前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇土壤重金属污染的定义范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
土壤重金属污染问题越来越引起人们的关注,它具有长期性、累积性、潜伏性和不可逆性等特点。土壤一旦遭受重金属污染,不仅危害大、治理成本高,而且较难以消除。 “十二五”期间,我国将元素铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)和砷(As)列为重金属污染防控的重点元素。2014年4月,环保部和国土部联合的《全国土壤污染状况调查公报》显示,全国土壤环境状况总体不容乐观,部分地区土壤污染严重。全国第二次土地调查结果显示,我国中重度污染耕地大约为5000万亩。
被重金属污染的土壤不仅对作物的生长发育、产量及品质有影响,而且会通过食物链放大富集进入人体,极低浓度就能破坏人体正常的生理活动,损害人体健康[1]。土壤污染影响到整个人类生存环境的质量。重金属污染已成为一个亟待解决的环境问题。
1、土壤中重金属的来源及危害
土壤中重金属的来源可分为天然来源和人为来源。天然来源是由于土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。人为来源主要是来自人类的工农业生产活动以及生活垃圾,工矿业废弃地土壤环境问题突出,黑色金属、有色金属、皮革制品、造纸、石油煤炭、化工医药、矿物制品、金属制品和电力等行业,重污染企业用地及周边土壤存在超标现象。
近年来,突发性的环境污染事件骤增,特别是重金属污染事件。突发的环境事件会导致重金属在短时间内高浓度地进入环境,产生严重的污染。2008年,我国相继发生了贵州独山县、湖南辰溪县、广西河池、云南阳宗海等多起砷污染事件。2009年8月以来,又发生了陕西凤翔儿童血铅超标、湖南浏阳镉污染及山东临沂砷污染事件。2014年,湖南衡东县儿童血铅超标事件,300多名儿童被查出血铅含量超标。据美国学者统计表明,城市儿童血铅与城市土壤铅含量呈显著的指数关系[2]。据统计,我国约有3万多公倾土地受汞的污染,有1万多公倾土地受镉的污染,每年仅生产“镉米”就达5万t以上,而每年因污染而损失的粮食约1200万t,严重影响了我国的粮食生产和食品安全[3]。这些重金属污染事件有些是由于管理不当、交通事故等人为原因导致的,有些则是环境长期受到污染、污染物含量超过环境容量而突然爆发的结果。“砷毒”“血铅”“镉米”等重金属污染事件频发,让重金属污染成为最受关注的公共事件之一。重金属污染问题已日益严重,土壤重金属的治理和修复已迫在眉睫。
2.重金属土壤污染治理生物修复技术
目前,国内外较成熟的土壤重金属污染修复技术有物理修复法、化学修复法和生物修复法等,本文主要就土壤重金属修复领域的研究热点生物修复技术进行重点介绍。生物修复技术主要有植物修复技术、微生物修复技术、农业生产修复技术和组合修复技术。
2.1植物修复技术
根据Cunningham等人的定义,植物修复是利用绿色植物来转移、容纳或转化污染物,使其对环境无害[4]。根据机理的不同,土壤重金属污染的植物修复技术有3中类型:植物固定、植物挥发和植物提取。目前研究最多且最有发展前景的植物修复技术为植物提取。植物提取是指将某种特定的植物种植在重金属污染的土壤上,该种植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理(如灰化处理)后即可将该重金属从土体中去除,达到治理污染与生态修复的目的,这种特定的植物被称为超积累植物。植物修复法成本低,可有效避免二次污染,对环境扰动小。目前,全球已发现的超积累植物大约500种,大部分是关于镍的超富集植物。在我国已经发现宝山堇菜、龙葵、马蔺、三叶鬼针草对Cd有富集作用,蜈蚣草[5]和大叶井口边草[6]对As有富集作用,圆锥南芥[7]属多重金属富集植物,对Pb、Zn、Cd均有富集作用。植物修复技术可同时修复土壤及周边水体;成本低;能够美化环境,可提高土壤的肥力。植物修复技术的缺点:超富集植物个体矮小,生长缓慢,修复周期很长;超富集植物对重金属具有较强的选择性和拮抗性;植物收割后,需要进行特殊处理,否则易造成二次污染;异地引种将对当地的生物多样性构成潜在威胁。适用于大面积农田土壤修复。
2.2微生物修复技术
微生物修复技术是利用微生物(如藻类、细菌、真菌等)的生物活性对重金属的亲和吸附或转化为低毒产物,从而降低重金属的污染程度。微生物不能降解和破坏重金属,但可通过改变它们的化学或物理特性而影响金属在环境中的迁移与转化。研究证明,土壤中铬可以在微生物还原作用、生物吸附、富集等作用下降低其生物可利用性和毒性,以达到修复铬污染土壤的目的[8]。微生物修复效果好、投资小、费用低、易于管理与操作、不产生二次污染。但是微生物修复的专一性强,很难同时修复多种复合重金属污染土壤;应用难度大。
2.3农业生态修复技术
农业生态修复包括农艺修复和生态修复,前者是改变耕作制度,调节种植作物品种,种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等来降低土壤重金属污染;后者调节土壤水分、养分、pH值和土壤氧化还原状况及气温、湿度等生态因素,调控污染物所处环境介质,但该技术修复周期长、效果不明显。农业生态修复技术环境友好,代价小。但需要大量的调研,基础研究,改变种植习惯。适用于大面积低污染农田土壤。
2.4组合修复技术
植物组合修复技术是将植物修复技术与其他土壤重金属污染治理方法(比如物理、化学等修复技术)综合利用形成的组合技术,与单一重金属治理技术相比,植物组合修复技术具有独特的优点。有代表的有螯合剂-植物组合修复技术,螯合剂与土壤中的重金属发生螯合作用,形成水溶性的金属―螯合剂络合物,改变重金属在土壤中的赋存形态,提高重金属的生物有效性,强化植物对重金属的吸收。另外还有基因工程-植物组合修复技术及微生物-植物组合修复技术等。
3、展望
随着社会的发展进步,人们对土壤重金属污染的认识越来越深刻,越来越重视,如何防控和治理土壤重金属已成为人们关注的焦点。在今后的土壤重金属污染治理中,首先应以源头控制,即有效地降低重金属污染物的排放,这主要有赖于国家环境政策与法规的不断完善和工矿企业技术革新的落实。其次就是土壤的修复技术,针对土壤污染的复杂性、多样性及复合性,在修复时要综合考虑污染物的性质、土壤条件、投资成本等各方面的因素,从单一的修复技术向多数联合的修复技术、综合集成的工程修复技术发展,选择最适合的修复技术或组合, 达到高效、节约的双重效果。
参考文献
[1] 张许文琦.植物修复技术治理土壤重金属污染的研究进展[J].人民长江,2013,44(增刊):144-146.
[2] 蒋海燕,等.城市土壤污染研究现状与趋势[J].安全与环境学报,2004,4(5):73-77.
[3] 陈怀满.土壤-植物系统中的重金属污染[M].北京: 科技出版社,1996.
[4] Cunningham SD.Remediation of contaminated soil with green plants: an overview[J].In Vitro. Cell Dev. Biol,1993,( 29) :207-212.
[5] 陈同斌,韦朝阳,黄泽春,等. 砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47( 3) : 207 - 210.
[6] 韦朝阳, 陈同斌, 黄泽春,等. 大叶井口边草―种新发现的富集砷的植物[J].生态学报,2002,22( 5) :777-778.
