首页 > 文章中心 > 继电保护装置的基本组成

继电保护装置的基本组成

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇继电保护装置的基本组成范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

继电保护装置的基本组成

继电保护装置的基本组成范文第1篇

【关键词】继电保护;速动;微机化;网络化

Abstract:Power system relay protection is guaranteed an effective technology to ensure the safe operation of power systems and to improve economic efficiency technology.The concept,the structure,the basic tasks of power system relay protection and the basic requirements of power system on it are elaborated in this paper,the dveloping history of relay protection is reviewed,the development status is discussed,at last,the direction of future development of relay protection is forecasted.

Key words:relay protection;quick-operation;computerization;networkiing

1.继电保护的概念、组成、任务及其基本要求

1.1 继电保护的概念和基本组成

继电保护技术通常是指根据电力系统故障和危机安全运行的异常工况,提出切实可行的对策的反事故自动化措施。

一般来说,一套继电保护装置由3个部分组成,即测量部分、逻辑部分和执行部分,其结构原理图如图1所示。

图1 继电保护装置的结构原理图

(1)测量部分。测量被保护装置的工作状态电气参数,与整定值进行比较,从而判断保护装置是否应该启动。

(2)逻辑部分。根据测量部分逻辑输出信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障类型和范围,确定保护装置如何动作。

(3)执行部分。根据接收到的逻辑部分的信号,完成跳闸、发出信号等动作。

1.2 电力系统中继电保护的基本任务

继电保护是保证电力系统安全运行、提高经济效益的有效技术,其基本任务:

(1)自动的、迅速的、有选择性的将故障元件从电力系统切除,迅速恢复非故障部分的正常供电;

(2)能正确反映电气设备的不正常运行状态,并根据不正常工作情况和设备运行维护条件的不同发出信号,以便值班人员进行处理,或由装置自动调整;

(3)与供配电系统的自动装置,如自动重合闸装置ARD、备用电源自动投入装置APD等配合,根据电网运行方式,选择短路类型,选择分值系数,缩短事故停电时间,提高供电系统的运行可靠性。

1.3 电力系统中对继电保护的基本要求

判断继电保护装置是否符合标准,必须在技术上满足以下条件:选择性、速动性、灵敏性和可靠性这四个基本要求。而对于其他一些较轻微的故障,继电保护要求也因此降低了,发生故障时可动作于发信号来满足保护条件即可。

(1)选择性

当电力系统中线路或设备发生短路故障时,负责本段线路胡设备的继电保护装置会动作,当其拒动时,会由相邻设备或线路的保护装置将故障切除;

(2)速动性

电力系统发生故障时,电力系统中继电保护装置应能够快速地将故障切除,防止对人或电力设备、公共财产造成不必要的伤亡损失降低设备的损坏程度,提高系统并列运行的稳定性;

(3)灵敏性

当电力系统中线路或设备发生短路故障时,电力系统保护装置的及时反应动作能力,能够满足灵敏性的要求的继电保护,在规定范围内发生故障时,不论短路点的短路的类型和位置如何,以及短路点是否存有过渡电阻,都能够正确反应并动作,即要求不仅在系统的最大运行方式下三相线路短路时能够可靠动作。电力系统中保护装置的灵敏度大小是由灵敏系数来衡量;

(4)可靠性

即是继电保护设备能够安全稳定的工作动作,不误动、不拒动是对继电保护装置最根本要求。

选择性、速动性、灵敏性和可靠性这四个基本要求既相互联系又相互制约,我们应视具体问题而定,辩证的利用这四个要求合理做出机电保护装置的设定。

2.继电保护发展历程与现状

电力系统的发展带动了继电保护的不断发展。在二十世纪初期,电力电网系统的发展,继电器广泛开始在电力系统的保护中应用,这个时期是继电保护装置技术发展的开端。自二十世纪五十年代到九十年代末,在四十多年的时间里,电力系统继电保护装置完成了发展的四个阶段,从电磁式继电保护装置到晶体管式的继电保护装置再到集成电路的继电保护装置及微机继电保护装置。

