首页 > 文章中心 > 对继电保护的理解

对继电保护的理解

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇对继电保护的理解范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

对继电保护的理解

对继电保护的理解范文第1篇

关键词:继电保护;模拟保护;微机化;课程改革

作者简介:王思华(1968-),男,江苏南通人,兰州交通大学自动化学院,副教授;赵峰(1966-),男,上海人,兰州交通大学自动化学院,教授。(甘肃 兰州 730070)

基金项目:本文系兰州交通大学教学改革项目资助的研究成果。

中图分类号:G423.07     文献标识码:A     文章编号:1007-0079(2012)01-0058-02

由于电力电子技术、计算机技术、网络技术及保护算法的不断发展,微机保护已经得到了普遍采用,尤其是近年来测量、控制及保护技术的融和,新建的变电所和发电厂其二次系统一般都安装了综合自动化系统。在对老变电所和发电厂的改造过程中,遇到保护设备的更新,无一例外地都采用了微机保护装置。因此,随着模拟式机电型保护装置退出和二次设备的不断更新,电力系统继电保护装置的微机化已基本形成[1-2]。面对这样的技术现实,结合目前继电保护教学方面教材特点,如何让学生在几十学时里,既能对继电保护的基本原理掌握好,又能对微机保护装置有所掌握,这是摆在广大继电保护教师面前的一个比较大的现实问题。为了能解决和应对这个难题,对继电保护教材和教学内容的调整势在必行。

一、保护的微机化对传统继电保护的影响

目前,在现有电力系统继电保护教材中,大多数教材在讲述保护的基本原理的过程中,一般是结合模拟型继电器来分析保护原理,尤其是机电型继电器,这样就花费了大量的篇幅用于分析介绍继电保护装置和传统继电保护的二次电路[3]。当然通过传统的机电型保护的动作过程来让学生学习和掌握保护原理是行之有效的方法,学生也容易理解,问题是在理解完了保护基本理论后,如何让学生来认识微机保护,这在大多数教材中并没有体现。而是对具体模拟电路或机电型保护元件参数的选择、元件老化、频率变化、过渡过程、管压降(门槛值)、非线性问题等进行讨论,不同类型的继电器,其动作原理是不同的,结构也不同,特别是用机电型继电器来实现较为高级保护,其结构尤为复杂,学生要掌握它很不容易,同时调试应用都不便。而微机保护,无论其功能如何,其硬件构成基本相似,无非是CPU及其扩展电路有所不同[1]。因此上述那些要讨论的因素就相对涉及较少(或不存在)。由此可见,保护的微机化对继电保护的教学内容影响很大。下面就继电保护的课程内容进行讨论。

1.电流保护的影响

电流保护单元是继电保护课程的一个最基本、最重要的单元内容,也是在实践中应用最广的内容,通过这个单元学习让学生对电力系统继电保护有一个基本的认识。学好、理解、掌握和应用尤为重要。在目前大多数继电保护教程中,在讲述这一部分原理时,大多采用模拟型器件来讲解保护,比如电压、电流、时间等机电型继电器或晶体管型继电器组成的保护电路。对于机电型继电器,通过它们来认识继电保护是比较直观的,对于学生刚接触继电保护是有好处的,其本身原理、结构简单学生容易掌握,而对于由晶体管构成的继电保护,相对来说结构要复杂些,尤其是对电子电路没有学好的学生,让他们通过晶体管保护来理解继电保护的原理难以可行。而目前电流保护装置基本是微机电流保护,它与传统的电流保护的组成结构有本质的区别,学生在学好电流保护后对微机电流保护装置不会用,不会整定,不会调整。

2.功率方向和距离保护的影响

功率方向保护及距离保护是一种较高等级的保护,其基本原理比较容易掌握,但其模拟器件的原理比较麻烦,一般的教材中花费了比较大的篇幅去介绍,如模拟式方向元件一般在线路出口相间短路时有死区,为防止在死区内短路时保护装置拒动,一般都利用RLC回路的谐振对故障前的电压相位实现记忆,记忆时间一般为70ms左右。如记忆时间过长,由于RLC回路的振荡频率与系统频率的差异,会使得记忆电压与故障前的电压有相位差,这样可能导致反向出口短路时误动。在模拟式方向阻抗继电器中为克服出口两相短路的死区,还加入了第三相电压,其目的是在出口两相短路时保证极化电压能保持与故障前的电压同相。这些问题可以很方便在微机保护中利用算法加以解决,基本不需要什么硬件。再如阻抗继电器的接线,为了保护证接线的灵敏度和测量准确问题,提出了“阻抗继电器的接线方式”,微机式的距离保护是作为一个整体引入三相电流和三相电压,不再借用电抗变换器参数的调整来改变整定阻抗和整定阻抗角,故没有由于电抗变换器的特性(转移阻抗)变化而导致的动作阻抗下降的问题,也就是说不存在精确工作电流的概念(只有A/D变换的分辨率问题)。

3.变压器保护及发电机保护的影响

在变压器及发电机保护的单元里,其保护的核心是差动保护问题,大多数教材中主要是以BCH2型继电器作为差动保护的元件来介绍的,这种模拟元件主要问题是结构复杂,另外接线和动作的整定调整十分不便,而微机差动保护一般是带制动的折线型保护,它对接线形式没有太多的要求,是一种整体接线方式,对于不同的方式它由软件来进行运算分析,消除角度误差等因素的影响,另外整定不需要算出相应的元件的动作匝数及制动匝数等,而且整定通过良好的界面来进行,方便易于实现。

二、课程教学的改革

电力系统教学改革的目的是让学生通过有限时间的学习,掌握保护的基本原理和方法,能够自主进一步深入学习或应用继电保护的原理去解决电网中的实际问题。

1.课程改革的思路

继电保护课程的改革以基本原理为主,包括保护的基本原理、保护装置和继电器的基本原理。以模拟保护具体电路为辅,对于复杂模拟电路不作介绍,减轻学生的学习负担。保护装置结构以逻辑关系为主。不同型号的保护装置只是实现方法不同,但逻辑关系不变,在模拟式保护中它体现为框图或逻辑图,在微机保护中它体现在程序的流程上。保护装置和继电器的应用举例以微机型为主,可适当兼顾尚未退役用得较多的模拟式装置和常用继电器。在教学的实践过程,应留出适当(不多)的时间,介绍当前继电保护最新的技术和原理,同时鼓励学生课后自主实验。