关键词:生物炭;蔬菜;重金属污染;环境污染;食品安全
近年来,由于采矿冶炼、污水灌溉、塑料薄膜的大量使用、农药和化肥的过量施用、汽车尾气及生活垃圾的不断排放,土壤和水体中的重金属污染日益加剧。环境中的重金属可以通过各种途径进入作物和人体内并富集,使人产生头晕、贫血、精神错乱、代谢紊乱等症状,且重金属有致癌作用,对人类的健康有极大威胁。目前,我国一些蔬菜、粮食种植区正遭受着重金属污染的威胁,农产品重金属超标事件屡见不鲜。研究如何净化土壤和水体,减少重金属元素在陆生和水生植物体内的累积愈来愈成为国内外的科研热点。当前,国内外都在积极寻找有效的重金属修复方法,如卓有成效的电动修复、植物修复、生物降解法等,但是各种措施也都有各自的局限性。
生物炭是生物质通过热裂解的方法在缺氧或者低氧条件下制备的一种富含孔隙结构、含碳量高的碳化物质[1],其性质优良,具有较好的农用效益和环境污染修复潜力,已有研究表明,生物炭能够直接或者间接地降低土壤中重金属的生物有效性,因此有关将生物炭应用于重金属污染土壤的生态修复引起了广泛的关注。制备生物炭的原料来源广泛,农林业废弃物如木材、秸秆、果壳及有机废弃物等都可以作为原料[2,3],同时,其具有碳封存的潜力,因而生物炭的应用可作为我国农林废弃物资源化利用的有效途径。全球已举办过多次有关生物炭的会议,并成立了许多生物炭协会、学会、相关企业与研究机构,其中最著名的机构是国际生物炭协会(International Biochar Initiative,IBI)。总之,作为一种新型环境功能材料,生物炭在作物安全生产方面正展现出广泛的应用潜能。本文概括性地介绍了蔬菜重金属污染的现状和目前用于治理重金属污染的各项措施,通过综述生物炭的特性及其在重金属污染治理上的研究应用进展,展望了生物炭在减少蔬菜重金属污染、提高蔬菜产量、质量和安全性方面的应用潜力以及尚待解决的关键问题,为生物炭应用于蔬菜的安全生产提供有力的理论支持和实践参考。
1 蔬菜重金属污染现状
重金属在化学上是指密度大于4.5 g/cm3的约46种金属元素。环境污染上所说的重金属是指铬(Cr)、镉(Cd)、汞(Hg)、铅(Pb)以及类金属砷(As)等生物毒性显著的金属,即重金属“五毒”。重金属或其化合物造成的环境污染称为重金属污染。近年来,随着工农业的快速发展,大量重金属污染物通过各种途径进入土壤、水体和大气中,土壤和水体重金属污染引起的蔬菜及其他农作物重金属超标问题日益成为影响人类生活质量、威胁人类健康的环境和社会问题。研究结果表明,蔬菜重金属污染主要是人为因素所致,重金属可经由各种路径进入人体内(图1)。
随着生活水平的提高,人们对无公害蔬菜、绿色食品的呼声越来越高。为使蔬菜产业向着高产优质的方向发展,很多设施菜地、无土栽培技术、有机生态农业等已在全国各地蓬勃发展。其中,作为无公害蔬菜和绿色蔬菜的评价指标之一,重金属含量在生产基地、生产过程和产品中都有严格的限定标准。无土栽培基质也较容易受到重金属污染,如李静等[4]发现煤渣是引起基质重金属含量超标的主要因素,通过寻找理想的无土栽培基质来解决重金属超标问题,也是无公害蔬菜生产的重要任务。
1.1 蔬菜重金属污染为害及研究现状
世界各国都存在不同程度的重金属污染,如日本20世纪50年生的水俣病(汞污染)、骨痛病(镉污染),防治重金属环境污染已成为一个刻不容缓的世界性课题[5]。我国的重金属污染问题较为严峻,国家环保部数据显示,2009年重金属污染事件致使4 035人血铅超标、182人镉超标,引发32起[6],其中的典型案例有陕西宝鸡市凤翔县长青镇的血铅超标事件、湖南浏阳市湘和化工厂镉污染事件等[7]。仲维科等[8]研究发现,按食品卫生标准,我国各主要大中城市郊区的蔬菜都存在一定的重金属超标现象,其中Cd、Hg、Pb的污染尤为明显。迄今为止,国内已对北京、上海、天津、贵阳、大同、蚌埠、成都、寿光、哈尔滨、福州、长沙等大中城市郊区菜园土壤及蔬菜中重金属污染状况进行过较为系统的调查研究。蔬菜农药残留和重金属超标问题已成为我国发展蔬菜出口中的忧中之忧。随着中国加入WTO,蔬菜出口面临着巨大的绿色壁垒[9] 。
国内外众多学者对蔬菜的重金属污染问题进行了研究,其中对十多种陆生和水生蔬菜的镉、铜、锌、铅、汞、镍、铬及砷等重金属的为害进行了分析研究。土壤中的重金属元素通过抑制植物细胞的分裂和伸长、刺激和抑制一些酶的活性、影响组织蛋白质合成、降低光合作用和呼吸作用、伤害细胞膜系统,从而影响农作物的生长和发育。王林等[10,11]先后研究了Cd、Pb及其复合污染对茄果类蔬菜辣椒和根茎类蔬菜萝卜生理生化特性的影响,发现辣椒的生长发育、氮代谢、膜系统、根系和光合系统都受到一定的伤害,萝卜的生理生化指标也受到明显抑制,细胞膜透性显著升高,并且Cd、Pb复合污染的毒害作用始终比单一污染强,说明Cd、Pb复合污染表现为协同作用。他们的研究结果与秦天才等[12]研究的Cd、Pb及其复合污染对叶菜类蔬菜小白菜的影响结果一致,小白菜除出现植株矮化、失绿和根系不发达等直接毒害表现外,还出现叶绿素含量降低、抗坏血酸分解、游离脯氨酸积累、硝酸还原酶活性受到抑制等现象。
1.2 陆生蔬菜地重金属污染现状
蔬菜是易受重金属污染的作物之一,对重金属的富集系数远远高于其他农作物,因此蔬菜重金属污染问题更加突出。目前全国主要大中城市的菜地土壤和蔬菜重金属污染的状况已基本掌握[13]。土壤和蔬菜中重金属污染以砷、铬、镉、汞、铅、铜(Cu)、镍(Ni)、锌(Zn)等为主。一般对同一类蔬菜来说,Cu、Cd、Zn为高富集元素,Hg、As、Cr为中等富集元素,Ni、Pb为低富集元素[14]。其中,城市中的矿区周围、污灌地和交通干线两侧农田的重金属污染程度较严重,蔬菜中的重金属含量超标更为严重。黄绍文等[15]研究发现,河北定州市北城区东关村城郊公路边菜田土壤Cu、Zn、Pb 和Cd总量和韭菜可食部分Pb含量总体上均随与公路距离的增加呈降低的趋势。而且,不同的土壤类型,其有机质含量、孔隙度、酶活性、pH值、CEC值(Cation exchange capacity,阳离子交换量)等理化特性不同,直接影响重金属在土壤中的迁移与固定,从而影响蔬菜对其的吸收与富集[16]。一般认为土壤胶体带负电荷,而绝大多数金属离子带正电荷,所以土壤pH值越高,金属离子被吸附的越多,进入蔬菜体内的越少。土壤中的腐殖质能提供大量的螯合基团,对很多重金属元素有较强的固定作用,使进入蔬菜中的重金属减少。因此,我们可以依据不同蔬菜对不同重金属的富集差异以及不同的土壤条件选择相应的蔬菜类别,合理布局种植地,也可以通过施用土壤改良剂、有机肥等改善土壤理化性质,降低重金属离子的活性,从而减轻重金属的污染。
1.3 水生蔬菜重金属污染现状
水生蔬菜通常是指生长在淡水中、产品可作蔬菜食用的维管束植物。我国是众多水生蔬菜的发源地,栽培历史悠久,主要包括莲藕、茭白、荸荠、水芹、慈姑、莼菜、芡实、菱、水芋等[17]。作为我国的特产蔬菜,水生蔬菜已成为农业种植结构中的重要组成部分[18],国内现有栽培面积有66.7万hm2以上,主要集中在长江流域、珠江流域和黄河流域,我国水生蔬菜栽培面积和总产量均居世界前列。我国也是世界水生蔬菜的主要生产国和出口国,全国已有众多特色鲜明的水生蔬菜基地[19,20]。
相对陆生蔬菜而言,水生植物不仅可以从根部摄入重金属,而且因其维管组织、通气组织发达,更容易从生长环境中吸收或转移重金属元素,并长久的富集于体内。国家食品标准规定了水生蔬菜产品重金属最大限度As、Pb、Hg、Cd、Cr分别为0.5、0.2、0.01、0.05、0.5 mg/kg,和其他蔬菜作物相同[19]。水生蔬菜各器官对重金属的吸收也受多种因素影响,如环境中重金属浓度、重金属的有效性、水体富营养化以及不同水生蔬菜对各重金属元素特有的富集特性等[21]。如许晓光等[22]研究发现,随着Cd、Pb浓度的增加,莲藕各器官的重金属累积量也相应增多,并且随着生长期的延长,莲藕各器官中Cd、Pb含量逐渐增加。但是,由于蔬菜、重金属和土壤类型不同,生长环境条件、重金属性质与含量不同以及重金属的存在形态、复合污染等种种复杂因素,使得重金属的为害呈现出复杂性,例如不同蔬菜对同种重金属、同种蔬菜对不同重金属以及同种蔬菜的不同器官中对重金属的吸收和累积均存在着差异。李海华等[23]检测了Cd在12种粮食和蔬菜作物不同器官的含量后发现,除了萝卜,Cd在其他作物的根部中含量是最高的;不同种类重金属在莲藕各器官中的累积量也不同,如Cd含量为匍匐茎>荷叶>藕>荷梗,而Pb含量为匍匐茎>荷梗>藕>荷叶,这些研究为我们有效控制水生蔬菜重金属污染提供了可靠的依据和科学指导。
2 土壤重金属污染治理及其研究进展
目前,国内外治理土壤重金属污染的主要措施包括工程措施、物理修复措施、化学修复措施、生物修复措施以及农业生态修复措施。
①工程措施 主要包括客土、换土、去表土、排土和深耕翻土等措施,其中排土、换土、去表土、客土被认为是4种治本的好方法。工程措施具有效果彻底、稳定等优点,但是工程量大、费用高,破坏原有土体结构,引起土壤肥力下降,并有遗留污土的问题。
②物理修复措施 主要有电动修复和电热修复等。前者是在电场的各种电动力学效应下,使土壤中的重金属离子和无机离子向电极区运输、集聚,然后进行集中处理或分离[24];后者是利用高频电压产生的电磁波和热能对土壤进行加热,使污染物从土壤颗粒内解吸并分离出来,从而达到修复的目的。此两种方法都是原位修复技术,不搅动土层,并缩短修复时间,但是操作复杂,成本较高。现在,一些发达国家还在污染严重地区试行玻璃化技术、挖土深埋包装技术、固化技术等,但是限于成本高等原因,普及率不高。
③化学修复措施 目前常用的是施用改良剂(抑制剂、表面活性剂、重金属拮抗剂等)、淋洗、固化、络合提取等。施用改良剂主要通过对重金属的吸附、氧化还原、拮抗或沉淀作用,来降低重金属的生物有效性。淋洗法是用清水淋洗液或含有化学助剂的水溶液淋洗被污染的土壤。固化技术是将重金属污染的土壤按一定比例与固化剂混合,经熟化后形成渗透性低的固体混合物。络合提取是使试剂和土壤中的重金属作用,形成可溶性重金属离子或金属-试剂络合物,最后从提取液中回收重金属并循环利用提取液。化学修复是在土壤原位上进行的,简单易行,但不是永久性修复,它只改变了重金属在土壤中的存在形态,重金属元素仍保留在土壤中,容易被再度活化,不适用于污染严重区[25]。