十九世纪后期,电力系统结构日趋复杂,电力系统的飞速发展,短路容量的不断增大,到二十世纪初期产生了作用于断路器的电磁型的继电保护装置。虽然在一九二八年电力电子器件已开始与保护装置相结合,但电子型的静态继电器的大量生产和推广,只是在当时五十年代晶体管与其他的固态元器件发展起来之后才能够得以实现。静态继电器具有较高的灵敏度及维护简单、作速度、寿命长、消耗功率小、体积小等优点,但容易受外界干扰和环境温度的影响。随后在一九五六年出现了应用计算机研发的数字式继电保护。大规模的模集成电路技术飞速发展,微型计算机和微处理机普遍的应用,极大地推动了数字式继电保护技术开发与研究,目前微机式数字保护技术正处于日新月异的研究与试验阶段,并已有少量装置已电力系统的容量逐渐增大,应用范围越来越广是当今电力电网企业所面临的一个重要问题,仅仅是将系统的各元件的继电保护装置设置完善,远远不能避免。电力电网中因长时间停电造成的事故与经济损失。当电力电网系统正常运行被破坏时,尽可能的将其影响的范围限制到最小,负荷停电的时间减小到最短这是电力系统保护的任务。因此必须从电力系统的全局出发,研究的故障元件被相应的继电保护装置动作并切除后,系统将呈现何种状况,如何尽快的恢复正常运行等等。此外,炉、机、电任一部分的故障都将影响到电能的生产安全,特别是在大机组和大电力系统中的相互协调和影响正成为电能生产安全的重大课题。因此,保证炉、机、电的安全运行已经成为继电保护的一项重要任务。

3.继电保护的未来发展方向

随着计算机技术、电子技术、通信技术的飞速发展,人工智能技术如遗传算法、人工神经网络、模糊逻辑、进化规模等相继在电力系统继电保护的领域研究中应用,电力系统继电保护技术已向网络化、计算机化、一体化方向不断发展。

3.1 继电保护的计算机化

按照著名的摩尔定律,芯片上的集成度每隔18-24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机与DSP芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。

我国在2000年220kV及以上系统的微机保护率为43.99%,线路微机保护占86%,到2003年底,220kV以上系统的微机保护已占到70.29%,线路的微机化率达到97.6%。实际运行中,微机保护的正确动作率要明显高于其他保护,一般比平均正常动作率高0.2-0.3个百分点。

继电保护装置的计算机化是不可逆转的发展趋势。电力系统对微机保护的要求不断提高,除了保护基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信功能,与其他保护、控制装置和调度联网以供享全系统数据、信息和网络资源的能力、高级语言编程等。

3.2 继电保护的网络化

网络保护是计算机技术、通信技术、网络技术和微机保护相结合的产物,通过计算机网络来实现各种保护功能,如线路保护、变压器保护、母线保护等。网络保护的最大好处是数据共享,可实现本来由高频保护、光纤保护才能实现的纵联保护。另外,由于分站保护系统采集了该站所有断路器的电流量、母线电压量,所以很容易就可实现母线保护,而不需要另外的母线保护装置。

电力系统网络型继电保护是一种新型的继电保护,是微机保护技术发展的必然趋势。它建立在计算机技术、网络技术、通信技术以及微机保护技术发展的基础上。网络保护系统中网省级、省市级和市级主干网络拓扑结构,以及分站系统拓扑结构均可采用简单、可靠的总线结构、星形结构、环形结构等。分站保护系统在整个网络保护系统中是最重要的一个环节。分站保护系统有两种模式:一是利用现有微机保护;另一个是组建新系统,各种保护功能完全由分站系统保护管理机实现。由于继电保护在电网中的重要性,必须采取有针对性的网络安全控制策略,以确保网络保护系统的安全。

3.3 继电保护的智能化

随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法不断被应用于计算机继电保护中,近年来人工智能技术如专家系统、人工神经、网络、遗传算法、模糊逻辑、小波理论等在电力系统各个领域都得到了应用,从而使继电保护的研究向更高的层次发展,出现了引人注目的新趋势。例如电力系统继电保护领域内出现了用人工神经网络(ANN)来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一种非线性问题,距离保护很难正确做出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。

随着人工智能技术的不断发展,新的方法也在不断涌现,在电力系统继电保护中的应用范围也在不断扩大,为继电保护的发展注人了新的活力。将不同的人工智能技术结合在一起,分析不确定因素对保护系统的影响,从而提高保护动作的可靠性,是今后智能保护的发展方向。虽然上述智能方法在电力系统继电保护中应用取得了一些成果,但这些理论本身还不是很成熟,需要进一步完善。随着电力系统的高速发展和计算机、通信等各种技术的进步和发展,可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