2.课程改革的具体方法

(1)教学手段的改革。在教学过程中,教学手段十分关键,教学手段的好坏直接关系到能否激发学生的学习积极性,也就是说能否抓住学生。目前常用的教学手段主要是板书式教学、多媒体教学及讨论式教学等。这些教学应该是经过长期实践,证明是可行的,但对于不同的教学内容如果采用一种方式效果不理想,在教学过程中不能激发学生的学习动力,因此需针对不同的教学内容,合理采用不同的手段进行。比如在讲解算法时,需要数学的推导,这时笔者主要采用板书式教学,让学生顺着老师的思路进行理解学习,在讲解保护设备时,采用多媒体比较好,让学生一下子了解设备及其一些应用,通过声光一下吸引学生学习保护设备的积极性,提高学生学习动力和对新设备的认知。再如对于故障的分析学习,笔者采用讨论法进行,充分调动学生积极性,发挥学生的思考及参与能力。因此,合理运用不同的教学手段是调动学生学习积极性的重要因素。

(2)教学内容的改革。

1)继电保护教学内容的改革。继电保护教学内容改革是核心,没有一个好的内容,无论怎么改都不会成功,问题是继电保护的内容很多,怎么从众多的内容中选取是关键所在。笔者认为内容的改革需遵循够用、发展、创新这样的层次展开。所谓够用就是继电保护内容要包含基本的保护理论原理,比如常规的电流保护、功率方向保护、距离保护及差动保护等,对于这些原理的学习要完全掌握。对于利用传统保护构成的装置的学习,要简单化学习,不必对具体的器件及复杂的模拟电路进行分析,如功率方向元件的幅值比较、电压相位的记忆、变压器差动继电器匝数的调整等电路,主要是理解整个保护的逻辑关系,这样学生容易掌握理论,又不至于陷入对模拟复杂电路的理解。所谓发展就是继电保护的理论学习要与时俱进,对于目前不用的一些陈旧理论要敢于删除,对于新的理论要补充。由于微机保护的大力发展,许多过去用模拟电路难以解决的问题,通过算法却很容易解决,如功率保护的接线形式,差动保护的接线等问题。这些问题在模拟保护中靠装置的反复移相变换进行解决,其理论比较复杂,学生在学习过程中掌握不好。现在只介绍一个过程和处理的方法,通过算法比较容易实现。当然由于微机保护引入,保护课程发生了大的变革,这要求学生需要更多的知识面,比如计算机、通信及较高的数学知识。这些知识虽然在基础课有所学习,但并没有相关的应用。因此,如何将上述相关知识应用到保护原理中,这对学生又是一个问题,所以笔者在教学过程中,主要强调保护的结构及逻辑关系,并对常用算法进行推导分析,引导学生进行数学理论的应用,注重微机保护模块的学习。

2)继电保护相关课程内容的改革。与继电保护的相关教材有 《继电保护原理》、《微机保护原理》、《变电站综合自动化系统》、《自动装置》,这几门功课的内容重复和交叉,比如在《变电站综合自动化系统》这门课中,涉及到微机保护的数据采集单元,微机保护的相关算法单元,这些内容又与《微机保护原理》的数据采集单元及保护原理相重叠。这几门课程如果独立开设,既耗费了很多学时,又不利于学生理解这些课程的相互关系和相关课程整体意识的构建,所以应统筹考虑和选取教学内容,以适合工作岗位的需要,对继电保护密切相关的课程在教学内容上,课时上尝试进行大幅度地整合。

(3)实验的改革。本科“继电保护”教学必须与工程实践结合紧密。继电保护是比较难学的课程,其原因在于继电保护技术涉及到电力系统的运行、稳定、安全以及一、二次设备的技术细节,同时,其本身也是一门包含高深理论和最新科技的工程技术学科。作为一门实践性很强的学科,继电保护的实验教学尤其重要,它是“电力系统继电保护原理”课程教学工作的重要组成部分。通过实验教学,不仅可以让学生更好地理解理论教学的内容,而且可以让学生掌握必要的工程技术、测试方法、先进设备和学科的基本研究方法,同时还可以培养学生的科学素养、实验技能和创造性,所以必须要重视教学实验环节。

1)实验室的建设更新。目前传统继电保护以继电器为主的继电保护实验室一般都已具备,通过传统实验可以使学生通过实际的保护二次接线的训练,清晰直观地观察保护动作过程和现象。此外在保护实验中可灵活模拟各种二次接线错误,然后让学生根据错误结果分析原因,培养和锻炼学生的分析能力;还可让学生按实验要求自己设计实验方案、接线、调试实验,使他们的动手能力得到提高。对于初学者来说,通过对常规保护的电气接线、工作原理、动作过程的学习,也为理解微机保护和做好微机保护实验打下良好的基础。另一种就是加强微机保护实验室建设。由于微机保护的接线少,信号质量相对较高,操作过程也相对简单,可以设计内容不同、形式多样的实验内容对学生进行专门训练,使学生较好地掌握保护测试技能、对滤波及保护算法进行初步的设计,甚至对自己设计的保护方案调试等。

2)改革实验教学的要求和方法。作为工科院校的本科生,工程实践能力是其基本素质,也是社会的基本要求。完善实验环节,积极推进实验教学环节的改革[5]。对于本科继电保护的教学采用任务驱动法,在实践过程中,可以按照电网施工的流程,将一些简单实际的小型工程全程照搬入实验室,老师提供相关的图纸资料,学生们几人一组,按照任务要求,进行保护的施工安装,调试,对保护出现的故障进行分析查找,完成所调试设备的实验报告,进一步提高学生的分析解决实际问题的能力,这就要求学生具备较强的二次识图能力。另一方面,由于微机保护装置功能强大,它能满足众多实验内容的需要。