④生物修复技术 主要集中在植物和微生物两方面。国内对植物修复研究较多,动物修复也有涉及,而国外在微生物修复方面研究较多。植物修复技术是近年来比较受关注的有效修复技术,根据其作用过程和机理又分为植物提取、植物挥发和植物稳定3种类型[26]。a.植物提取,即利用重金属超累积植物从土壤中吸收重金属污染物,随后收割植物地上部分并进行集中处理,连续种植该植物以降低或去除土壤中的重金属;b.植物挥发,其机理是利用植物根系吸收重金属,将其转化为气态物质挥发到大气中,以降低土壤重金属污染;c.植物稳定,利用耐重金属植物或超累积植物降低重金属的活性,其机理主要是通过金属在根部的积累、沉淀或利用根表吸收来加强土壤中重金属的固化。
微生物修复技术的主要作用原理有5种类型。
a.通过微生物的各种代谢活动产生多种低分子有机酸直接或间接溶解重金属或重金属矿物;b.通过微生物氧化还原作用改变变价金属的存在状态;c.通过微生物胞外络合、胞外沉淀以及胞内积累实现对重金属的固定作用;d.微生物细胞壁具有活性,可以将重金属螯合在细胞表面;e.微生物可改变根系微环境,提高植物对重金属的吸收、挥发或固定效率,辅助植物修复技术发挥作用。
但生物修复受气候和环境的影响大,能找到的理想重金属富集植物比较少,并且这类植物的生长量一般较小,修复周期长,很难有实际应用价值[27]。
⑤农业生态修复 包括农艺修复和生态修复两方面。前者主要指改变耕作制度、调整作物品种,通过种植不进入食物链的植物等措施来减轻土壤重金属污染;后者主要是通过调节土壤水分、养分、pH值和氧化还原状况等理化性质及气温、湿度等生态因子,对重金属所处的环境进行调控。但是此修复方式易受土壤性质、水分条件、施肥状况、栽培方式以及耕作模式等情况的影响,结果有很大的不确定性[25]。
国内现阶段对土壤重金属污染治理采用较多的措施是施用化学改良剂、生物修复、增施有机肥等。国外对改良、治理重金属污染土壤较先进的方法主要有固定法、提取法、生物降解法、电化法、固化法、热解吸法等。尽管这些方法都具有一定的改良效果,但都有局限性。土壤重金属污染的治理依然任重而道远,如何阻止蔬菜、粮食作物吸收的重金属通过食物链富集到人体成为亟待解决的焦点问题。
3 生物炭的特性及其修复重金属污染土壤的研究进展
3.1 生物炭及其特性
①生物炭(Biochar)定义 生物炭是生物质热解的产物。由于生物炭的广泛性、可再生性和成本低廉,加上生物炭本身的优良特性,使其在土壤改良和污染修复上体现出很大的优势。国内外对生物炭的科学研究真正始于20世纪90年代中期[3],目前对生物炭并没有一个统一固定的概念,但是国内外文献中生物炭的定义中包括生物质、缺氧条件(或不完全燃烧)、热解、含碳丰富、芳香化、稳定固态、多孔性等诸多关键词[28~35],这些关键词反映了生物炭的来源、制备条件和方式、结构特征。而国际生物炭倡导组织在定义中指定了其添加到土壤中在农业和环境中产生的有益功能,强调其生物质原料来源和在农业科学、环境科学中的应用,主要包括应用于土壤肥力改良、大气碳库增汇减排以及受污染环境修复。
②生物炭特性 a.孔隙结构发达,具有较大的比表面积和较高的表面能[36]。不同材料、不同裂解方式产生的生物炭的比表面积差别很大[37~39],较高的热解温度有利于生物炭微孔结构的形成。张伟
明[40]通过比较花生壳、水稻秸秆、玉米芯以及玉米秸秆4种材质在炭化前后的结构,发现炭化后所形成的碳架结构保留了原有主体结构,但比原有结构更为清晰、明显。原有生物炭的部分不稳定、易挥发的结构在热解过程中逐渐消失或形成微小孔隙结构。陈宝梁等[41]用橘子皮在不同热解温度下制备得到生物炭,经过元素分析、BET-N2表面积、傅里叶变换红外光谱法测试,对比生物炭的组成、结构,并结合其结构分析生物炭对有机污染物的作用。
b.表面官能团主要包括羧基、羰基、内酯、酚羟基、吡喃酮、酸酐等,并具有大量的表面负电荷以及高电荷密度[42],构成了生物炭良好的吸附特性,能够吸附水、土壤中的金属离子及极性或非极性有机化合物。但是生物炭的表面官能团也会随热解温度的变化而不同。陈再明等[43]研究发现,水稻秸秆的升温裂解过程是有机组分富碳、去极性官能团的过程,随着裂解温度的升高,一些含氧官能团逐渐消失,这与其他生物质制备炭的过程一致[41,44]。
c.pH值较高。生物炭中主要含有C(含量可达38%~76%)、H、O、N 等元素,同时含有一定的矿质元素[45],如Na、K、Mg、Ca等以氧化物或碳酸盐的形式存在于灰分中,溶于水后呈碱性,加上其表面的有机官能团可吸收土壤中的氢离子,添加到土壤中可提高土壤的pH值,Yuan等[46]研究证明,生物炭能够显著地提高酸性土壤的pH值,增加土壤肥力,因而可用于酸性土壤的改良。但一般来说,生物炭的pH值取决于其制备的原料[45],如灰分含量较高的畜禽粪便制成的生物炭比木炭或秸秆炭有更高的pH值。此外,裂解温度越高,pH值也会越高[47]。
d.阳离子交换量(CEC值)较高。这与其表面积和羧基官能团有关[48],当然与其生物质原料来源密不可分[49]。生物炭的CEC值高,容易吸附大量可交换态阳离子,提高土壤对养分离子Ca2+、K+、Mg2+和NH4+等的吸附能力,从而提升土壤的肥力,减少养分的淋失,提高营养元素的利用率。
e.化学性质稳定,不易被微生物降解[50],抗氧化能力强。生物炭具有高度的芳香化结构,有很高的生物化学和热稳定性[51],可长期保存于环境和古沉积物中而不易被矿化。生物炭氧化分解缓慢,如Shindo[52]研究发现,经过280 d培养,添加草地放火形成的生物炭的土壤与没有添加生物炭的土壤排放的CO2量相近,说明生物炭分解非常少。
3.2 生物炭降低重金属的有效作用机制
生物炭降低重金属的生物有效性,主要是通过降低植物体内重金属的含量、促进植物的生长来体现。研究显示,将生物炭添加到受重金属污染的土壤中后,生物炭不仅可以直接吸附或固持土壤中的重金属离子,从而降低土壤溶液中重金属离子浓度,还可以通过影响土壤的pH值、CEC值、持水性能等理化性质来降低重金属的移动性和有效性,减少其向植物体内的迁移,降低其对植物的毒性,从而减少对动物及周围环境造成的影响。
生物炭具有很大的比表面积、表面能和结合重金属离子的强烈倾向,因此能够较好地去除溶液和钝化土壤中的重金属。安增莉等[53]将生物炭对土壤中重金属的固持机理主要分为3种,①添加生物炭后,土壤的pH值升高,土壤中重金属离子形成金属氢氧化物、碳酸盐、磷酸盐沉淀,或者增加了土壤表面活性位点[54];②金属离子与碳表面电荷产生静电作用;③金属离子与生物炭表面官能团形成特定的金属配合物,这种反应对与特定配位体有很强亲和力的重金属离子在土壤中的固持非常重要[55,56]。周建斌等[57]试验表明,棉秆炭能够通过吸附或共沉淀作用来降低土壤中Cd的生物有效性,使在受污染土壤上生长的小白菜可食部分和根部Cd的积累量分别降低49.43%~68.29%和64.14%~77.66%,提高了蔬菜品质。Cao等[55]发现生物炭对Pb的吸附是一个双Langmuir-Langmuir模型,84%~87%是通过铅沉淀,6%~13%是表面吸附,添加未处理的粪便和200℃热解产生的生物炭处理中,铅主要以β-Pb9(PO4)6形式沉淀,而在350℃热解产生的生物炭处理中则是以Pb3(CO3)2(OH)2形式存在,其中200℃热解产生的生物炭,吸附效果最好,达到680 mmol/kg,是遵循简单Langmuir吸附模型的一般活性炭的6倍。Wang等[58]发现竹炭对水溶液中Cd2+的吸附行为最适合Langmuir吸附模型,最大吸附力是12.8 mg/g;而刘创等[59]发现竹炭对溶液中镉离子的吸附行为符合Freundlich吸附模型;陈再明等[60]研究了在不同热解温度下制备的水稻秸秆生物炭对Pb2+的吸附行为,符合准一级动力学方程,其等温吸附曲线适合Langmuir方程。吴成等[61]还发现,玉米秸秆生物炭对重金属离子的吸附与水化热差异有关,金属离子水化热越大,水合金属离子越难脱水,越不易与生物炭表面活性位点反应。
重金属进入土壤后,通过溶解、沉淀、凝聚、络合、吸附等各种反应形成不同的化学形态,并表现出不同的活性[62]。但是土壤化学性质(pH值、EH值、CEC值、元素组成等)、物理性质(结构、质地、黏粒含量、有机质含量等)和生物过程(细菌、真菌)及其交互作用都会影响重金属在土壤中的形态和有效性。已有众多研究显示,将生物炭施加到土壤中可改善土壤的理化性质,提高土壤孔隙度、表面积、土壤离子交换能力[42]、pH值[63],降低土壤容重,增强土壤团聚性、保水性和保肥性[64,65],为土壤微生物生长与繁殖提供良好的环境,并增强微生物的活性[66~68],减少土壤养分的淋失,促进养分的循环,并且可以增加土壤有机碳的含量[69] 。这些性质的改良都有利于促进土壤中有害物质的降解和失活,使土壤中的重金属离子形态发生变化。
3.3 影响生物炭降低重金属污染有效性的因素
①生物炭的原料和制备温度 生物炭来源是决定其组成及性质的基础,Shinogi等[70]证明动物生物质来源的生物炭比植物生物质来源的生物炭C/N比更低,灰分含量、阳离子交换量和电导率更高。Uchimiya等[71]还发现山核桃壳制备的酸性活性炭和生活垃圾制备的碱性生物炭在酸性土壤中对Cu2+的吸附好于在碱性土壤中。但是,关于生物炭热解温度对其特性的影响还存在争议,如Cao等[72]认为与由粪肥制造的生物炭随温度变化的特点相似,比表面积、含碳量以及pH值都随着温度的升高而升高,吸附的Pb2+随温度的升高可达到100%。而吴成等[73]却发现Pb2+或Cd2+吸附初始浓度相同时,热解温度为150~300℃的生物炭中极性基团含量增加,生物炭吸附Pb2+和Cd2+的量增大;热解温度为300~500℃的生物炭中极性基团含量减少,生物炭吸附Pb2+和Cd2+的量降低。目前,普遍认为热解温度升高,生物炭比表面积、灰分含量增大[72],而在CEC值方面还存在争议。