3.4 保护、控制、测量、数据通讯一体化

在实现继电保护的计算机化和网络化的前提下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它获得的任何被保护元件的信息和数据传送给网络控制中心或任意终端,即实现了保护、控制、测量、数据通讯一体化。如果将保护装置就地安装在室外变电站的被保护装置旁,则可以免除大量的控制电缆。

现在光电流互感器(OTA)和光电压互感器(OTV)已处于研究试验阶段,将来必然在电力系统继电保护装置中得到应用。

4.结论

随着电力系统的高速发展和计算机技术、网络技术和人工智能技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,由数字时代跨入信息化时代,发展到综合自动化水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

参考文献

[1]杨奇逊.微型机继电保护基础[M].北京:水利电力出版社,1988.

[2]陈向东.电力系统网络型继电保护模式探讨[J].电力信息化,2009,7(1):38-40.

[3]张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000.

[4]葛耀中.新型继电保护与故障测距原理与技术[J].西安:西安交通大学出版社,1996.

[5]吕卫胜.人工智能技术在电力系统继电保护中的应用[J].山东电力技术,2006,147(1):61-63.

继电保护装置的基本组成范文第2篇

关键词:船舶;电力系统;安全事故;继电保护

实现船舶自动化,大大减轻船员劳动量。然而,就目前船舶电力系统运行情况的分析,了解到电力系统极易出现故障,最终会威胁船舶电力系统运行的高效性。若想实现传播电力系统运行的高效性与安全性,必须要重视继电保护工作,以降低故障的发生概率。

1船舶电力系统继电保护的基本任务及具体要求

1.1电力系统出现故障

从电力系统运行的具体情况来看,应从电能发生、输送、配置、应用等角度出发,对电力系统整体进行全方位的监控,进而满足电力发展的实际需求[1]。在电力系统中,变压器、发电机、断路器、主配电板、输电线路与用电设备等都属于一次设备,也是产生电能、实现电能传输的重要设备。电力系统在运行的过程中,极易发生各类安全事故,且在任何条件下都可能出现故障,其中,短路问题最为突出。通常情况下,短路主要表现为两相短路、三相短路、单相接地短路、两相接地短路与发电机短路等[2]。导致短路问题出现的主要原因有机械设备被严重损伤、绝缘层被破坏与基本操作不科学等。电力系统多种故障的发生,过负荷问题较为突出,此类故障一旦出现问题,会让绝缘的温度逐步升高,也会加速绝缘层的老化,也会让设备受到严重破坏,最终会引发火灾问题。1.2继电保护的基本任务在各设备间,电与磁存在着密切的联系,不正常情况与故障问题的发生,会让电力系统出现一系列的事故,最终会严重威胁电力企业的实际发展。在继电保护时的主要任务为:若主配电板、输电线路、变压器、发电机等出现短路或过量负载问题时,应在最短时间内将存在故障的设备借助断路器予以断开,以脱离电力系统,能保证不存在故障的部分正常运行,进而降低故障设备损坏度,还可降低对邻近设备供电系统所构成的影响,进而保证电力系统高效、稳定的运行。

1.3继电保护的基本组成

继电保护主要是由测量元件、执行回路与逻辑环节三个部分所组成的。若物理量出现突变,通过测量之后,及时确定好故障范围与基本类型,从逻辑判断来判断断路器跳开的次数与时间,然后让执行回路发出一定的信号与跳闸脉冲。

1.4继电保护的运行原理

电力系统继电保护装置的运行,其原理为借助被保护设备前期与后期一些物理量的突变情况,一旦突变量达到一定参数值,借助逻辑判断,能及时发出信号与跳闸脉冲。例如,借助被保护设备故障发生后期电流的不断增大,以达到电流保护的效果;借助降低电压来达到低电压保护效果;借助不对称短路发生负序电流与电压,以形成负序保护效果。