(4)考评的改革。考评是检验学生对知识学习和应用掌握一个重要环节,不同的考评制度可以检验出学生学习过程中的不同能力,因此,要促使学生学好知识,掌握原理,学会应用,需要老师设计好不同的考评方案。考核评价体系的改革要立足于正确引导学生在打好坚实理论基础的基础上,培养和提高分析问题与解决问题的能力,鼓励学生发挥创新思维和创新能力[6]。从基础理论知识的掌握、专业技能的运用、设计性实验及综合性实验的实施等多方面进行综合考核,加大实验环节的考评比例,从制度上鼓励学生进行发散思维、求异思维的培养。传统考评往往是采用闭卷考试方式,这种方式有它的优点和公证性,但不能很好检验学生动手能力和应用继电保护原理知识去解决实际问题的能力。对于原理性内容学习采用传统闭卷考试,解决问题和分析问题能力采用具体实作考评。对于新原理的学习认识采用小论文形式拓展,最后分别设计一个系数求和,完成对一个学生的综合评价。

三、课程改革的结果分析

任何一项改革,最终要经过实践检验,当然教育实践的检验有其特殊性,它是一个长期的复杂的过程。笔者在学校教改立项的支助下,对电气2008级的电气工程的4个班中的其中两个班的继电保护进行了课程内容教学改革,从上课的效果上看,学生上课活跃程度增加,学生对继电保护原理的理解增强,对微机保护设备的认识和实践能手动力大大提高,在课程结束后,请具有现场丰富经验的继电保护工件者根据目前现场对继电保护工作人员理论知识和基本技能进行出题测试,最后测试结果成绩分析为两组,见表1、表2。

通过表1及表2的对比,可以明显反映出改革前与改革后的成绩的变化,通过对比和对学生的问卷调查,学生相对更喜欢改革后的教学方式。这也说明了这次课程内容调整和教学方式改革是比较成功的。

四、结论

大学的教育是培养高素质人才的一个重要阶段。优化的教学内容,多样的教学方式,合理的实践是培养学生掌握基本原理,引导学生开拓创新及具有一定分析与解决问题能力重要环节。对继电保护教学内容和方法的改革,经过验证是可行的。

参考文献:

[1]许建安.电力系统微机继电保护(第2版)[M].北京:水利电力出版社,2008.

[2]蒋先国.高速铁路四电系统集成[M].成都:西南交通大学出版社,2010.

[3]罗士萍,顾艳.从保护的微机化浅析继电保护课程内容的调整[J].南京工程学院学报(社会科学版),2004,(2).

[4]田有文,孙国凯,周启龙.突出继电保护教学中学生的创新能力培养[J].沈阳农业的大学学报,2005,(1).

对继电保护的理解范文第2篇

关键词:变电站综合自动化;功能特点;继电保护

作者简介:李惜玉(1971-),女,广东揭阳人,广东工业大学自动化学院,高级实验师;谢创利(1991-),男,广东揭阳人,广东工业大学自动化学院本科生。(广东 广州 510090)

基金项目:本文系2011年广东工业大学大学生创新基金项目(项目编号:402102026)、2012年广东工业大学大学生创新基金项目(项目编号:xj201211845021)、广东省电气工程及其自动化特色专业基金项目(项目编号:402102299)的研究成果。

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)17-0102-02

电力系统的猛速发展给继电保护提出了更高的要求,继电保护装置是电力系统重要的组成部分,也是电力系统安全、稳定和可靠运行的重要保证之一。继电保护数字仿真也已成为继电保护研究、设计和教学等各方面不可缺少的工具,电力系统变电运行中微机继电保护的参数确定、各种事故及继电保护操作等需要通过仿真来认识。然而,仅限于软件仿真,无继电保护装置、电缆等二次设备,没有真实的二次信号,操作缺乏真实感,仅靠提供一个模拟环境是无法达到教学应用和科研研究要求的。[1,2]

TQXBZ-III多功能继电保护及变电站综合自动化实验培训系统是基于实时仿真技术的数字、物理混合仿真平台,该实验平台把实际的变电站继电保护运行“移植”到实验台中,非常接近现场变电继电保护运行,可以有效地加强学生对各种物理现象的认识,并进一步掌握和理解物理概念。[3,4]

一、多功能继电保护及变电站综合自动化实验培训系统的技术特点

TQXBZ-III多功能继电保护及变电站综合自动化实验培训系统采用了试验台结构。该试验台由TQWX-III微机型继电保护实验测试仪、TQXBZ-III多功能微机型实验装置、常规保护继电器、成组保护接线图、控制回路模块、按钮开关、万能转换开关、保护模式切换开关及直流电源、信号灯、蜂鸣器等附件构成,并提供了三套配套软件:《继电保护特性测试系统软件》、《电力网信号源控制系统软件》和《多功能微机保护实验装置管理程序软件》。TQXBZ-III多功能继电保护及变电站综合自动化实验培训系统面板示意图如图1所示。该实验系统主要有以下特点:

1.适用性强

该系统既可满足“电力系统继电保护原理”、“电力系统微机保护”、“发电厂电气部分”等相关课程实验教学的需求,也可作为学生课程设计、毕业设计和创新研究的开放性平台。这样不仅节省了多种实验设备的占地面积,同时也减少了花费。

2.接近电力系统实际

采用“微机型继电保护试验测试仪”替代了由传统实验系统调压器、移相器、滑线电阻和测量仪表等构成的“地摊”式实验设备,与电力系统进行继电保护的试验方法完全相同。同时也能够让学生了解到继电保护的最新测试技术,而不仅仅是停留于过去的陈旧技术。

3.实验现象直观

配备PC机,可直观显示实验过程中的各种测试数据、动作特性曲线、波形图等。对于数字式继电器可通过PC机操作修改整定值,方便简单。另外,可通过PC机选择变量的变化方式,可手控亦可程控。

