

三、方法模型的总结和扩展

伴随《环境影响评价法》、《中华人民共和国固体废物污染环境防治法》等法律的出台,国家对环境污染的防治力度大大增强。确定污染企业的位置,

对环境污染的治理,有着关键性的作用,等标污染负荷法计算简便,原理清晰易懂,能够准确地确定污染源的位置,为有关部门寻找重点污染企业,提供了简便有效的方法。

参考文献

[1]杨苏才,曾静静,王胜利,南忠仁.兰州市表层土壤 Cu、 Zn、 Pb 污染评价及成因分析.市场周刊・理论研究第,2004,11.

[2]吴邵华,周生路,潘贤章,赵其国.城市扩建过程对土壤重金属积累影响的定量分析.土壤学报,2011.5.

[3]刘丽琼,魏世江,江韬.三峡库区消落带土壤重金属分析特征及潜在风险评价.中国环境科学,2011,31(17):1204-1211.

[4]彭 胜,陈家军,王红旗.挥发性有机污染物在土壤中的运移机制与模型.土壤学报,第38 卷第3 期2001 年 8 月.

[5]王雄军,赖健青等.基于因子分析法研究太原市土壤重金属污染的主要来源.2008.17(2):671-676.

土壤重金属污染分析范文第2篇

关键词 土壤重金属;空间分布;污染源位置;克里格插值;因子分析;地质演变模式

中图分类号 TN914 文献标识码 A 文章编号 1673-9671-(2012)071-0188-02

随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等。现对某城市城区土壤地质环境进行调查,为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10厘米深度)进行取样、编号,并用GPS记录采样点的位置。由于在地表各重金属浓度的分布是相互影响的,并且受多种因素的多重影响,因此,我们应用因子分析法来研究重金属污染的主要原因。地质环境是指由岩石圈、水圈和大气圈组成的环境系统。各种元素在土壤中都是处于一个动态的循环过程。一是土壤本身含有一定的量,即土壤背景值,这一值是自然形成的;二是元素的输入是多途径、多层次的,如工业、生活污染等;三是输入的元素会有一部分随着河流冲刷、地表侵蚀、植物吸收等因素流失。

为了研究城市地质环境的演变模式,应该首先研究土壤中重金属含量的输入和输出,这与该地区的地表河流分布,地势分布,风向及降雨等因素有关,因此还需要测定各种因素的叠加所导致的元素输入及输出后的累积系数,这些可以通过分析该地区历年的重金属浓度分布数据来求出。结合各方面因素,我们建立了土壤重金属含量的动态变化模型:

QT=Q0K?T+QK-Z

1 土壤重金属空间分布及各功能区污染程度

由于测量得到的只是有限个采样点的重金属元素浓度值,不足以涵盖整个城市的重金属含量情况,因此,首先需要建立模型对已知数据进行空间插值,得到该城市内重金属元素含量的总体情况,在此基础上进一步求解出各种重金属元素的空间分布并绘制空间分布图,从而可以分析不同功能区内重金属的污染情况。

步骤1:各功能区的地形特征

运用Kriging插值对数据进行处理,并绘制出该城市的海拔高度图及各区域的地形特征图,从而得出各功能区所处的海拔范围,即居民区主要分布在海拔为0 m~20 m的区域,工业区、主干道区以及公园绿地区主要分布在海拔20 m~80 m范围内,而山区主要分布在海拔高于80 m的范围内。

步骤2:土壤重金属元素的描述性统计

根据已知各重金属的浓度数据求出土壤重金属元素浓度的数字特征,通过与该地区重金属元素的背景值比较,我们得出,该城市土壤中重金属的含量均超过了背景值。

步骤3:土壤重金属元素的空间分布

1)克里格(Kriging)插值模型原理。克里格(Kriging)插值法是地统计学中应用广泛的一种空间插值方法,也是精确度最高的一种方法。Kriging插值方法是在考虑了信息样品的形状、大小及其与待估块段相互间的空间分布位置等几何特征及品位的空间结构之后,为了达到线性、无偏和最小方差的估计,而对每一样品值分别赋予一定的权系数,最后进行加权平均来估计块段品位的方法。