②生物炭本身的pH值、CEC值、有机质含量以及表面官能团的性质 通常情况下,土壤pH值、CEC值、有机质含量越高,越不利于重金属向有效态转化。由于生物炭本身具有较高的pH值、CEC值和有机质含量,故将其施加于土壤中可以提高土壤的pH值、CEC值和有机质含量[74]。Wang等[58]的试验证明,pH值高(≥8)有利于Cd2+的吸附和去除。祖艳群等[75]进行大田调查也发现,提高土壤pH值有助于降低蔬菜中镉的含量,并认为对于土壤重金属镉污染严重的地区,通过提高土壤pH值降低蔬菜中镉含量是可行的。王鹤[76]通过试验证明了生物炭不仅可以通过简单吸附来降低有效态铅含量,还可以通过提高土壤pH值和有机质含量来促进有效态铅向其他形态转化,从而降低土壤中铅的生物有效性。Uchimiya等[56]用不同温度生产的生物炭对水中和土壤中的Cd2+、Cu2+、Ni2+和Pb2+进行了研究,发现高温热解能够使生物炭表面的脂肪族等基团消失并形成吸附能力强的表面官能团,同时随着生物炭的pH值升高,其对重金属离子的吸附和固定加强,也说明了生物炭对重金属的吸附与生物炭的表面官能团和pH值有关。官能团可能与亲和特定配位体的重金属离子结合形成金属配合物,有些亲水性含氧官能团还能使生物炭吸附更多的水分子,形成水分子簇,可有利于重金属离子向生物炭微孔扩散,从而降低重金属离子在土壤中的富集;而土壤pH值的升高,促使重金属离子形成碳酸盐或磷酸盐等而沉淀,或者增加土壤表面的某些活性位点,从而增加对重金属离子的吸持。
③重金属的形态与性质 重金属的形态是指重金属的价态、化合态、结合态和结构态4个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。重金属形态是决定其生物有效性的基础。重金属的总量并不能真实评价其环境行为和生态效应,其在土壤中的形态、含量及其比例才是决定其对环境造成影响的关键因素。对于重金属形态,目前比较常用的是欧洲共同体参考局(European Community Bureau of Reference,BCR)提出的标准,分为酸溶态(如可交换态和碳酸盐结合态)、可还原态(如铁锰氧化物结合态)、可氧化态(如有机物和硫化物结合态)和残渣态4种,所用提取方法称为BCR提取法。研究表明,酸溶态是植物最容易吸收的形态,可还原态是植物较易利用的形态,可氧化态是植物较难利用的形态,残渣态是植物几乎不能利用的形态。前两者即为重金属有效态,生物有效性高;后两者为重金属稳定态,迁移性和生物有效性低[77,78]。关于生物炭对重金属生物有效性的影响,已有研究结果[79~82]认为,生物炭的施入对土壤中重金属离子的形态和迁移行为有明显作用,即生物有效性高的水溶态、交换态、碳酸盐结合态和铁锰氧化物结合态重金属的浓度都显著下降,而植物较难利用的有机结合态、残渣态重金属的浓度显著上升,从而降低植株体内的重金属含量。
④土壤类型 在生物炭―土壤―植物系统中,土壤的砂、黏、壤质类型不同,理化性质差异很大,对重金属有效性和生物炭的作用发挥会产生不同影响。例如,Uchimiya等[71,83]研究生物炭修复土壤中Cu2+的吸附等温线及阳离子的释放时发现,在黏土和碱性土壤中,生物炭对Cu2+有显著的吸附能力,在侵蚀土壤、酸性肥沃土壤中,生物炭对Cu2+的吸附能力很弱。Beesley等[84,85]在被As、Cd、Cu、Zn等污染的棕色土地区和含As、Cd、Cu、Pb和Zn较高的城市土中,添加450℃热解硬木材产生的生物炭(生物炭体积比30%),发现在柱淋溶试验中,Cd和Zn的量分别减少300倍和45倍。佟雪娇等[86]用添加4种农作物秸秆制备的生物炭提高了红壤对Cu2+的吸附量,有效降低了Cu2+在酸性红壤中的活动性和生物有效性。黄超等[87]研究发现,施加生物炭到贫瘠的红壤中能明显降低土壤酸度,增加盐基饱和度,提高土壤团聚体数量和田间持水量,降低土壤容重,明显提高红壤的速效氮、磷、钾含量,增加土壤保肥能力,改善植物生长环境,并发现施用生物炭对肥力水平较低的红壤改善作用更明显。
4 生物炭对蔬菜产量的影响
国内已有学者系统综述过施用生物炭对土壤的改良作用、作物效益[88]以及肥效作用[49]的研究进展。施用生物炭可改善土壤肥力和养分利用率,维持农田系统的高产、稳产。许多研究表明,生物炭对许多作物生长和产量有促进作用,其中,对增产效应方面主要研究的蔬菜有菜豆[89]、豇豆[90,91]、萝卜[92,93]、菠菜[94]、白萝卜[95]等。关于施用生物炭使作物增产的原因包括提高了土壤pH值,增加了有效磷、钾、镁和钙含量,降低了重金属元素的有效性;为养分的吸附和微生物群落的生存提供了较大空间;可以作为滤膜,吸附带正电或负电的矿物离子;增加了土壤孔隙度和土壤持水性,改善了土壤物理性状,促进植物和根系的生长;增加了土壤电导率、盐基饱和度及可交换态养分离子等;促进了原生菌、真菌等的活性,从而促进了作物生长[96]。单施生物炭就能够促进作物生长或增产,将生物炭与肥料混施,或复合后对作物生长及产量促进作用更显著,因为将生物炭和肥料混施或复合施用,可以发挥两者的互补或协同作用,生物炭可延长肥料养分的释放期,减少养分损失[34],反之肥料消除了生物炭养分不足的缺陷[97]。也有众多学者研究过生物炭对粮食作物的增产作用,如Major[98]施加生物炭于哥伦比亚草原氧化土中,通过4 a的种植,发现玉米第2,3,4年分别增产28%、30%、140%。但是,还缺乏在不同土壤类型上种植不同作物的大田试验来进一步验证这些增产效果。
然而在需要人为添加营养的无土栽培中,情况有所不同。Graber等[99]添加不含营养成分的木质生物炭到椰纤维+凝灰岩的无土基质中,种植的番茄和辣椒生长量增加既不是因为直接或间接的植物营养成分含量的提高,也不是因为无土基质持水性增强,推测和验证了2个可能机制,一是生物炭可引起微生物群体向有益植物生长的方向转变;二是生物炭中的化合物引起毒物兴奋效应,因而具有生物毒性的化学物质或者高浓度生物炭就会刺激生长并引起系统抗病性。Nichols等[100]证明了生物炭比其他水培基质性能更优越,并且能够通过再次热解进行杀菌,从而破坏潜在的致病菌。Elad等[101]也验证了添加生物炭可以促使辣椒和番茄对灰霉病菌和白粉病菌产生系统抗性,并使辣椒具有抗螨性。可见生物炭不仅可以通过影响土壤pH值、CEC值、盐基饱和度、电导率、交换态氮和磷有效性,提高钾、钙、钠、镁等营养物质的利用率,从而提高作物产量[102],而且可以运用到无土栽培中杀菌抗病,促进植物生长。目前市场上交易的生物炭多用于改良栽培基质和促进粮食作物增产,将其应用于蔬菜安全生产必然有广泛的应用前景。
5 展望
种种研究表明,生物炭对重金属污染土壤和水体的治理效果明显,促进作物生长的潜力巨大,张伟明[40]系统研究了生物炭的理化性质(结构与形态、比表面积与孔径特征、因素组成以及吸附性能等)及其对不同作物生长发育的作用、对土壤理化性质的影响以及炭肥互作对大豆生长发育和产量与品质的影响,初步探讨了生物炭对重金属污染农田修复的作用,再一次有力地证明了生物炭优良的理化性质对土壤系统的改良作用、对促进作物产量与品质的有利影响以及修复重金属污染土壤的巨大潜力,并指出中国的生物炭应用技术已具备了一定基础,且处于快速发展时期。但是将生物炭广泛应用于蔬菜生产安全上,仍有几个关键点需要解决。
①虽然已有研究认为生物炭能产生良好的农用和环境效益,但是对于生物炭的最优施用条件、最佳施用量及相关机理还没有明确定论。比如,有些试验在较低用量下即产生影响,有些则显示高用量下才有效果,甚至还有些产生不良影响[87],不同作物、不同地域、不同基质和不同管理条件等可能表现出不一样的结果;生物炭对重金属等污染物的作用是络合、螯合、吸附、截留或沉淀等都尚不明确。
②生物炭对施入环境的有益作用已受到人们的广泛关注,但是其对生态环境可能产生的负面效应还不十分明确,如生物炭在热解过程中可能产生少量有毒物质,生产的高温分解过程也会增加温室气体的排放等[103]。
③由于生物炭是直接施加到土壤和溶液中的,吸附或固持了污染物之后依然留在其中,不清楚污染物以后是否会被重新释放出来而恢复生物毒性。成杰民[104]认为,除了研究吸附剂的氧化稳定性、吸附稳定性和释放规律外,最安全的方法就是将吸附后的钝化剂从土壤中彻底移除,但目前还没有相应的措施。
④生物炭的老化或氧化分解问题。Uchimiya
等[105]认为,生物炭的老化主要表现在对环境污染物尤其是对天然有机物吸附的减少,及其自身的氧化分解作用。但由于生物炭稳定性高,氧化分解的速度缓慢(分解机理尚不明确,生物降解和非生物降解过程可能共存),在有限的试验周期内还无法观察到其氧化后的结果,对生物炭施用后的长期效应方面的研究亟待开展。
⑤目前国内关于生物炭方面的研究,还停留在实验室和田间阶段[103],并没有得到大规模的生产和应用,推广和使用所需要的技术支持也还处于起步阶段。降低生物炭的生产成本,也将关系到生物炭未来发展的应用潜力。
参考文献
[1] Lehmann J. A handful of carbon[J]. Nature, 2007, 447: 143-144.
[2] Jonker M T O, Koelmans A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations[J]. Environmental Science and Technology, 2002, 36(17): 3 725-3 734.
[3] 何绪生,耿增超,佘雕,等.生物炭生产与农用的意义及国内外动态[J].农业工程学报,2011,2(27):1-7.
[4] 李静,赵秀兰,魏世强,等.无公害蔬菜无土栽培基质理化特性研究[J].西南农业大学学报,2000,22(2):112-115.
[5] 郑喜,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
[6] 周锐.中国环保部长:“重金属污染“今年将被集中整治[EB/OL].(2010-01-25)http:///cj/cj-hbht/news/2010/01-25/2090643.shtml.
[7] 陈明,王道尚,张丙珍.综合防控重金属污染 保障群众生命安全――2009年典型重金属污染事件解析[J].环境保护,2010(3):49-51.
[8] 仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272.
[9] 唐仁华,朱晓波.中国蔬菜生产面临的机遇和挑战[J].中国农学通报,2003,19(1):131-135.
[10] 王林,史衍玺.镉、铅及其复合污染对辣椒生理生化特性的影响[J].山东农业大学学报:自然科学版,2005,36(1):107-112.
[11] 王林,史衍玺.镉、铅及其复合污染对萝卜生理生化特性的影响[J].中国生态农业学报,2008,16(2):411-414.
[12] 秦天才,吴玉树,王焕.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50.
[13] 汪琳琳,方凤满,蒋炳言.中国菜地土壤和蔬菜重金属污染研究进展[J].吉林农业科学,2009(2):61-64.