4.组态灵活

装置均具有联网功能,利用多套实验系统可组态任意结构的电力系统,以满足实验教学、课程设计、创新研究的要求。

5.接口开放

考虑到面对学生教学的特点,该实验系统中的核心设备接口开放,可作为二次研究、开发平台,学生可自己开放程序下载到装置硬件中运行,构成具有任意定制功能的新装置。[5,6]

二、多功能继电保护及变电站综合自动化实验培训系统的功能

多功能继电保护及变电站综合自动化实验培训系统主要具有以下功能:继电保护课程实验、微机保护课程实验和发电厂电气课程实验,详见图2。

1.继电保护课程实验

为了加深学生对继电器动作原理的认识和了解,该实验系统配备了电磁式电流继电器、电压继电器、功率方向继电器、阻抗继电器、差动继电器等继电器,以加强学生对继电保护动作装置的认识;也可将多个继电器连接构成常规成组继电保护,以深入观察、学习不同保护的配合使用。

(1)常规继电器特性实验。本装置可通过PC机控制TQWX-III微机型继电保护试验测试仪,让其发出各种电流和电压信号,从而对各种继电器的特性进行测试,且可自动获取继电保护装置的动作信号,方便记录。同时,试验台上配备了24V电源及指示灯构成的信号指示回路,方便对继电器动作信号的观察。

(2)成组继电保护实验。试验台提供了一个典型的一次系统接线图用以成组保护实验,可从其上获取信号,将多个继电器连接构成常规成组继电保护,便可进行成组继电保护的实验。

2.微机保护课程实验

电力系统微机保护课程实验包括数字式继电器特性实验、成组微机保护实验及微机保护与继电保护配合动作实验三部分。

(1)数字式继电器特性实验。该系统利用单片机或DSP技术,由TQWX-III微机型继电保护实验测试仪产生信号,通过向装置硬件中下载相应的程序模块,便可实现数字式电流继电器、电压继电器、功率方向继电器、差动继电器、阻抗继电器、反时限电流继电器、零序反时限电流继电器、负序反时限电流继电器、零序电流继电器、负序电流继电器、零序电压继电器、负序电压继电器、零序功率方向继电器及负序功率方向继电器等多种常规继电器的功能。

(2)成组微机保护实验。该实验装置实验台上有成组保护实验模型图,通过从该模型图上获取电压、电流信号,可实现包括10kV线路微机保护装置、35kV线路微机保护装置、110kV线路微机保护装置、变压器微机保护装置、电容器微机保护装置、发电机微机保护装置、电动机微机保护装置等保护的功能。

(3)微机保护与继电保护配合动作实验。将多个常规继电器组合构成继电保护,利用TQXBZ-III多功能微机保护实验装置实现需要的微机保护,在成组保护实验模型图上完成微机保护与继电保护配合动作实验。此实验更贴近实际电力现场,通过此实验可使学生更加熟悉实际的电力系统继电保护,并加深对保护装置的理解。

3.发电厂电气课程实验

该试验台可对断路器控制回路及中央信号进行实验。通过这些实验,可以使学生了解、掌握断路器控制回路的工作原理及其继电保护的接线方法,以及发生事故时的应对方法和相应的操作。比如其中的闪光继电器构成的中央信号实验,通过此实验学生能够熟悉万能转换开关的位置与信号灯的状态的对应关系,并能够根据其对应关系做出相应的操作。这与在发电厂及变电站中的操作相同,能够提高学生的动手能力及锻炼学生在实际生产中对事故的应对能力。[5]

三、多功能继电保护及变电站综合自动化实验培训系统的主要应用

1.实验教学

自多功能继电保护及变电站综合自动化实验培训系统在广东工业大学投入使用以来,已成为“电力系统继电保护原理”、“电力系统微机保护”、“发电厂电气”等课程教学的实验平台。该实验平台以微机型继电保护试验测试仪作为实验信号源,符合电力系统现场的实验方式,并配套功能强大的电力系统信号源综合控制系统软件,具有丰富的组态功能。不但能够进行实时参数分析计算,而且可以进行任意设定点的故障分析运算,并能控制测试仪实时输出设定选配点在正常运行和故障情况下的二次电流、电压信号,为学生提供具体、直观、真实的学习环境,对继电保护实验教学有了明显的改进。在传统教学方式的基础上,实现了继电保护的测试、操作、监视和仿真,已成为电气工程及其自动化专业电力方向现代化、数字化教学必不可少的工具。

2.创新性实验

微机型继电保护试验测试仪和多功能微机保护实验装置均具有联网功能,多套(四台以上)实验培训系统联网方便实现了变电站综合自动化的实验仿真。其中,微机型继电保护试验测试仪是一台性能良好的高精度信号源设备,为电力系统继电保护测试提供了连续可调节的电流和电压信号。多功能继电保护及变电站综合自动化实验培训系统中的核心设备接口开放,可作为学生创新研究和开发平台,提高了学生的创新思维与实践能力,加强了学生分析问题和解决问题的能力。

3.科研平台

多功能继电保护及变电站综合自动化实验培训系统中的多功能微机保护实验装置其硬件平台采用双处理器结构,处理器采用80C196KC芯片,一块CPU作为保护CPU,主要进行数据处理;另一块CPU作为监控管理和通信CPU,用于人机界面接口与通信。两块CPU之间通过双口RAM芯片(IDT7134)进行数据交换,方便实行二次程序开发。[7]教师和研究生可在装置的硬件与软件基础上进行有关继电保护的设计和研究,比如通过自主编写、修改接口程序,完成保护相应功能并实时模拟电网短路故障时保护的动作情况。

四、结束语

创新能力培养是高等学校教育的核心内容,是培养创新人才的关键。电气工程及其自动化专业电力方向引入多功能继电保护及变电站综合自动化实验培训系统作为先进的教学手段,能把课堂上所学的复杂的、抽象的理论融入到教学中,完整、具体、直观地仿真,有效地培养了学生的实验动手能力,提高了学生综合分析问题的能力和运用能力,不断推动了教学实践,让学生通过仿真更全面地掌握了电力继电保护知识,从而培养了学生的创新能力。多功能继电保护及变电站综合自动化实验培训系统已逐渐成为电气工程及其自动化专业教师和学生现代化的教学与科研手段。

参考文献:

[1]周有庆,周成林,彭红海,等.变电站综合自动化数字物理仿真培训系统[J].电力系统及其自动化学报,2010,(3):113-117,122.