2)运用Surfer8.0软件建立Kriging模型并绘制重金属空间分布图。我们在确定了克里格插值模型后,利用Surfer8.0软件绘制出土壤重金属元素的空间区域分布等值线图(见图1)(按顺序依次为As、Cd、Cr、Cu、Hg、Ni、Pb、Zn):

通过观察各等值线图可以得出,As、Cd及Pb元素分布较为广泛,其中,As和Cd元素主要分布在主干道区, Pb元素主要分布在工业区和主干道区,较为集中;Cr元素主要分布在工业区和主干道区,Cu元素主要分布在工业区,Hg元素主要分布在工业区,Ni和Pb元素在工业区的浓度值较高,Zn元素主要分布在工业区和主干道区。

步骤4:不同区域重金属元素的污染程度

利用单项污染指数法公式Pi=Ci/Si分析各区域的污染程度。其中,Pi为区域重金属i的单项污染指数;Ci为重金属i含量的实测值;Si为重金属i含量的评价起始值,以重金属i的背景值加上2倍标准偏差的结果表示。若Pi>1,则表示该区域受到污染。Pi>1的样点数在样点总数中所占的比例称为超标率,以超标率作为衡量污染程度的评价指标,并规定,超标率小于30%为轻微污染,大于30%且小于80%为中等污染,大于80%为重度污染。

2 重金属污染的主要原因分析

首先,对8种重金属元素进行相关分析,找到各因子间的相互关系,相关程度比较大的元素可能来自同一污染源;其次,要说明重金属污染的主要原因,需要找到影响8种重金属浓度的主要因素,可以应用多元地统计中的主成分分析法对各重金属元素进行主成分分析,选取前三个最主要的因子进行因子分析,从而得到影响各重金属元素浓度分布的主要因子,即重金属污染的主要原因。

土壤重金属污染分析范文第3篇

关键词:贵州麦西河;重金属;污染特征;生态危害

中图分类号:X508;X825 文献标识码:A 文章编号:0439-8114(2012)20-4485-06

3 结论

1)从富集系数来看,麦西河重金属的污染程度变化趋势为Cd>Hg>Zn>Pb>Cu>Cr>As,且Zn、Pb、Cu和Hg最高值均出现于河道沉积物;Cr、As和Cd最高值出现在河岸水陆交错带土壤;各断面重金属含量分布呈集散状态,各点污染在空间梯度上向其四周呈辐射状递减,其分布特征与流域工农业布局密切相关。

2)相关分析表明,麦西河重金属Pb、Cr、Cu、Zn、As呈现相近的来源特征,Cd、Hg的主要来源可能与其他几种重金属不同。

3)研究区河道沉积物及土壤重金属污染的潜在生态危害系数分析显示,除Cd、Hg存在极强、很强、强及中等生态危害外,其余重金属属于轻微生态危害范畴。重金属的生态危害程度为Cd>Hg>Pb>Cu>As>Zn>Cr。

4)重金属的综合潜在生态危害指数结果,麦西河多数断面重金属存在极强或很强生态危害,其余断面存在中等生态危害,不同断面重金属的生态危害程度为富宏煤矿>鱼塘>翁贡村>供电厂>三山集团>将军碑>大石桥>红卫桥>白岩脚。

参考文献:

[1] OLIVER M A. Soil and human health: a review [J]. The European Journal of Soil Science, 1997,48(4):573-592.

[2] ABRAHAMS P W. Soils: their implications to human health[J]. The Science of The Total Environment,2002,291(1-3):1-32.

[3] LI X D, LEE S L, WONG S C, et al. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach [J].Environmental Pollution,2004,129(1):113-124.

[4] WANG X L, TAO S, XING B S, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish[J]. Science of the Total Environment, 2005,350(1-3):28-37.

[5] HOGERVORST J, PLUSQUIN M, VANGRONSVELD J, et al. House dust as possible route of environmental exposure to cadmium and lead in thegeneral population [J]. Environmental Research,2007,103(1):30-37.

[6] 青长乐,牟树森.抑制土壤汞进入陆生食物链[J].环境科学学报,1995,15(2):148-155.

[7] ROGIVAL D, SCHEIRS J, BLUST R, et al. Transfer and accumulation of metals in a soil-diet-wood mouse food chain along a metal pollution gradient [J]. Environmental Pollution,2007,145(2):516-528.