[14] 施泽明,倪师军,张成江.成都城郊典型蔬菜中重金属元素的富集特征[J].地球与环境,2006(2):52-56.
[15] 黄绍文,韩宝文,和爱玲,等.城郊公路边菜田土壤和韭菜中重金属的空间变异特征[J].华北农学报,2007,22(z2):152-157.
[16] 梁称福,陈正法,刘明月.蔬菜重金属污染研究进展[J]. 湖南农业科学,2002(4):45-48.
[17] 江解增,曹碚生.水生蔬菜品种类型及其产品利用[J].中国食物与营养,2005(9):21-23.
[18] 孔庆东.中国水生蔬菜基地成果集锦[M].武汉:湖北科学技术出版社,2005.
[19] 柯卫东,刘义满,吴祝平.绿色食品水生蔬菜标准化生产技术[M].北京:中国农业出版社,2003.
[20] 柯卫东.水生蔬菜研究[M].武汉:湖北科学技术出版社, 2009.
[21] 熊春晖,卢永恩,欧阳波,等.水生蔬菜重金属污染与防治研究进展[J].长江蔬菜,2012(16):1-5.
[22] 许晓光,卢永恩,李汉霞.镉和铅在莲藕各器官中累积规律的研究[J].长江蔬菜,2010(14):53-56.
[23] 李海华,刘建武,李树人.土壤―植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(1):30-34.
[24] 王慧,马建伟,范向宇,等.重金属污染土壤的电动原位修复技术研究[J].生态环境,2007,16(1):223-227.
[25] 徐应明,李军幸,孙国红,等.新型功能膜材料对污染土壤铅汞镉钝化作用研究[J].农业环境科学学报,2003,22(1):86-89.
[26] 骆永明.金属污染土壤的植物修复[J].土壤,1999,31(5):261-265.
[27] Ernst W H O. Phytoextraction of mine wastes-options and impossibilities[J]. Chemie Der Erde-Geochemistry, 2005, 65: 29-42.
[28] 陈温福,张伟明,孟军,等.生物炭应用技术研究[J].中国工程科学,2011,13(2):83-89.
[29] Sohi S, Lopez-Capel E, Krull E, et al. Biochar, climate change and soil: A review to guide future research[J]. CSIRO Land and Water Science Report, 2009, 5(9): 17-31.
[30] Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems-A review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
[31] Hammes K, Smernik R J, Skjemstad J O, et al. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy[J]. Applied Geochemistry, 2008, 23(8): 2 113-2 122.
[32] 李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展[J].环境化学,2011,30(8):1 411-1 421.
[33] 谢祖彬,刘琦,许燕萍,等.生物炭研究进展及其研究方向[J].土壤,2011,43(6):857-861.
[34] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7): 381-387.
[35] Antal M J Jr, Gr?nli M. The art, science, and technology of charcoal production[J]. Industrial Engineering Chemistry Research, 2003, 42(8): 1 619-1 640.
[36] Duku M H, Gu S, Hagan E B. Biochar production potential in Ghana-A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3 539-3 551.
[37] ?z?imen D, Ersoy-Meri?boyu A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy, 2010, 35(6): 1 319-1 324.
[38] Chun Y, Sheng G, Chiou C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science and Technology, 2004, 38: 4 649-4 655.
[39] 崔立强.生物黑炭抑制稻麦对污染土壤中Cd/Pb 吸收的试验研究[D].南京:南京农业大学,2011.
[40] 张伟明.生物炭的理化性质及其在作物生产上的应用[D]. 沈阳:沈阳农业大学,2012.
[41] Chen B L, Chen Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures[J]. Chemosphere, 2009, 76(1): 127-133.
[42] Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5): 1 719-1 730.
[43] 陈再明,陈宝梁,周丹丹.水稻秸秆生物炭的结构特征及其对有机污染物的吸附性能[J].环境科学学报,2013,33(1):9-19.
[44] Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science and Technology, 2008, 42(14): 5 137-5 143.
[45] Gaskin J, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Trans Asabe, 2008, 51(6): 2 061-2 069.
[46] Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use and Management, 2011, 27(1):110-115.
[47] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3 488-3 497.
[48] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11): 1 477-1 488.
[49] 何绪生,张树清,佘雕,等.生物炭对土壤肥料的作用及未来研究[J].中国农学通报,2011,27(15):16-25.
[50] Nguyen B T, Lehmann J, Kinyangi J, et al. Long-term black carbon dynamics in cultivated soil[J]. Biogeochemistry, 2009, 92(1/2): 163-176.
[51] Glaser B, Haumaier L, Guggenberger G, et al. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001, 88(1): 37-41.
[52] Shindo H. Elementary composition, humus composition, and decomposition in soil of charred grassland plants[J]. Soil Science and Plant Nutrition, 1991, 37(4): 651-657.
[53] 安增莉,方青松,侯艳伟.生物炭输入对土壤污染物迁移行为的影响[J].环境科学导刊,2011,30(3):7-10.
[54] 宋延静,龚骏.施用生物质炭对土壤生态系统功能的影响[J].鲁东大学学报:自然科学版,2010,26(4):361-365.
[55] Cao X D, Ma L N, Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science and Technology, 2009, 43(9): 3 285-3 291.
[56] Uchimiya M, Lima I M, Klasson K T, et al. Immobilization of heavy metal ions (CuⅡ, CdⅡ, NiⅡ, and PbⅡ) by broiler litter-derived biochars in water and soil[J]. J Agric Food Chem, 2010, 58(9): 5 538-5 544.
[57] 周建斌,邓丛静,陈金林,等.棉秆炭对镉污染土壤的修复效果[J].生态环境,2008,17(5):1 857-1 860.
[58] Wang F Y, Wang H, Ma J W. Adsorption of cadmium (Ⅱ) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal[J]. J Hazard Mater, 2010, 177(1/3): 300-306.
[59] 刘创,赵松林,许坚.竹炭对水溶液中 Cd (Ⅱ) 的吸附研究[J].科学技术与工程,2009,9(11):3 009-3 012.
[60] 陈再明,方远,徐义亮,等.水稻秸秆生物炭对重金属 Pb2+ 的吸附作用及影响因素[J].环境科学学报,2012,32(4):769-776.
[61] 吴成,张晓丽,李关宾.黑炭吸附汞砷铅镉离子的研究[J]. 农业环境科学学报,2007,26(2):770-774.
[62] 魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72.
[63] Rondon M A, Lehmann J, Ramírez J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions[J]. Biology and Fertility of Soils, 2007, 43(6): 699-708.
[64] Karhu K, Mattila T, Bergstr?m I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study[J].
Agriculture, Ecosystems and Environment, 2011, 140(1/2):309-313.
[65] Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443-449.
[66] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 2007, 300(1/2): 9-20.
[67] Fowles M. Black carbon sequestration as an alternative to bioenergy[J]. Biomass and Bioenergy, 2007, 31(6): 426-432.
[68] Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337(1/2): 1-18.
[69] Asai H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos: 1.Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009, 111(1/2): 81-84.
[70] Shinogi Y, Yoshida H, Koizumi T, et al. Basic characteristics of low-temperature carbon products from waste sludge[J]. Advances in Environmental Research, 2003, 7(3): 661-665.
[71] Uchimiya M, Klasson K T, Wartelle L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 1.Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011, 82(10): 1 431-1 437.
[72] Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5 222-5 228.
[73] 吴成,张晓丽,李关宾.热解温度对黑炭阳离子交换量和铅镉吸附量的影响[J].农业环境科学学报,2007,26(3):
1 169-1 172.
[74] 陈红霞,杜章留,郭伟,等.施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J].应用生态学报,2011,22(11):2 930-2 934.
[75] 祖艳群,李元,陈海燕,等.蔬菜中铅镉铜锌含量的影响因素研究[J].农业环境科学学报,2003,22(3):289-292.
[76] 王鹤.施用硅酸盐和生物炭对土壤铅形态与含量的影响[J].农业科技与装备,2013(4):10-12.
[77] 黄光明,周康民,汤志云,等.土壤和沉积物中重金属形态分析[J].土壤,2009,41(2):201-205.
[78] 韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1 499-1 502.
[79] 王汉卫,王玉军,陈杰华,等.改性纳米碳黑用于重金属污染土壤改良的研究[J].中国环境科学,2009,29(4):431-436.
[80] 林爱军,张旭红,苏玉红,等.骨炭修复重金属污染土壤和降低基因毒性的研究[J].环境科学,2007,28(2):232-237.
[81] 苏天明,李杨瑞,江泽普,等.泥炭对菜心―土壤系统中重金属生物有效性的效应研究[J].植物营养与肥料学报, 2008,14(2):339-344.
[82] Hua L, Wu W X, Liu Y X, et al. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment[J]. Environmental Science and Pollution Research, 2009, 16(1): 1-9.
[83] Uchimiya M, Klasson K T, Wartelle L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 2.Copper desorption isotherms[J]. Chemosphere, 2011, 82(10): 1 438-1 447.
[84] Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environ Pollut, 2011, 159(2): 474-480.
[85] Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environ Pollut, 2010, 158(6): 2 282-2 287.
[86] 佟雪娇,李九玉,姜军,等.添加农作物秸秆炭对红壤吸附 Cu(Ⅱ)的影响[J].生态与农村环境学报,2011,27(5):37-41.
[87] 黄超,刘丽君,章明奎.生物质炭对红壤性质和黑麦草生长的影响[J].浙江大学学报:农业与生命科学版,2011, 37(4):439-445.
[88] 王典,张祥,姜存仓,等.生物质炭改良土壤及对作物效应的研究进展[J].中国生态农业学报,2012,20(8):963-967.
[89] Yan G Z, Kazuto S, Satoshi F. The effects of bamboo charcoal and phosphorus fertilization on mixed planting with grasses and soil improving species under the nutrients poor condition[J]. Journal of the Japanese Society of Revegetation Technology, 2004, 30(1): 33-38.
[90] Lehmann J, da Silva J P, Steiner C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003, 249(2): 343-357.
[91] Topoliantz S, Ponge J F, Ballof S. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics[J]. Biology and Fertility of Soils, 2005, 41(1): 15-21.
[92] Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1/2): 235-246.
[93] Chan K Y, Van Zwieten L, Meszaros I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Soil Research, 2008, 45(8): 629-634.
[94] Asaki T. Utilization of bamboo charcoal in spinach cultivation[J]. Agriculture and Horticulture, 2006, 81(12): 1 262-1 266.