[2]王宇,陈铸华.变电站微机继电保护培训系统的研制[J].湖南电力,2010,(1):16-19,29.

[3]周有庆,邵霞,彭红海.多功能微机保护与变电站综合自动化实验培训系统[J].大众用电,2004,(5):23-24.

[4]张镇.继电保护及测控数字物理混合仿真培训系统的应用[J].东北电力技术,2011,(3):40-43.

[5]周有庆,等.TQXBZ-III多功能继电保护及变电站综合自动化实验培训系统实验指导书[Z].

对继电保护的理解范文第3篇

【关键词】电力系统;继电保护;应用;可靠性

继电保护作为一种自动装置,继电保护能反映电力系统中各个元件的运行状态,并发出相关指令信息,如减负荷,跳闸,断路等。其逻辑组成:保护对象、给定值测量部分逻辑部分执行部分跳闸,断电。测量部分的值为从监视的对象中获得,其与给定值进行比较进行逻辑判断,就可以判断电器元件是否处于正常工作状态,逻辑判断相对较复杂,因其必须根据测量值,可能出现的顺序组合进行比对以确定究竟是什么元件出现故障。执行部分是根据逻辑判断的结果发出相关指令,如跳闸,断电,实现继电保护的目的。由以上分析得知,继电保护指令的发出只会出现在电力系统故障时。

1.继电保护装置在电力系统中的应用

继电保护被广泛的应用于电力系统中,为确保继电保护的可靠运行,应切实做好以下工作:

(1)在对定值或二次网路进行变更时,应进行整定值或保护网路 有关注意事项的核对,并对变更内容进行详细登记。如时间,更改人,更改前数值等,在管理上还需要强化签名制度,确保继电保护的给定值正确无误。因为一旦给定值出现失误,那么继电保护也将失去意义。另外,对主设备的保护进行更改时还必须进行试运行或相关实验,如差动保护取用CT更换,就应作六角图实验合格。

(2)严格继电保护裟置与二次回路的巡检。尽管继电保护属于自动装置,但是对于电力系统而言,最可靠的手段还是提前认为判断,识别电力系统的异常部分,这就有必要加强对以下巡视设备的检查:开关、压板位置是否正确,是否按调度要求投入;熔断器接触是否良好,继电器触点是否有抖动或烧毁现象;同路接线是否正常 如松脱、发热、存在焦臭味等;还包括CT、PT回路、指示灯、运行监视灯、光字牌、警铃以及相关事放报告、更改报告是否正常。

(3)在硬件上要提高其可靠性。对成熟的继电保护装置而言,其在软件功能上应相差不大,但在电子元件上,由于其一旦被封装就很难检查,而且现代元器件的尺寸和数量要求在高生产率情况下,出现问题是不可避免的。在使用中要针对性能、应力和防护方面进行正确的挑选和使用,保证在组装到电路中时,没有缺陷,同时电子元器件不能出现超限应力或损伤。

2.基于状态树的继电保护可靠性分析

继电保护系统是一个由软件系统和硬件系统(电压互感器、电流互感器、断路器、二次回路等)和软件系统构成的一个装置。因此,其可靠性可以分别找出影响硬软件系统的各类因素,并建立相应的计算模型,最后运用马尔科夫状态法综合求解出保护的可用度

2.1 影响硬件系统的可靠性因素与模型

硬件保护系统由以下模块组成:①继电保护装置。它由以下部分组成,即:电源供应模块;中央处理模块,完成保护的分析、计算和逻辑判断;数字量输入模块;模拟量输入模块,即采集滤波、采样、保持、多路转换和模数转换等多种信号;数字量输出模块,即输出各种指令信号;通讯模块和人机接口模块。如打印、键盘、显示等:在各个元件上,影响他们的可靠性因素主要有:②二次回路,多为线路老化,,或者元件连接接触不良、松动而造成故障;③电压电流互感器。它负责信号的采集,错误主要发生在二次接线错误和接线的连接松动;④继电保护的辅助装置。它主要用作二次回路的切换及作为断路器操作的辅助控制。如交流电压切换箱、三相操作继电器箱、分相操作继电器箱等;⑤装置的通信、通道及接口。该部分的容易发生通信阻断,主要原因在于纵联差动保护的光纤、高频保护的收发讯机、微波的通信接口和相关网络接口本身就是通信装置的薄弱点;⑥断路器及其操作机构。它的结构复杂,这直接影响到其使用的可靠性,进而直接影响着故障能否完全切除。

由上可知,继电保护的可靠性主要取决于保护和断路两部分,如果以AB表示两者的正确执行,和表示两者的非正确执行,那么运用状态树可以表示为图1:

在图1中,②③④⑤⑥为5个模块,如果以P2,P3,P4,P5,P6分别表示着5个模块的失效率,以P1表示出现率,也即表示断路器失效,P为断路器可靠动作率,那么整个系统的失效率P0为:

P0=P*( P2+P3+P4+P5+ P6)+P1

在实践中,各个图1硬件状态树的状态分析,保护装置的重要程度可以通过下行法求最小割集的方法计算。因此某个部件所占的比例越大,表明其对硬件系统的失效贡献也就越大,反则反之。另外,继电保护的可靠性还必须考虑到器件质量系数、电路复杂系数、温度加速系数、电压应力减额系数、为封装复杂系数、为应用环境系数、器件成熟系数、模块中的器件数等多个因素。