[8] HAMMERSCHMIDT C R, FITZGERALD W F. Methyl mercury in freshwater fish linked to atmospheric mercury deposition [J]. Environmental Science and Technology,2006,40(24):7764-7770.

[9] 程 岩,刘 月,李富春,等.鸭绿江口及毗邻浅海沉积物重金属富集特征与潜在生态风险比较[J]. 环境科学研究,2011,24(5):516-525.

[10] OLIVA S R, ESPINOSA A J F. Monitoring of heavy metals in top soils, atmospheric particles and plant leaves to identify possible contamination sources[J]. Microchemical Journal, 2007,86(1):131-139.

[11] 张晓晶,李畅游,张 生,等. 呼伦湖沉积物重金属分布特征及生态风险评价[J]. 农业环境科学学报,2010,29(1):157-162.

[12] 郑志侠,潘成荣,丁 凡,等.巢湖表层沉积物中重金属的分布及污染评价[J].农业环境科学学报,2011,30(1):161-165.

[13] 张 雷,秦延文,郑丙辉,等.环渤海典型海域潮间带沉积物中重金属分布特征及污染评价[J].环境科学学报,2011,31(8):1666-1684.

[14] H?魡KANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research,1980, 14:975-1001.

[15] 弓晓峰,陈春丽,周文斌,等.鄱阳湖底泥中重金属污染现状评价[J]. 环境科学,2006,27(4):732-736.

[16] PEKEY H,KARAKAS D,AYBERK S,et al. Ecological risk assessment using trace elements from surface sediments of Northeastern Marmara Sea in Turkey[J]. Marine Pollution Bulletin, 2004,48:946-953.

[17] 乔 俊,邵德智,罗水明,等.天津滨海新区黑潴河沉积物中重金属污染特征及地区性重金属污染指标选择[J]. 环境科学研究,2010,23(11):1343-1350.

[18] 邓保乐,祝凌燕,刘 慢,等.太湖和辽河沉积物重金属质量基准及生态风险评估[J]. 环境科学研究,2011,24(1):33-42.

[19] 刘文新,栾兆坤,汤鸿霄.乐安江沉积物中金属污染的潜在生态风险评价[J].生态学报,1999,19(2):206-211.

[20] 蒋增杰,方建光,张继红,等.桑沟湾沉积物重金属含量分布及潜在生态危害评价[J].农业环境科学学报,2008,27(1):301-305.

[21] 王 济.贵阳市表层土壤中的重金属[M].贵阳:贵州人民出版社,2006.170-173.

[22] 刘晓辉,吕宪国,刘惠清.沟谷地不同植被下土壤重金属纵向分异研究[J]. 环境科学,2007,28(12):2766-2770.

[23] PETERJOHN W T, CORRELL D L. Nutrient dynamics in all agricultural watershed: observations on the role of a riparian forest [J]. Ecology,1984,65(5):1466-1475.

[24] 王 新,吴燕玉. 不同作物对重金属复合污染物吸收特征的研究[J].农业环境保护, 1998,17(5):193-196.

[25] 阮心玲,张甘霖,赵玉国,等. 基于高密度采样的土壤重金属分布特征及迁移速率[J]. 环境科学,2006,27(5):1020-1025.

[26] KASHEM M A, SINGH B R, KAWAI S. Mobility an d distribution of cadmium, nickel and zinc in contaminated soil profiles from Bangladesh[J]. Nutrient Cycling in Agro-ecosystems,2007,77(2):187-198.

[27] 吴光红,苏睿先,李万庆,等.大沽排污河污灌区土壤重金属富集特征和来源分析[J].环境科学,2008,29(6):1693-1698.

[28] 柴世伟,温琰茂,张亚雷,等.广州市郊区农业土壤重金属含量特征[J].中国环境科学,2003,23(6):592-596.

[29] BILOS C, COLOMBO J C, SKORUPKA C N,et al. Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina [J]. Environmental Pollution,2001, 111(1):149-158.

[30] YOO J I, KIM K H, JANG H N, et al. Emission characteristics of particulate matter and heavy metals from small incinerators and boilers[J]. Atmospheric Environment,2002,36(32):5057-5066.

[31] 黎莉莉,张 晟,刘景红.等.三峡库区消落区土壤重金属污染调查与评价[J].水土保持学报,2005,19(4):127-130.