2船舶电力系统继电保护措施

2.1发电机继电保护

在发电机继电保护方面,所要保护的内容主要包括短路、过载、钱呀与你功率保护。(1)过电流保护。实施过电流保护时,主要包括短路与过载两个层面。短路就是发电机运行时所出现的故障,而过载则是发电机在运行过程中所出现的不正常状态。(2)短路保护。短路就是在交流电中,处在不同相导体进行直接性的接触与碰触。三相四线的实施,主要包含单相、双相与三相短路三种情况。通常情况下,短路的发生主要是由于绝缘层被损坏、绝缘层老化与操作失误等问题而引发的。在发电机内部,极易出现一系列的短路故障,但是发生概率不是很高,在此针对发电机外部进行短路保护。一旦发生短路,电流会大大增加,这会对设备、发电机等形成破坏,滋生短路故障后,要从发电机至短路点间会形成很大电流,在开展短路保护时,应借助自动化开关内的过电流脱扣器来进行保护与操作。具体航运船舶电力系统的行业文件规范来看,短路延时保护所产生的动作电流为发电机而定电流的3-5倍,整个工作电流的时限设定为0.2-0.6s,确定好时间后,发电机就会出现跳闸现象。(3)过载保护。若船舶电力系统中的基本运行机组具体容量无法充分满足负载增加的情况,极易使得发电机出现过载现象,一旦出现过载现象,会让发电机的电流或功率等超出额定参数值。若在过载条件下,会让整个机组发热,极易引发绝缘层老化或零部件质量受损等问题,也会缩短原发动机的具体使用使命。实施过载保护时,要加强对发电机机组的保护,且保证机组不会受到损伤,且不可对供电进行中断。从发电机本身着手,其具有过载电流承担效能,1.1倍的额定电流时限为2h,1.25倍的额定电流时限为0.5h,1.35倍的额定电流时限为0.08h。实施过载保护时,应开展适当的延时,若发电机属于无自动分级卸载类装置,其在过载保护时,动作电流能够被整定成额定电流参数值的1.25%-1.35%,延迟的时间为18s左右。

2.2主配电板与配电设备的保护

为实现对电能的科学性控制,合理分配好发电机内的电能,还要准备一定的配电设备。若想达到理想主配电板保护效果,应发挥好配电装置的重要作用,进而提升船舶电力系统运行的高效性与稳定性。配电装置的安全运行,应及时配备好电路运行所需的信号指示器、开关、调节电器、保护电器与测量仪表等。此外,还要加强对负载分路、主电源等的科学性控制与保护。

3结束语

综上所述,为促进船舶的高效运行,降低故障的发生概率,减少经济损失,必须加强对船舶电力系统的安全保护,及时应对好故障问题,以实现船舶自动化运行的高效性与科学性。实施船舶电力系统继电保护工作时,应加强对发电机、主配电板与配电设备故障等的保护,应对好短路、过载与过电流等问题,以保证船舶运行机组运行的安全性。

参考文献:

[1]宋立范.船舶电力系统继电保护的研究[J].科技创新导报,2011(18):99.

继电保护装置的基本组成范文第3篇

[关键词]电力工程;课程群;优化方案

电气工程及其自动化专业作为传统的工程学科,已有上百年的发展历史。为适应新时期社会对电气工程人才的不同需求,国内外高校不断推动电气工程教育的发展与改革,教育理念也随着时代的发展而变化,从原来的“重理论轻实践”,逐步发展为“厚基础、宽口径、重能力”。[1][2]电力工程作为电气工程及其自动化本科生培养的主干课程,是电气工程本科生人才培养的重点课程,也是整个电气工程专业的基础课程。[3]可见,如何提高电力工程课程的教学水平,这对于提高本科生的教育水平及毕业质量有着重要的意义。电力工程作为一门整合工厂供电及电力系统分析两门课程的综合性课程,对构建本科生电力系统知识体系具有举足轻重的作用。课程内容的丰富性造成了学时紧张、讲课内容泛而不精的情况。为解决该问题,可以从宏观层面出发,将若干电力工程相关课程内容统一整合,从而优化学时,突出重点,推动电力工程课程群建设,使学生对电力系统的整体设备运行、调度、保护及设计有一个完整的了解,最终让学生构建完整的电力工程知识体系,满足电力工业对人才发展的需求。这样,加紧推进电力工程课程群建设与实践,就成为了电气工程本科生教育改革的首要任务。