2.2 影响软件系统的可靠性因素与可靠度计算

软件系统的可靠性主要取决于软件算法,如算法的逻辑严密性、科学性、计算效率等。就逻辑性和科学性而言,软件算法主要完成以下任务:根据测算量和给定值,以各个硬件的可靠性系数为基础,运用排列组合,逻辑分析等方法对电力系统的故障进行有效性分析。显然,如果算法出错,将直接导致继电保护装置失效,甚至导致更大的问题出现。就计算效率而言,因为继电保护是在非常短的时间内做出判断,并发出相关指令以便保护电力系统,因此效率低下的计算速度显然不符合要求,否则待计算完成,事故已经发生,损火不可挽回。导致软件出错的因素分为两个方面,一是人为的因素:如需求分析定义不够准确,软件开发人员和用户对需求的理解不同;软件结构设计失误和算法原理,这是比较严重的失误;编码错误,这可能导致计算效率低下,计算逻辑不严谨等;测试不规范,导致末发现可能存在的问题,一旦电力系统出现故障,继电保护失效;定值输入出错;二是机械因素。如新硬件的出现导致原有的软件系统性能下降,不能满足继电保护的要求;电力系统老化,隐故障过多,增加软件系统的计算量等。但是总体上看,软件的可靠性还是可以通过概率来进行判断和分析。如编码错误几率,定值输入错误几率等。相比较硬件而言,它的挑战性在于它较少依赖硬件,而是依赖人的可靠性建模和测量。实践中通常采用Logarithmic Exponential模型来研究保护软件的可靠性,其计算方法为:,其中θ为故障减少率系数;λ0为初始故障概率;μ为系统运行中累计发现的错误。

3.结论

掌握和了解继电保护故障的原因和处理的基本方法是提高继电保护故障和事故处理水平的重要条件,提高了继电保护工作人员现场校验保护装置的工作效率,从而保证了电力系统继电保护及安全自动装置的可靠稳定运行。

对继电保护的理解范文第4篇

关键词:电力自动化;标准化作业;安全运行管理;对策

中图分类号:TM774 文献标识码:A 文章编号:1006-8937(2014)35-0082-03

在整个配电网络系统中,继电保护装置是一个至关重要的设备,它能够及时并快速地处理和诊断各种配电网络故障,并能够及时处理各种问题,使故障线路得以自动恢复,增强整个配电网络的管理水平。因此,必须充分发挥继电保护装置的作用,使继电保护能够与自动化控制系统相结合,增强电力系统的故障处理能力。针对电力自动化系统中出现的各种问题,应当及时提出系统、完善的继电保护安全运行管理对策,从整体上提升电力自动化继电保护的水平,从而提高配电网络的安全性与可靠性。

1 开展标准化的作业工作

在继电保护中,因工作中布置的安全措施不完善或者工作终结时应恢复而未恢复接线经常导致事故或障碍发生。在开展的“无违章员工、无违章班组、无违章企业”工作中,强调了标准化作业和危险点分析与控制工作。

目前,要对包括继保专业在内的各专业工作中存在的危险点进行认真的分析,并认真贯彻执行《电网建设施工作业指导书》,将安全防范关口前移,做好对风险的差异化,克服工作中习惯性违章的毛病,使事故发生的可能性大大降低。

1.1 案 例

2014年8月25日,河源供电局继保人员在220 kV河源站进行220 kV母差及失灵主一保护验收接入工作。本次接入的支路有#1主变、#2主变、#3主变、新河甲线、新河乙线、河联甲线、河联乙线、热河甲线、热河乙线、旁路及母联共11条支路。接入及测试采用以下方法:

①采用万用表电阻档对线,确认线芯正确。

②母差保护屏的电缆芯线先接入,线路保护屏接入标号为101的芯线时,在母差保护屏用万用表电压档测量正电位是否正常;线路保护屏接入标号为R133的芯线时,在母差保护屏用万用表测量负电位是否正常。事件前运行方式如图1所示,事件后运行方式如图2所示。

19时05分,完成了河联甲线、新河乙线等8个间隔二次回路接入工作。

19时13分,工作班人员何某某在完成220 kV河联乙线对线工作后,等待线路保护侧工作人员接入期间,母差保护屏处工作人员想再次确认已接入间隔电位是否正确。工作人员何某某在使用万用表电阻档完成河联乙线两侧对线后,没有将挡位切换至电压档,直接测量已带电的河联甲线间隔,表笔导通母差屏1C6D1、1C6D3端子(出口跳河联甲线跳闸回路),造成开关跳闸。由于站内事故音响声音小,而保护屏相隔控制台较远,该工作人员未听到事故音响,继续进行跳其他回路间隔测量,再次误导通已接入的新河乙线跳闸回路(母差屏1C7D1、1C7D3端子),造成新河乙线开关跳闸。此时,现场监护人员发现万用表测试声音异常,立刻制止了工作人员继续测量。出口跳闸回路示意图如图3所示。

1.2 事件定级

依据“35 kV以上输变电设备一般误操作、误碰误动、误(漏)接线、误整定、误调试、调度或变电站监控过失”认定为三级事件。

1.3 原因分析

1.3.1 直接原因

工作班组人员在没有确认万用表挡位的情况下,误用电阻档测量已带电的河联甲线、新河乙线跳闸出口回路,造成河联甲线2226开关及新河乙线2218开关跳闸回路通过万用表误导通跳闸。