[95] Chan K Y, Van Zwieten L, Meszaros I, et al. Using poultry litter biochars as soil amendments[J]. Soil Research, 2008, 46(5): 437-444.
[96] 张文玲,李桂花,高卫东.生物质炭对土壤性状和作物产量的影响[J].中国农学通报,2009,25(17):153-157.
[97] 姜玉萍,杨晓峰,张兆辉,等.生物炭对土壤环境及作物生长影响的研究进展[J].浙江农业学报,2013,25(2):410-415.
[98] Major J. Biochar application to a Colombian savanna Oxisol: Fate and effect on soil fertility, crop production, nutrient leaching and soil hydrology volume I[EB/OL]. (2013-08-19)http://1813/13491.
[99] Graber E R, Harel Y M, Kolton M, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant and Soil, 2010, 337(1/2): 481-496.
[100] Nichols M, Savidov N, Aschim K. Biochar as a hydroponic growing medium[J]. Practical Hydroponics and Greenhouses, 2010, 112: 39-42.
[101] Elad Y, David D R, Harel Y M, et al. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent[J]. Phytopathology, 2010, 100(9):913-921.
[102] Oguntunde P G, Fosu M, Ajayi A E, et al. Effects of charcoal production on maize yield, chemical properties and texture of soil[J]. Biology and Fertility of Soils, 2004, 39(4): 295-299.
[103] 刘霞.生物炭能否给地球降降温? [N].科技日报,2009-07-12.
关键词:赤泥;重金属吸收;交换状态
中图分类号:X53 文献标识码:A 文章编号:1674-0432(2010)-06-0142-1
2
0 引言
土壤重金属污染主要有铅,锌,铜,汞,砷等,同种金属由于其在土壤中的形态不同,其迁移转化的特点和污染性质也有不同。而赤泥作为工业产品的废品,具有成本低,工艺简单,以废治废的特点,其对土壤中重金属离子,有毒非金属离子等具有修复作用。赤泥修复作用机理主要是赤泥对土壤中的Cu2+、Ni2+、Zn2+、Cd2+、Pb2+有较好的固着性能,使其从可交换状态转变为键和氧化物状态,从而使土壤中重金属离子的活动性和反应性降低,有利于微生物活动和植物生长。
1 试验设计
取研磨过的污染土样和对照土样各100g,分别加入土样3%、5%(w:w)的赤泥。试验设4个处理,分别为未污染土壤,未污染土壤加入赤泥修复,污染土壤,污染土壤加入赤泥修复。实验为期6个月。
2 结果与分析
分别在0、2、4和6个月后取出部分土样,然后风干土壤,过2mm筛。用原子吸收分光光度法测定重金属含量。
2.1 赤泥对长喙田菁生长的影响
6个月后,用赤泥修复后的土样,对于长喙田菁的地上部分的干重平均是2.29克/盆,地下部分的干重平均是1.30克/盆。对比没有添加赤泥的土壤,田菁生长的地上和地下部分均有明显的增重,至53%和61%对比来说,尤其是对于添加5%的赤泥后,产量提高的最为明显,约提高产量61%。
2.2 赤泥对长喙田菁吸收重金属能力的影响
同时可以看到6个月长喙田菁收获后对铅和锌的吸收。赤泥的添加应用大大减少了长喙田菁地上部分所含铅锌和其他重金属的浓度,特别是以添加5%赤泥土样处理效果最好,铅和锌减少达到41.51mg/L-3,79.771mg/L-3,且赤泥水平越高,重金属含量下降越多,这与施用赤泥后,土壤pH明显提高,DTPA提取土壤活性铅锌的明显下降趋势是一致的。但长喙田菁地下部分(根)中铅锌和其他重金属的含量却因施用赤泥而有所提高(302.76mg/L-3,233.78mg/L-3)。一是可能由于赤泥的施用,改善了根系的生长情况,从而增强了其吸收重金属的能力;另一可能是赤泥施用量的提高,根系对铅锌等重金属的固定能力增加,而减少向地上部分的运转。
2.3 添加赤泥对土壤生物有效态铅和锌含量的影响
DTPA提取态重金属通常被用来评估土壤重金属被植物吸收的风险评价,因此DTPA提取态重金属被定义为生物有效态重金属。添加赤泥均可以显著地降低土壤中生物有效态铅的含量,与对照相比,培养2、4和6个月后,添加赤泥处理中生物有效态铅分别下降到23.97、21.036和19.87mg/kg,下降的百分比分别为25.11%、31.13%和33.17%;添加赤泥也可以显著降低土壤中生物有效态Zn的含量。与未添加相比,培养2、4和6个月后,单独添加赤泥处理中生物有效态Zn含量下降的百分比分别为59.17%、63.19%和72.12%。
3 讨论
由于赤泥呈碱性,施用赤泥提高了土壤pH,改变了土壤酸碱状况。与试验开始前相比,施用赤泥能有效降低土壤交换态铅、锌含量,提高土壤碳酸盐结合态和残渣态铅、锌的含量,且施用量越高效果越为显著。这可能是因为,施用赤泥后土壤pH有显著升高,一方面使土壤胶体表面负电荷增加,对重金属离子的吸附能力增强;另一方面可以使土壤中的铁锰等离子形成羟基化合物,提供更多的重金属吸附位点。但施用赤泥提高土壤pH与对土壤中铅、锌的吸附作用各自对土壤中铅、锌形态变化的贡献还有待进一步的研究。
同时本试验发现,施用赤泥可以有效降低土壤中铅、锌的作物有效性,减少田菁对铅、锌的吸收,改善田菁的生长状况并提高田菁的生物量。而且从试验结果可以看出,随着赤泥施用量的提高,其降低作物体内铅、锌含量的效果也更加明显。
4 结论
赤泥碱性较强,通常在pH10以上,添加了赤泥的土壤样品,其pH值显著上升,使碳酸盐在土壤中积累,从而导致了碳酸盐态重金属含量上升,间接降低了土壤中交换态的Pb和Zn的含量。赤泥对吸附土壤重金属离子起着重要的作用,同时具有很好的络合性能,对重金属离子可起到显著的络合吸附作用。经过赤泥处理的污染土壤中有效态重金属有明显下降,因此,对于污灌地土壤重金属污染问题,可考虑应用有色金属行业的副产品或废渣赤泥进行有效修复。而5%土壤的赤泥加入量为合适的土壤改良剂量。
参考文献
[1] Adriano,D.C.Trace elements in terrestrial environments.In biogeochemistry bioavailability and risks of metals.2nd ed. New York,NY:Springer,2001.
关键词 大气颗粒物;重金属;分布特征;来源解析;形态分析
中图分类号 X513 文献标识码 A 文章编号 1007-5739(2013)03-0241-03
大气颗粒物(Particulate Matter,PM),是指大气中除气体之外的物质,包括各种各样的液体、固体和气溶胶,其粒径范围在0.01~200.00 μm[1]。
我国的《环境空气质量标准》(GB3095-2012)中定义:悬浮颗粒物为能悬浮在空气中,空气动力学当量直径小于100 μm的颗粒物,用TSP表示;可吸入颗粒物为悬浮在空气中,空气动力学当量直径小于等于10 μm的颗粒物,用PM10表示;环境空气中空气动力学当量直径小于等于2.5 μm的颗粒物,用PM2.5表示[2]。TSP的粒径范围为0.1~100.0 μm,它不仅包括被风扬起的大颗粒物,也包括烟、雾以及污染物相互作用产生的二次污染物等极小颗粒物[3]。
重金属原义是指比重大于5的金属,如Cu、Pb、Zn、Fe、Co、Ti、Mn、Cd、Hg、W、Mo、Ni、V、Ta、Au、Ag等。生物的生命活动中需要某些微量或者痕量的重金属如Cu、Zn、Mn等来促进生物的生长需要,但大部分重金属如Pb、Cd等并非生命活动所必须,而且所有重金属具有生物积累性,在生物体内富集,超过一定浓度时都具有显著的生物毒性对人体、环境都具有危害。
随着经济的快速发展,工业化进程的加速,重金属的开采、冶炼、加工、使用,使得大量重金属及其化合物以各种形式存在于大气、水体、土壤等中,对环境产生严重污染。由于重金属的毒性和它们通过食物链生物积累导致了严重的生态和健康问题,因此对于重金属污染的研究也成为目前环境研究的热点问题。
大气颗粒物中重金属的来源有很多,大体分为自然源和人为源。自然源主要来自于地壳土壤中的金属,由于气象等因素到大气中。人为源主要是由于人类活动引起的,如汽车尾气排放、燃煤燃料的燃烧等。我国的大气颗粒物中重金属污染比较严重,尤其是城市大气颗粒物中的重金属污染。因此众多学者对我国城市大气颗粒物中的重金属进行了一系列的研究。
1 大气颗粒物中重金属的分布特征
1.1 时间分布
金属元素在大气颗粒物中的时间分布变化显著,往往具有明显的季节变化和日变化规律[4]。闫向阳等[5]对沈阳市环境空气颗粒物中的重金属污染进行研究发现,沈阳市大气PM10中人为源排放重金属除硒(Se)元素含量最大值出现在春季(4月)以外,Pb、As、Zn、Cu等重金属含量最大值均出现在冬季(1月)。而重金属含量最小值均出现在夏季(7月)。刘艳秋等[6]对图们市大气颗粒物中重金属含量及分布特征研究发现:图们市大气颗粒物中重金属含量由高到低的顺序是Fe>Cr>Zn>Pb>Mn>Cu>Cd。伊丽米热・阿布达力木等[7]对新疆乌鲁木齐市大气颗粒物中重金属浓度分布特征进行研究,发现采暖期、非采暖期PM2.5 和PM10中重金属的总浓度除Ni之外其他重金属的浓度采暖期均高于非采暖期。刘 刚等[8]也研究了随着季节的变化杭州市大气PM2.5中重金属,发现PM2.5中金属元素总平均质量百分含量在各个采样点基本上均依春、夏、秋、冬的次序逐渐降低。张志刚[9]也研究了鞍山市各个季节大气中PM10和PM2.5中重金属含量得出1月最高,7月最低,颗粒物中重金属含量随季节变化特征明显。