[32] 魏复盛.中国土壤元素背景值[M].第二版. 北京:中国环境科学出版社,1990.87-91.

[33] 胡国成,许木启,许振成.等.府河-白洋淀沉积物中重金属污染特征及潜在风险评价[J].农业环境科学学报,2011,30(1):146-153.

土壤重金属污染分析范文第4篇

【关键词】土壤重金属污染 特点 评价方法 危害与治理

重金属具有不易分解、易积聚的特点。如何科学地对土壤重金属污染进行评价,是污染治理的重要前提,以下就土壤重金属的污染及其评价方法进行分析。

一、土壤重金属污染的成因及特点

土壤是人类社会赖以存在和发展的根本前提,是最重要的基础资源。随着近现代工业的飞速发展,土壤中沉积了越来越多的废弃污染物。工业生产、居民生活垃圾的不合理处置以及矿产开采等,都会带来土壤重金属污染。从化学理论角度来讲,98%以上的金属都属于重金属,从环境保护学领域来讲,土壤重金属污染中的重金属主要包括汞、铅、锌、砷和镍等。

1、土壤重金属污染的成因。(1)自然原因。土壤重金属的形成不是单方面作用的结果,而是受多方面因素影响,在不同时期,其主要影响因素又不同。土壤形成初始时期,其重金属含量受成土母质的影响较大,母质中的重金属含量及组成直接决定了土壤重金属的值。随着土壤的发育,母质对其重金属值的影响逐渐减弱。与此同时,生物残落物的影响逐渐增强,受生物个体差异影响,其残落物也呈现出多样化的特点,对土壤重金属组成的影响程度也各不相同。大气沉降,如火山爆发、森林火灾等可能使许多重金属漂浮于空中,其中一些被植物叶片吸收,进而被微生物分解进入土壤,从而改变土壤的重金属含量与构成。(2)人为原因。研究人员对近30年的土壤重金属污染原因进行统计,分析发现随着工业化程度的不断加深,人类活动已经逐渐上升成为土壤重金属污染的主要来源。具体来讲,人类活动又突出表现在以下几个方面:首先废气、烟尘等大气污染。城市化进程的加快在反映国民物质生活水平提升的同时也带来一系列环境问题,城市交通、工业生产等向大气排放大量废气、烟尘,造成大气污染,通过大气沉降,这些物质进入土壤,造成土壤重金属污染。经调查研究发现,工矿生产集中区域、城市道路、铁路周围,土壤重金属污染往往格外严重。其次化肥农药在农业生产中的使用。为了缩短农作物生长周期,现代农业生产常会选择使用化肥农药,大量化肥与农药的使用在带来生产效益的同时,也将其中所含的重金属物质带入了农作物与土壤,造成土壤重金属污染,影响人体健康。再次水体污染。受水资源分布不均因素影响,在部分地区,农田灌溉需要引入工业废水和生活污水,这些未经合理处置的污水进入到农田,造成土壤重金属污染,由于污染水体中含有大量重金属物质,通过污水灌溉产生的土壤重金属危害破坏性更大,极易造成循环性水土污染。最后其他活动。含重金属的工业废弃物,城市居民生活垃圾的堆放,金属矿山酸性废水的排放等也会造成土壤的重金属污染。

2、土壤重金属污染的特点。依据化学金属元素相关理论,重金属性质稳定,极难被微生物降解,一旦进入土壤造成重金属污染,势必对农作物的品质和产量产生较大影响,加之其潜伏周期长,通过食物链的“生物富集效应”严重影响动物和人体的健康。有研究表明,低浓度的汞在小麦萌发初期能起到促进生长作用,但随着时间的延长,最终表现为抑制作用;砷有剧毒,可致癌;镉会危害人体的心脑血管。归纳起来,重金属污染有以下几个特点:(1)潜伏周期长,污染具有隐蔽性;(2)性质稳定,污染具有难降解性;(3)相互作用,污染具有协同性、扩散性。因此,重金属污染又有“化学定时炸弹”之称。

三、土壤重金属污染的评价方法

1、单因子指数法。借助综合指数法,可以对受测区域的重金属污染情况进行分级,指出土壤中污染最大的因素,但无法判定出不同元素对土壤污染的影响差别。根据这一方法计算出来的污染指数只能反映各种重金属元素对土壤的污染程度,而无法精确反映污染的质变特征。

2、污染负荷指数法。该指数是由评价区域所包含的主要重金属元素构成,它能够直观地反映各个重金属对污染的贡献程度,以及金属在时间,空间上的变化趋势.由Tomlinson等人提出污染负荷指数的同时提出了污染负荷指数的等级划分标准和指数与污染程度之间的关系,通过计算得打各重金属的污染负荷指数及可以得到各个功能区和该市的污染程度.