1.3.2 间接原因

工作班人员现场作业不规范,没有做足二次安全措施,对母差跳闸出口回路认识不足,未能理解二次回路一经接入即视为带电设备的安全警示,现场监督不到位。

①现场工作人员工作随意,在没有通知工作监护人的情况下,自行测量已带电的河联甲线、新河乙线跳闸出口回路;监护人员监护意识不强,未能及时制止不规范的行为。

②二次安全措施单中未针对已接入间隔制定隔离措施(使用绝缘胶布隔离),埋下了后续作业过程中发生误测量的隐患。

③作业全过程对工作危险点评估不足,作业前只有

《10~500 kV输变电及配电工程质量验收评定标准》,未制定相应回路接入的作业表单,危险点控制措施卡没有针对本项工作提出具体风险控制措施。

④变电站综合自动化改造后事故音响设备不够响,河联甲线跳闸时,工作人员没能第一时间听到事故音响信号,导致再次误导通新河乙线跳闸回路,造成事件扩大。

1.4 暴露的问题

①基层班组人员对风险分析不全面,安全意识淡薄,作业不严谨,行为不规范,风险管控能力不强,现场安全监护不到位,未能有效监督作业人员行为。

②施工方案风险辨析不足,没有针对性防范措施,方案审查过程把关不严。工程全过程安全监护不到位,没有及时发现现场作业的安全隐患。

③安全技术交底不足,班前会流于形式,作业风险点传递不到位,工作班成员未能理解作业风险点。

④工作票填写不规范,危险点控制措施卡无针对性。验收过程未执行验收表单,安全措施落实不到位,无确认记录。

⑤作业方法不恰当,导致作业风险提高,安全措施不足,未对已接入的运行间隔做好隔离措施,未能有效防止误导通已接入回路。

⑥班组业务培训不到位,班组人员业务水平不高。

2 电力自动化继电保护的特征

在电力系统的运行过程中,继电保护可以及时检测线路的故障问题,并能够实现自动处理,确保电力系统的正常运行。现阶段,科学技术日新月异,电力系统化也逐渐突破了传统的管理模式,将更多高技术含量的设备运用到配电网络中,使继电保护方式得以不断的更新和完善,也增强了继电保护的快速反应能力。与以往的配电保护设备相比,目前的配电保护装置运用了较为先进的继电保护技术,在技术水平方面已取得了很大的突破和飞跃,在仪表检测等方面充分利用计算机技术和网络技术,事故信号可以通过计算机系统全面地显示出来。电子技术也带动了继电保护装置的转变与更新,使继电保护装置能够实现自动检测与处理,增强了整个配电网络的安全性,在继电保护的集成化程度上也得以提高,也便于继电保护装置的安装与调试。另一方面,继电保护装置的操作也更为便捷,具有了更加全面和强大的功能,增强了配电系统的稳定性与可靠性。总而言之,继电保护装置充分运用了计算机与网络技术,并有效运用了电力技术和通信技术,具有更强的性能特点,能够适应较为恶劣的工作环境,并具有抗干扰和防雷击等功能,提升了电力系统的服务能力与服务水平。

3 电力自动化继电保护的安全管理策略

3.1 确保继电保护装置的性能与质量,做好继电保护的

选型设计

为了确保配电网络的安全稳定运行,必须要增强继电保护装置的灵敏性和可靠性,构建更加稳定的继电保护系统。要根据电力系统的运行状况选择合适的继电保护装置,并确保及时、准确地安装相关保护装置,确保继电保护装置在故障发生时能够及时发生动作。为了增强继电保护的稳定性,降低电力系统的安全隐患,继电保护装置不能随意干扰配电系统的运行,防止继电保护装置给电力系统带来安全隐患。要将可靠性作为继电保护的重要原则,并要确保电力系统在故障发生时能够做出快速和敏捷的反应,增强继电保护装置的速动性与灵敏度,及时发现和排除电力线路存在的故障和问题,降低故障对电力线路的损坏。要通过继电保护装置的应用,实现线路的自动重合,并能在问题发生时启动备用电源,缩小故障的影响范围,增强电力系统的可靠性与稳定性。对于配电网络系统来说,继电保护可以及时对故障作出迅速的反应,并对线路中的各种设施进行保护。如果线路出现故障,继电保护装置能够及时判别故障发生的位置,并对故障线路发出跳闸指令,将配电网络的故障元件与整个系统相隔离,避免故障造成更大的损坏,确保电力系统的安全运行。

3.2 做好继电保护装置的调试与安装,增强继电保护运

行的安全性

在继电保护的安装和运行时,要将安全性和可靠性放在第一位,要根据电力系统的运行要求配置合理的继电保护装置,并不断提高继电保护的质量,提高继电保护装置的技术含量,确保配电网络可以稳定安全运行。要严格遵循相关的要求进行安装、选型和调试,并做好施工和维护过程中的管理工作,通过后台监控仔细检查安装和维护的每一个细节,确保安装施工的准确无误,认真细致地做好各项施工环境,并明确每位工作人员的责任与权限,做到合理分工、权责明确,实现各部门的有机协调和配合,共同做好继电保护装置的安装和维护工作。总而言之,只有加强继电保护调试与安装过程的监管,才能如期完成施工目标,并维护好各种设备,促进电力系统自动化系统的发展。

3.3 完善线路网络的安装,做好电力线路的运行维护

要严格管理配电网络线路的安装,并做好电力线路和继电保护的施工验收,依照相关管理规范做好安全运行管理工作。在具体的验收过程中,应当根据继电保护设备的特性做好性能测试,确保各项设备的抗干扰能力和遥控能力都符合电力系统的要求,提高电力系统的安全水平。要根据继电保护装置的特征,制定出相匹配的管理方法与操作规范,控制好继电保护装置的运行环境,贯彻落实好继电保护的相关管理制度。对于验收过程中的相关数据、图纸和报告书等资料,要进行妥善的保管,做好数据内容的备份,并交由上级主管部门存档,便于今后的电力系统管理和维护,为今后电力系统的安全管理提供数据支持,起到指导和借鉴作用。根据电力系统的管理制度,加强对工作人员的培训与教育,通过各种形式的培训活动提高他们的专业能力与技术水平,使他们能够熟练掌握各项设备的运行与管理要领,掌握接线的情况和运行要求,及时准确地发现系统中出现的故障,更加准确地对电力设备的运行情况进行预测与分析。

4 结 语

继电保护安全运行管理是一项复杂的工作,必须要根据配电系统的实际情况,做好继电保护的控制和管理。要根据继电保护的相关制度和实际需求制定出详细的管理和维护测量,做好选型、施工、调试与安装工作,并做好试运行和维护的保养工作,严格管理继电保护装置的运行环境,提高继电保护装置的安全性与可靠性,为电力系统带来更大的经济效益与社会效益。

参考文献:

[1] 陈学建.电力自动化继电保护相关安全管理问题探析[J].中国电力教育,2013,(17).