一、课程群建设理念简介

20世纪90年代,北京理工大学在题为《在课程建设中应当以教学计划的整体优化为目标》的教育改革项目中,首先提出了课程群建设的总体思路,继而逐渐发展成为学科教育改革的新兴理念,为国内众多高校教育改革提供了参考。课程群的主要内涵为[4]:整合三门及三门以上学科相关课程,相互传承,相互渗透,相互补充,从而整合课程授课内容,使课程结构合理,层次清晰,进一步挖掘课程的整体优势,从而建立起学科优势。课程群不仅能使学生能够在较短的学时内掌握重点、有效的知识,构建坚实的知识体系,也能使教师在授课过程中将有限的知识点讲透讲精。课程群的整体是全面而严谨的,这就避免了原来单一课程为求知识全面而进行“蜻蜓点水”般的讲课模式。

二、电力工程课程群建设方案

建立电力工程课程群,首先应分析原有课程授课模式的不足,然后参考课程群的内涵,选择合理的相关课程,建立对应的课程群,这样才能提出合理的优化整合方案。

(一)原有授课模式的不足

电力工程课程是整合工厂供电及电力系统分析相关课程的一门综合性课程,主要讲授电力系统的基本组成和运行原理,电力系统的元件参数计算、稳定运行分析和故障分析的基本方法,电力系统电气主接线设计、主要电器设备选择的原则和方法、继电保护等内容。由于囊括了工厂供电及电力系统分析两门课程的内容,其课程内容丰富且繁重。在有限的学时中讲授如此多的内容在给教师带来极大授课压力的同时,也会让学生渐渐失去学习热情,并最终影响其对整个电力系统知识体系的构建。

(二)课程群课程的选择

电力工程课程群建设,须秉承学科相近的原则,对知识点有重复或传承的课程进行整合优化,从而建立起合理有效的课程群,使教师能轻松地传播知识,学生能有效地学习知识。为此,结合我校电气工程教育的特色与传统,我们挑选出了电力系统继电保护原理、电气控制技术及电力系统调度自动化等三门课程,结合电力工程课程来建设电力工程课程群。电力系统继电保护原理主要讲授继电保护的基本概念、输电线路的电流保护、接地保护、距离保护、纵联保护的基本原理,变压器保护的基本配置及主要保护的基本原理,自动重合闸、发电机保护、母线保护等内容。电气控制技术则主要讨论异步电动机拖动系统和直流电动机调速系统的起动和调速控制技术,以及电气线路的分析和设计,常用电磁式低压电器的作用与分类、结构与工作原理,可编程控制器的基本工作原理等。电力系统调度自动化则以电力系统“四遥”为主线,主要讲述电力系统调度自动化的有关理论,性能和运行特性,涉及电力系统稳态运行的相关基础理论。从上述三门课程讲授的内容可以看出,其与电力工程的课程内容互有传承,相互渗透,并有较多的重复。电力工程主要讲授电力系统分析的基础内容,继电保护则是在其基础上的升华。因为系统的稳定运行离不开保护装置的调节与动作,而保护装置的调节与动作又离不开电气控制设备的判断与运行,而这一切设备的自动化管理都离不开“四遥”技术的调度与管理。因此,从内容上可以较为清晰地看出,这四门课程存在明显的传承关系,因而在授课过程中存在较多知识重复的问题。建立电力工程课程群,就是以电力系统稳定运行为基点,逐步提升知识的难度与高度,使知识结构紧密,易于学生掌握。为建立结构合理、层次清晰的电力工程课程群,就要对教学内容及课时进行整体优化。