3、潜在生态危害指数分析。重金属元素是具有潜在危害的重要污染物,潜在生态危害指数法作为土壤重金属污染评价的方法之一,它不仅考虑土壤重金属含量,还将重金属的生态效应、环境效应与毒理学联系在一起,是土壤重金属评价领域广泛应用的科学方法

4、GIS技术在土壤重金属污染评价中的运用。GIS是由计算机硬件、软件及不同方法组成的系统,通过该系统,能够实现空间数据的采集、管理、处理、分析与建模,以解决复杂的规划和管理类问题。通过GIS技术,将不同类型的数据进行处理变换,根据客观需求对其进行空间分析和统计,最终建立各种应用模型,以便为研究决策提供依据。在对土壤重金属污染进行研究时,常利用GIS 技术的计算与图形显示功能,对受测区域指定采样点进行插值分析,实现土壤图数字化,建立空间与属性数据库,最终绘出污染物空间分布图,为土壤污染治理提供参考依据。

三、重金属污染土壤的危害与治理

土壤是人类赖以生存的最基本的自然资源之一,但现阶段严重的土壤污染,通过多种途径直接或间接地威胁人类安全和健康,开展城市环境质量评价,日益成为人类关注的焦点。

当土壤中的重金属含量达到一定程度,不仅会导致土壤污染、农业生产收益下降,通过径流,还会对水体(地表水、地下水)产生淋失作用,污染水资源、破坏水文环境;借助大气沉降,极易形成大气污染与水污染、土壤污染的“死循环”,进而影响人体健康。

根据重金属污染的隐蔽性、不可逆性及长期性等特点,与大气污染、水污染等环境问题相比,土壤污染的治理难度更大。现行的重金属污染土壤治理主要有生物法、化学法、工程治理法等方法,就目前科学技术发展形势来看,在治理方案设计上尚未形成统一标准,在实际操作中,不同的地理环境在方法的选用上存在区别,使用的技术也多种多样。从总体上来讲,治理污染土壤首先应查明污染成因,以《土壤环境监测技术规范》为指导,对污染区域进行实地分层采样调查,一般将受污染区域分为“污染源区”、“保护区”和“超标污染区”三个区域。无论采用何种方式,在对土壤污染进行治理时,应注意因地制宜,结合受污染区域的土质情况、土地使用性质与功能、重金属污染物含量与构成等特点,对治理效果、时间、经费等作出合理预期和科学规划,选择最佳方案。

结束语

随着社会发展,各行各业对重金属资源的需求与日俱增,与此同时,由生产而产生的重金属废弃物也逐渐增多,这些未能及时处理的废弃物作用于土壤,一旦其重金属含量超标,就会对土壤造成严重污染,进而破坏生态平衡。

参考文献:

[1]范拴喜等.土壤重金属污染评价方法进展[J].中国农学通报,2010

土壤重金属污染分析范文第5篇

关键词:土壤;重金属;污染;修复技术

中图分类号:X53 文献标识码:A DOI:10.11974/nyyjs.20161033020

1 土壤重金属污染分析

造成土壤重金属污染严重化的主要原因就是人类活动的影响。土壤重金属污染主要来源是工业、农业以及城市生活垃圾等。特别是工业污染影响最为严重,产生的三废是主要的污染源。都会间接或者直接的排放到土壤中,对土壤成分的影响最为直接。城市汽车尾气等也会通过其他途径在土壤中得到释放,融合到土壤中改变其成分。一些农业生产活动将使用污水,或者是含农药成分较高的水源。长期使用以及堆砌垃圾也会提升土壤重金属含量。一些重金属含量较高的生活用品,例如温度计、电池等随意丢弃,能够加重对土壤的重金属污染。对环境资源的破坏也会使土壤成分发生改变。土壤重金属污染问题已经成为影响国民经济水平发展和人们生活质量提升的最为重要的因素。