对继电保护的理解范文第5篇

关键词:智能变电站 技术 继电保护 影响

中图分类号:TM77 文献标识码:A 文章编号:1672-3791(2013)01(c)-0113-01

1 智能变电站及其技术特征

通过《智能变电站技术导则》可知,智能变电站涵义为:运用先进、低碳、环保及可靠的智能设备,使变电站符合通信平台的网络化、全站信息的数字化与信息共享的标准化等要求,并能自动完成有关信息的测量、采集、计量、控制及监测等功能,还可依据需求对电网的智能调节、实时自动控制与在线分析等高级功能给予支持,有效实现变电站间互动或者电网调度等的变电站。在ICE61850的标准下,智能变电站充分体现了设备智能化、网络化、交互标准化与应用互动化等技术特征,其中,一次设备智能化作为智能变电站基础建设,目前较多应用的是常规设备与智能组件所构成智能型的一次设备,像智能变压器及智能断路器等,具有真正意义的智能型一次设备并未投入运行,电子互感器与光纤网络的应用,使得一次与二次设备间的数据交互实现了完全数字化,传统意义上的二次回路被弱化,二次与一次设备间的通信连接所使用的是高速光纤网络,有效实现了二次设备资源及数据共享,智能变电站设备间的数据通信执行ICE61850的标准,不同设备生产厂家均执行同一标准,有效简化了设备安装与检修等流程。

2 智能变电站的架构体系

智能变电站结构并不是常规站间隔与主控设备的方式,它的逻辑构架可概括为三层两网络,三层为过程层、间隔层与站控层,两网络为过程层网络与站控层网络,主要在三层中间,如图1所示。在智能变电站中,对继电保护来说,过程层包含一次设备与之有关智能组件等,如隔离开关、变压器、互感器及高压断路器等,其作用为采集数据、检测各种设备的状态,并控制命令执行等;间隔层主要包含各种监控设备与继电保护等,其作用为实现各间隔设备监视、控制与保护等;而站控层主要由数据前置机、人机交互设备、工作站及服务器等所构成,其作用为传输整定值的召唤与修改,并录波文件的传送等,有效实现变电站集中控制。智能变电站中的继电保护网络所使用规则亦是ICE61850的标准,从模型上,将原来继电保护装置划分成多个的逻辑设备,还划分成采样值处理、保护算法与跳闸回路等逻辑节点;从数据上看,详细划分了继电保护的数据种类,并覆盖了目前继电保护的应用数据,扩展了数据种类方法;从通信协议看,其通信服务需要依照性能与类型对通信协议给予映射。与传统变电站比较,智能变电站并不以装置作为继电保护的组织形态,而是以保护功能的模块化作为组织形式,保护的分散或集中形式不再依赖装置,主要取决自网络性能与保护需求,使得继电保护工作更为灵活,有效满足了电网保护需求。

3 智能变电站技术下的继电保护影响

3.1 数据信息与保护原理影响

从继电保护内的数据信息角度看,智能型的变电站技术所带来影响为下列方面,其一,电子互感器代替了电磁互感器,使得继电保护元数据产生了很大变化,传统电磁互感器中的一些算法与整定原则要重估与优化,电子互感器所带来的数据延迟与同步等问题,给继电保护也带来了影响,要对其进行深入评估,在线性度、响应速度与频带宽度等方面优势,会对继电保护产生新算法与新源里;其二,在ICE61850的标准下,二次信息实施统一建模,让继电保护的数据处理与利用方法产生了很大变化,随着ICE61850的应用,不同设备间的互通互联及互换等,给IED设备及二次信息分离奠定了基础,大量信息数据存储挖掘,保护配置与双重化,以及动态迁移组态等均带来了新的保护组态与保护原理;其三,继电保护的数据传输方法也发生了改变,由二次电缆连接变成了信息网络传输,信息网络传输让跨间隔保护变得灵活简便,促使了新实现方法与保护原理的产生,网络的可靠性与实时性受到关注,处理小概率数据延迟、丢包与误码等成为继电保护原理、算法与机制的新课题。

3.2 对继电保护的实现机制、调试及维护等方面的影响

从继电保护的实现机制来看,智能型的变电站技术也带来了很大影响,打破了原有的采样、计算与出口的一体化形式,数据信息、保护对象及装置不再进行绑定,让数据动态能实时调用及存储,不同系统数据的统一管理与不同功能应用变成了可能,极大降低了保护设备及过程网络的交互需要及复杂性,对保护功能组态、迁移与广域保护提供了数据信息的交换平台;还改善了二次回路中的不可测控问题,可实时掌握网络数据的可靠状态,极大提高了继电保护中的可靠水平,原有继电保护很容易形成信息孤岛问题,应用智能变电站的对等交互技术模式,不必与保护装置进行绑定,有效实现了数据信息共享。从调试及维护等角度来看,继电保护的运行模式与保护形态产生了较大变化,在测试方法及周期等维护标准方面存在滞后性,继电保护的二次回路监测,让保护设备的状态检修变得可能,标准统一,让变电站建模出现一体化,一旦变电站实施扩建或者变更时,对配置文件给予动态修改成为智能变电站所遇新问题,并且智能变电站的设计、维护及调试等,需要设计院、业主、设备商及调试单位等,进行反复协调与方案修改,当单位投入运行后,难以摆脱厂家及调试单位等依赖性,为电网运行带来了安全上的隐患,限制了智能变电站广泛应用。

参考文献

[1] 吴小云.对智能变电站技术的探讨[J].广东科技,2011(10).

相关期刊更多

电气工程应用

部级期刊 审核时间1个月内

中机国际工程设计研究院有限责任公司

核化学与放射化学

北大期刊 审核时间1-3个月

中国核工业集团公司

膜科学与技术

北大期刊 审核时间1-3个月

中国蓝星(集团)股份有限公司