1.2 空间分布
大气中的重金属浓度随空间分布的不同也有很大差异。近年来,不少学者对不同空间上的重金属的浓度进行了相关研究。在纵向空间研究上,侧重于不同高度大气颗粒物中重金属含量的调查和对比,得出重金属空间分布的规律。
袁媛[10]对河南省开封市大气颗粒物随高度垂直分布变化进行研究,通过对秋季和冬季玉祥酒店和电业局2个采样点各在4个不同高度的PM10和PM2.5中的重金属浓度进行监测,发现各金属元素来源不同垂直分布特征也不相同。
余 涛等[11]对辽宁省的3个典型城市沈阳市、锦州市、葫芦岛市大气颗粒物中重金属元素的分布进行了研究,发现不同城市重金属在颗粒物中的分布、含量有很大的差异。梁 越等[12]对南昌市3个功能区采样点大气颗粒物PM10中的重金属污染特征研究,发现工业区采样点大气颗粒物PM10重金属的浓度远高于交通区和居民住宅区。按重金属污染程度排序依次为Zn>Mn>Pb>Cd>Cu>Cr>Ni。
1.3 颗粒物粒径分布
大气颗粒物中重金属不仅与时间和空间的变化有关,而且还与颗粒物的粒径有关。大气中的重金属大75%~90%分布细颗粒物中[13-14]。
齐学先[15]对河北省保定市大气颗粒物中重金属砷3种价态的污染特征进行了研究,结果如下:三价砷在TSP、PM10、PM2.5中的含量依次上升,分别是0.60、2.41、17.24 μg/g,五价砷的含量依次是0.39、1.06、4.63 μg/g,总砷的含量依次为0.99、3.47、21.87 μg/g。表明对于不同粒径的颗粒物来说,粒径越小,其携带的砷浓度越高,说明粒径越小对砷的载带能力越高。康富华[16]也研究探讨石家庄市大气颗粒物中重金属铅的污染发现金属元素铅随着大气颗粒物比表面积的增大,含量也在增加。
鲁 静等[17]等究了我国西南地区小龙潭、阳宗海和贵阳3个燃煤电厂排放可吸入颗粒物(PM10)中重金属元素(As、Se、Be、Pb、Cd和Co)的分布与富集特征发现,以As、Se、Cd和Pb为代表的元素表现出随PM10粒径的减小其含量总体增大的趋势,其中As和Se随颗粒物粒径的减小,含量上升趋势明显。
林治卿等[18]研究了天津市采暖期不同颗粒物中重金属污染状况发现,PM2.5和PM10中重金属含量在TSP的重量百分比而言,PM10占TSP总量的68.86%,PM2.5占TSP总量的12.80%。而PM2.5对重金属的载带能力明显高于PM10。杜刚[19]和余 涛等[11]通过研究后也认为辽宁省大气颗粒物中重金属更容易富集在PM2.5上,PM2.5中所含有的重金属在PM10中重金属的含量都超过了50%,重金属Cr甚至达到90%。这也表明颗粒物粒径越小,重金属更易富集。
2 重金属的来源解析
大气颗粒物中重金属的来源分析方法一般有聚类分析(HCA)、化学质量平衡(CMB),因子分析(FA)、多重线性回归分析(MLR)、主成分分析法(PCA)、富集因子法(EF)等[20]。其中主成分分析法和富集因子法运用的比较多。王焕顺等[21]用主成分分析法对大连市区大气颗粒物中重金属来源进行了分析,结果表明大连市区大气颗粒物中的Fe、Mn、Pb来源于土壤扬尘,Ni、Cu来源于燃煤排放,Cd的来源可能是化工尘。
富集因子法是最常用的重金属来源研究的分析手段。富集因子法可以判别大气颗粒物中污染元素的人为成因和自然成因[22]。通过计算大气颗粒物中重金属元素的富集程度,将富集因子值大于10的元素判定为人为来源元素。
黄顺生等[23]对南京市大气降尘重金属来源进行研究,用富集因子法,以Fe为参比元素,分析了As、Cd、Cr、Cu、Hg、Mn、Mo、Ni、Pb、Se、Zn等元素富集因子。结果表明,第1类是Cr、Mn,它们的富集因子普遍小于或接近1,平均值分别为1.8、1.0,表明大气降尘中Cr、Mn主要来源于土壤颗粒;第2类是As、Hg、Ni、Cu、Mo,它们的富集因子主要在1~10,表明这些元素除土壤来源外,还可能叠加工业污染的影响;第3类是以Cd、Pb、Zn、Se为典型的元素,它们的富集因子普遍大于10,平均值分别高达28、14、11、29,表明这些元素受到明显的污染。
谢东海等[24]用富集因子法对海口市颗粒物重金属来源分析发现,海口市大气颗粒物中Mn、Cr、V、Ni、Co元素富集因子小于10,相对于地壳来源没有富集,而Pb、Cu、Zn、Cd元素富集因子均大于10,说明这些元素说明这些元素在空气颗粒物中的浓度主要与人类的活动有关。
刘 齐等[25]对柳州市大气PM10中的重金属来源进行了研究,以Mn为参比元素,用富集分析法进行了分析发现除参比元素Mn外,Fe、Zn、Pb、Cd的富集因子均>10,Zn和Cd的富集因子极大。表明PM10中Fe、Zn、Pb、Cd主要不是来自地壳(扬尘),而是与人类活动的污染有关。
路新燕[26]用富集因子分析法对郑州市采暖季和非采暖季TSP、PM10和PM2.5中的8种重金属的富集情况进行了评价。结果表明,颗粒物中的重金属Pb和Cd在采暖期和非采暖期的富集程度最严重,属极重污染元素;Cu的富集程度在经分析的8种重金属的富集程度属中等程度,Cr、Mn、Co、Ni、Be受到的污染较轻。Pb、Cd在粒径小的细粒子上更容易被富集,除此以外,重金属在颗粒物上的富集还受到季节的气候、空气相对湿度等方面原因的影响。
3 重金属的形态分析
同一种重金属元素在不同的化学相中具有不一样的活性,对人体和环境危害程度也不同。因此,对大气环境中重金属的不同形态分析的研究是很有必要的。Tessier et al[27]采用连续提取法把固体颗粒金属的存在形态划分为可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和残渣态等5类。Tessier连续提取法也被国内外学者广泛应用于大气环境重金属形态分析中。BCR 三步萃取法是欧共体标准局在Tessier分析方法的基础上提出的,该方法按步骤定义为弱酸提取态(HAc提取)、可还原态(NH2OH・HCl提取)、可氧化态(H2O2)[28]。采用改进的BCR连续提取法将重金属元素形态分为酸可提取态、氧化物结合态、有机物结合态和残渣态。其中,酸可提取态最为活跃,在外界pH值降低时容易释放出来;氧化物结合态和有机物结合态相对稳定,但在外界氧化还原条件改变时易发生转化;残渣态比较稳定,不易迁移和转化,对环境危害较小。
谢华林等[29]用Tessier五步提取法分析了大气颗粒物中重金属的形态,发现Zn元素主要以水溶态、碳酸盐态、氧化态和有机态4种有效态存在;Pb元素主要以不溶态存在,同时有一部分以水溶态和氧化态存在;Cu元素在细粒子中均匀分布在4种有效态中,在粗粒子中则均匀分布在水溶态、氧化态和有机态中;V主要分布在不溶态和氧化态中;Mn元素主要分布在水溶态和氧化态中;Co元素则主要分布在水溶态、氧化态和不溶态中。
彭景[30]研究了大气TSP和PM10中重金属不同形态占总量的百分比的空间分布,发现在TSP重金属中,可交换态浓度超过总量的50%的重金属有Pb、Zn、Cd、Ni、Mn;在PM10重金属中,可交换态浓度超过总量的50%的重金属有Pb、Cd、Ni、Mn,说明这几类重金属环境活性更强,危害更大。
钱 枫等[31]采用改进的BCR连续提取法对北京交通环境PM10中重金属形态进行了分析,用F1、F2、F3、F4分别代表酸可提取态、氧化物结合态、有机物结合态和残渣态重金属浓度,得出Cr中F3>F4>F1>F2,Ni中F3>F1>F4>F2,Cu中F1>F3>F2>F4,Zn 和Pb为F1>F2>F3>F4,Cd中F2、F3、F4中浓度很小,几乎检测不出。Zn的酸可提取态浓度最大,为0.282 9 μg/m3。而张慧峰等[32]测定了北京春季大气中重金属含量及2种组成形态含量,酸可提取态和不溶态,大气TSP和PM10中酸可提取态百分比大小分别为Cd>Pb>Cu>Cr>Ni和Cd>Cu>Pb>Cr>Ni,Ni的酸可提取态百分比最小,Cd的酸提取态含量占总含量的50%以上,远大于其他重金属元素。
田艳丽[33]分别采用Tessier五步分级连续提取法和BCR法测定了大气颗粒物样品重金属Hg、As、Pb的形态分布,并对其结果进行了比较。Tessier五步提取法得出Hg、As、Pb的可交换态、碳酸盐结合态、铁锰氧化物结合态和有机结合态4种形态百分率之和(即为可提取态)分别为4.6%、25.3%和30.3%,说明大气颗粒物中Pb的迁移性最大,As次之,Hg最小。BCR提取法测得Hg、As、Pb的酸溶态、可氧化态和可还原态3种形态百分率之和(即为可提取态)分别为7.1%、25.6%和11.5%,说明大气颗粒物中As的迁移性最大,Pb次之,Hg最小,与Testier法结果有所不同。
4 结语
大气颗粒物中的重金属铅对人体和环境的危害是不容忽视的,只有对天气颗粒物中的重金属颗粒物的物理特征、化学成分进行很好的研究,才能从根本上预防和治理天气颗粒物中的重金属,从而为人气环境质量提供依据。在过去的几年里,各国专家学者在大气颗粒物重金属方面开展了大量的研究,并在大气重金属的来源、化学特征、迁移与转化及其生物有效性方面取得了一定的成果,但仍然有较多的问题需要深入研究。如PM2.5和PM0.1 中重金属含量和成分的分析、重金属在环境中的迁移和转化对生物有机体的生理生态的影响,尤其是大气重金属污染的综合治理亟待加强和深入。
5 参考文献
[1] 奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社,2004:148.
[2] 国家环境保护局.环境空气质量标准GB3095-2012[S].北京:中国环境科学出版社,2012.
[3] 尹洧.大气颗粒物及其组成研究进展(上)[J].现代仪器,2012,18(12):1-5.
[4] 李万伟,李晓红,徐东群.大气颗粒物中重金属分布特征和来源的研究进展[J].环境与健康杂志,2011,28(7):654-657.
[5] 闫向阳,杜刚.沈阳市环境空气颗粒物分布特征及重金属污染状况分析[J].环境保护科学,2007,33(3):20-22.
[6] 刘艳秋,韩成哲,金丽灿,等.图们市大气颗粒物中重金属含量及分布特征[J].中国环境监测,2009,25(2):63-66.