2 土壤修复技术

2.1 玻璃化技术

将含有重金属的土壤放置在高温高压的环境中,通过长时间的放置,在经过冷却之后土壤中会形成较为坚硬的玻璃化物质。这是土壤中的重金属固化之后的表现。玻璃化技术能够避免土壤中的重金属物质发生转移,达到固定重金属的目的。但是玻璃化技术需要大量的电能,在修复成本上相对较高,没有得到广泛的应用。一般情况下只是针对较小面积的土壤开展的修复。玻璃化技术形成的物质不能够被充分的进行降解,只能够实现对土壤中的重金属进行固化。熔化重金属物质需要全面的计算成本。并且针对的重金属物质的不同特性,在价格的体现上也具有差异性。成本核算结果相对较大,因此为了能够控制资源、成本的投入使用。在技术开展的过程中需要控制含水量,适当添加粘土等,这样能够获取到特殊处理效果。并且玻璃化之后形成的物质能够进行循环使用,作为填充剂等材料。

2.2 固化稳定

在受到重金属污染的土壤中添加固化稳定剂,在通过物理或者化学处理过程对土壤中的重金属物质进行降解的技术。固化主要是将土壤中的重金属物质进行包裹,这样重金属物质就会形成相对稳定的状态。避免重金属物质进一步的释放。在土壤中添加适当的稳定剂,能够对重金属物质进行沉淀,使重金属吸附在相对固定的物质上。降低重金属物质的移动。固化稳定方式是使重金属物质发生钝化,这样就能够使重金属物质减少向地下移动,控制重金属的沉积。也能够在一定程度上限制重金属通过食物链方式转移到人体中,使人们能够避免受到威胁。选择合适的固化稳定剂是进行重金属治理的关键。固化稳定剂自身不能够含有重金属,不要产生二次污染。固化稳定剂的成本要得到控制,能够持续的对重金属发挥固化稳定作用。赤泥、石灰、蒙脱石等都能够起到很好地固化稳定作用。土壤重金属污染程度是固化稳定剂应用量的主要因素。通过详细计算分析重金属污染程度,制定充分的用量。固化稳定技术需要对污染土壤开展长期监控, 避免土壤中的重金属在特定条件下得到激活,再次污染土壤。

2.3 生物修复技术

主要是利用植物、微生物等的生命代谢对污染的土壤进行的治理。通过微生物作用改变土壤中化学形态,起到固定重金属或者降解的作用。提升土壤生命物体的移动效果。植物对土壤中的重金属进行提取、分解,吸收其中存在的有毒物质,对土壤进行固化,转变成分。通过植物将重金属进行汇总集中处理。植物的根系能够更好地进行重金属过滤。植物修复技术是利用自然植物的综合效应开展的修复,受到植物种类、土壤成分等多种因素的影响。能够同时对污染的水资源进行修复。具有环境美化的功能,促进土壤中有机物质含量的提升。增强土壤肥力,构建有助于植物生长的环境。但是植物对于重金属修复的耐性受到限制,只能够对中等以下土壤重金属污染开展修复。特别是一种植物一般情况只能够针对一种重金属修复,并且在修复的过程中很有可能激活其他重金属。但是基因工程的发展正在逐渐的解决这种问题。针对植物修复技术的弱点进行了转基因植物的研究,更好地发挥植物修复技术的功能。生物吸收使重金属含量降低。生物修复技术效果明显,并且成本投入较少,方便开展管理。不会产生二次污染。生物修复技术受到人们的特别关注。

3 结语

土壤重金属污染严重的威胁到人们的生命安全。使农作物生产受到影响。土壤与大气、水资源等环境有着密切的联系。开展土壤重金属修复技术的研究将会保证农产品质量,对提升人们的生命安全保障具有重要现实意义。通过多样化形式进行土壤重金属污染的修复。由于土壤重金属污染具有复杂性特点,因此要构建高效率、低成本、实用性的土壤修复技术体系,在实践中不断地进行检验推广。在不影响农产品产量的同时,充分的调动农民积极性参与到土壤治理过程中。