[7] 伊丽米热・阿布达力木,迪丽努尔・塔力甫,阿布力孜・伊米提.乌鲁木齐市大气颗粒物中重金属浓度的分布特征[J].环境科学与技术,2012,35(8):107-111.
[8] 刘刚,滕卫林,杨忠乔.杭州市大气PM2.5中部分元素的分布[J].环境与健康杂志,2007,24(11):890-892.
[9] 张志刚.鞍山市环境空气颗粒物中重金属元素分布特征[J].中国环境监测,2009,25(5):103-106.
[10] 袁媛.开封市近地层大气颗粒物垂直分布特征研究[D].开封:河南大学,2010:1-74.
[11] 余涛,程新彬,杨忠芳,等.辽宁省典型地区大气颗粒物重金属元素分布特征及对土地质量影响研究[J].地学前缘,2008,15(5):146-154.
[12] 粱越,刘小真,唐星华,等.南昌市大气颗粒物中重金属的污染特征研究[J].科技广场,2010(8):150-154.
[13] 张书海,沈跃文.淮安市区总悬浮颗粒物中重金属元素初探[J].仪器仪表与分析监测,2002(3):36-37.
[14] 罗莹华,梁凯,刘明,等.大气颗粒物重金属环境地球化学研究进展[J].广东微量元素科学,2006,13(2):1-6.
[15] 齐学先.保定市大气化境质量评价及砷污染特征分析[D].保定:河北大学,2009:1-26.
[16] 康富华.石家庄市大气颗粒物中重金属铅污染的研究[C]//第十四届二氧化硫氮氧化物、汞、细颗粒物污染控制技术与管理国际交流会论文集.北京:中国环境科学学会,303-307.
[17] 鲁静,邵龙义,张涛,等.燃煤排放可吸入颗粒物(PM10)中重金属元素分布与富集特征[J].地球化学,2009,38(2):147-152.
[18] 林治卿,袭著革,杨丹凤,等.采暖期大气中不同粒径颗粒物污染及其重金属分布情况[J].环境与健康杂志,2005,22(1):33-34.
[19] 杜刚.辽宁省大气可吸入颗粒物中重金属及多环芳烃污染特征研究[J].环境保护科学,2007,33(2):1-3.
[20] 李凤菊,邵龙义,杨书申.大气颗粒物中重金属的化学特征和来源分析[J].中原工学院学报,2007,18(1):7-11.
[21] 王焕顺,万显烈.重金属在大连市区大气颗粒物中的时空分布特征及来源的研究[C]//辽宁省环境科学学会2008年学术年会论文集.沈阳:辽宁省环境科学学会,2008:140-144.
[22] LIU Q T,DIAMOND M E,GINGRICH S E,et al. Accumulation of metals,trace elements and semivolatile organic compounds on exterior window surfaces in Baltimore[J].Environmental Pollution,2003(122):51-61.
[23] 黄顺生,华明,金洋,等.南京市大气降尘重金属含量特征及来源研究[J].地学前缘,2008,15(5):161-166.
[24] 谢东海,陈楠,薛英,等.海口市春季大气颗粒物浓度及重金属元素分析[J].安徽农业科学,2012,40(4):2172-2175.
[25] 刘齐,熊莎莎,刘文军.柳州市空气可吸入颗粒物中重金属污染特征分析[J].环境科学导刊,2012,31(1):76-79.
[26] 路新燕.郑州市空气颗粒物污染状况调查及研究[D].郑州:郑州大学,2010:1-59.
[27] TESSIER A,CAMPBELL P G C,BISSON M.Sequential extraction procedure for the specification of particulate trace metals[J].Anal Chem,1979(51):844-850.
[28] 冯素萍,刘慎坦,杜伟,等.利用BCR改进法和Tessier修正法提取不同类型土壤中Cu、Zn、Fe、Mn的对比研究[J].分析测试学报,2009,28(3):297-300.
[29] 谢华林,张萍,贺惠,等.大气颗粒物中重金属元素在不同粒径上的形态分布[J].环境工程,2012,20(6):55-57.
[30] 彭景.成都市大气重金属污染特征及环境危害性评价的探讨[D].成都:成都理工大学,2008:1-67.
[31] 钱枫,杨仪方,张慧峰.北京交通环境PM10分布特征及重金属形态分析[J].环境科学研究,2011,24(6):608-614.
分类与危害
尽管现在对重金属的区分还没有严格的定义,但化学上可根据金属的密度把金属分成重金属和轻金属。密度大于4.5g/cm3的金属称为重金属,如:金、银、铜、铅、锌、镍、钴、铬、汞、镉、锰等大约45种。对人和环境有害的重金属主要有,汞、镉、铅、铬以及类金属砷等,它们的生物毒性比较显著。此外,铜和锰等也对人体有害。
重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。重金属在人体内能和蛋白质及酶等发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中累积,造成慢性中毒。
重金属对人体造成伤害各有不同。比较常见的有――
【铅】 可以伤害人的脑细胞,有致癌致突变等作用,可影响儿童智力正常发育,主要使其脑浅,智力低下。
【汞】 可以造成大脑、神经、肝、肾等的破坏,表现为头痛、头晕、肢体麻木和疼痛、肌肉震颤、运动失调、焦虑、不安、思想不集中、记忆力减退、精神压抑等。此外,汞还会导致肝炎、肾炎、蛋白尿、血尿和尿毒症等。
【铬】 对人体的毒害为全身性的,对皮肤有刺激作用,引起皮炎、湿疹、气管炎、鼻炎和变态反应,并有致癌作用。
【砷】 砷及其化合物进入人体可蓄积于肝、肾、肺、骨骼等部位,特别是在毛发、指甲中贮存。砷主要是与细胞中的酶系统结合,使许多酶的生物作用受到抑制失去活性,造成代谢障碍。砷要经过十几年甚至几十年的体内蓄积才发病。砷慢性中毒主要表现为末梢神经炎和神经衰弱,皮肤色素高度沉着和皮肤高度角化,发生龟裂性溃疡。急性砷中毒多见于消化道摄入,主要表现为剧烈腹痛、腹泻、恶心、呕吐,抢救不及时可造成中毒者死亡。
【镉】 进入人体的镉主要累积在肝、肾、胰腺、甲状腺和骨骼中,可引起骨痛病。此外,镉可造成贫血、高血压、神经痛、骨质松软、肾炎和分泌失调等病症。镉的急性中毒以呼吸系统损害为主,镉的慢性中毒以引起肾小管病变为主的肾脏损害,亦可引起其他器官的损害。
食物中的重金属
人们从食物中吸收重金属主要是从海(水)产品和蔬菜中吸收,而海产品和蔬菜也是从环境,主要是从水体、土壤和空气中吸收并富集重金属后,由人吃下这些食品而产生日积月累的效果,最终可能导致重金属中毒和致癌。
现在,鱼和贝类已成为重金属铜、锌、铅、镉、汞、砷的重要来源。不同的水产品中的重金属含量是不同的。研究人员发现,生活在水体上、中层的鱼类鱼体中的重金属积累量,主要取决于水中的重金属浓度,而底栖鱼类的重金属集累则取决于水和沉积物中的重金属浓度。以铜、锌、铅、镉为例,它们在鱼类、甲壳类、头足类(如章鱼、乌贼、鹦鹉螺、枪乌贼等)和贝类等不同动物类群体中的含量不一。铜的含量依次为,头足类>甲壳类>贝类>鱼类;锌、铅、镉的含量则依次为,头足类>贝类>甲壳类>鱼类;绝大部分海洋动物体中重金属平均含量依次为:锌>铅>铜>镉。
蔬菜中的重金属也是比较多的,原因也在于蔬菜可以富集空气、水和土壤中的重金属,而且不同的蔬菜富集重金属的量是不同的。以镉为例,蔬菜可分为高富集、中富集和低富集镉三种类型。第一种是镉高富集蔬菜,以叶菜类最大;中富集蔬菜以果菜类为主;低富集蔬菜以根菜及豆类为主;镉富集最小的蔬菜是瓜类,几乎没有超标现象。
例如,研究人员对成都地区蔬菜的检测表明,镉富集浓度(污染浓度)的蔬菜依次为:菠菜>芹菜>大白菜>韭菜>黄瓜>油菜>花菜>番茄>甘蓝。其中菠菜和芹菜的镉超标最高。对合肥市蔬菜的检测表明,镉富集浓度依次为葱蒜类>叶菜类>根茎类>豆类>茄果类>瓜类。此外,不同的研究结果也表明,芹菜和莴笋对镉具有较强的吸收富集能力,这两种蔬菜镉的超标也最高。
另外,即使是同一种蔬菜,不同的部位富集重金属的浓度也不一样。例如,菠菜中的镉含量大小依次为菜叶>根>茎秆;青菜中镉的含量为菜叶>茎秆;芹菜的茎和叶蓄积镉的能力差异更大,叶比茎的富集系数高出3.3倍。因此,菜叶相对蔬菜其他部位对镉和其他重金属的富集能力更强。
六种食物对抗各种污染
【牛奶驱铅】牛奶所含的蛋白质成分能与体内的铅结合成可溶性化合物,不但阻止人体对铅的吸收,还可促进铅的排泄。
【海带抗辐射】 海带的提取物可减轻同位素、射线对机体免疫功能的损害,并抑制免疫细胞的凋亡,从而具有抗辐射作用。
【小米抗噪声】 在噪声环境中,人体内的B族维生素消耗很大,应多食富含B族维生素的食物,如小米、燕麦、玉米等。
【血豆腐抗粉尘】 猪血、鸡鸭血中的血浆蛋白,经胃酸和消化酶分解后,可产生解毒、滑肠的物质,并与入侵人体的粉尘、有害金属微粒发生反应,变成不易被人体吸收的物质,从消化道排出体外。
【黑木耳抗镉】 慢性镉中毒会造成人体肾脏损害,或引起骨骼疾病。黑木耳含有的植物胶质,可吸附通过消化道进入体内的镉,使其排出体外。
【大蒜抗亚硝胺】 长期进食腌制、熏烤制品是消化道恶性肿瘤的主要危险因素,而大蒜对亚硝胺的合成有明显的抑制作用。
寻找“吃”毒植物
土壤的植物修复技术因其安全、廉价而成为世界上该领域研究和开发的热点。植物修复就是筛选和培育超富集植物,利用植物把土壤中的有毒重金属元素吸收起来,再将植物收获,回收植物中的重金属物质。植物修复既能大量减少土壤中的重金属污染,又为回收利用重金属资源提供了可能。