(三)电力工程课程群整体优化方案

可以从三个角度来优化电力工程课程群,分别为课程优化、实验优化以及考核优化。课程及实验优化主要以教师为主体,即明确“教什么”,而考核优化则主要以学生为主体,即明确“学什么”。1.课程优化针对四门课程授课内容的特点,可以首先将电力工程课程中的继电保护一节的内容移到电力系统继电保护课程专门讲授,而电力系统监测与控制的内容并入电力系统调度自动化课程中讲授,与开关电器电弧、灭弧相关的原理及相应保护设备,则并入电气控制技术的高低压电器一节讲授。此外,电力系统继电保护的微机保护一节与电力系统调度自动化课程内容有较大的重复,特别是硬件部分有许多相同之处,因此可以考虑将其并入电力调度自动化课程中讲授。由此,通过重新制订教学大纲,根据教学内容重新安排学时,可以使每一门课程的学时数得到合理安排。2.实验优化以往为促进学生理论与实践相结合的能力,每一门课程都配以相应的实验。该类实验的特点是与教材内容结合较为紧密,但主要以验证性及演示性实验为主,实验时间分散,实验内容缺乏系统化。学生通过实验只能片面地了解一部分课程内容,且只能了解部分设备的运行情况,缺乏对整个电力系统运行的深入理解。因此,有必要整合实验内容,将单一分散的实验课时整合为持续时间较长的整体的课程设计。以上述四门课程为例,可以强调四门课程综合的课程设计,如要求学生设计某厂矿的变电所,从而考核学生电气设备选择、电气主接线设计、负荷计算等方面的知识。同时,还可以在此基础上增加继电保护装置的要求,并要求学生绘出遥信遥感的结构图,从而考查学生综合运用知识的能力,使学生能够通过课程设计,达到整体了解变电所设计运行的基本方法以及注意点,从而提高学生系统学习能力的目的。此外,还可以安排学生到临近变电站进行参观实习,让学生了解相关电气设备具体的作用,增强学生的感官认识。相较于以往效率较低的课程实验,这样可以极大地提高学生的学习效率,并促进学生知识的整体消化吸收。3.考核优化课程内容的优化必然带来考核内容的优化。以往由于课程知识点繁杂,学生在期末复习时需要记忆许多与本门课程内容关联度不高的知识点,而课程的核心知识点却由于复习时间紧而未能有效地掌握,从而影响了学生的成绩。因此,通过课程群内容的整体优化,每一门课程都有相应的重点内容,这使得学生能够在复习时能紧紧围绕课程的核心知识点展开,而将关联度并不高的内容放入课程群的其他课程中进行复习,从而提高每一门课程的学习和复习效率。这样既能够提高学生的学习成绩,也能使学生掌握合理有效的学习方法。课程优化、实验优化以及考核优化有效地改善了教师与学生的教学及学习情况,使得教师讲授最优化,学生学习最优化,使学生在有效的时间内牢固掌握核心知识成为可能,从而实现了课程群建设的目标与意义。

三、结束语

本文针对建设的电力工程课程群,分析了课程群内不同课程的特点,从课程、实验、考核三个方面提出了具体的优化方案,为进一步推动电气工程本科生教育改革提供了参考。当然,相关优化方案还需在后续教学过程中根据实际教学效果不断地完善改进,这样才能使教学方法紧跟时展的脚步,使培养的学生能够符合社会对人才发展的要求。

作者:牟龙华 李松峰 张 鑫 王伊健 单位:同济大学

[参考文献]

[1]丁守成,张爱华,黄瑞,等.电工电子实验系列课程体系建设[J].电气电子教学学报,2015(6):98-100,104.

[2]张涛,吴谨,熊庆国,等.电子电气类工程教育的探索与实践[J].大学教育,2013(5):30-31.

继电保护装置的基本组成范文第4篇

关键词:汽车充电站;配电系统;变压器

在能源危机及环境保护的高压下,节约能源且环保的新型动力汽车将是未来发展的新走向。电动汽车可以说是满足上述要求,具有广阔发展前景的绿色交通工具。电动汽车充电站作为电动汽车运行的能量补给站,是发展电动汽车商业化所必备的重要配套基础设施,充电站的建设将直接影响电动汽车产业的发展。文章简要说明汽车充电站结构的基础上,着重对充电站配电系统的设计进行探究。

1 汽车充电站结构

当电动汽车动力用蓄电池电量不足时,需要充电补充电能。充电站的主要功能就是完成电动汽车电池电能的补给。充电站的功能决定充电站的总体结构。为此,一个完整的充电站需要配电室、中央监控室、充电区、更换电池区和电池维护间等五个基本组成部分。

①配电室。配电室为充电站提供所需的电源,不仅给充电机提供电能,而且要满足照明、控制设备的用电需求,内部建有变配电所有设备、配电监控系统、相关的控制和补偿设备。②中央监控室。中央监控室用于监控整个充电站的运行情况,并完成管理情况的报表打印等。内部建有充电机监控系统主机、烟雾传感器监视系统主机、配电监控系统通信接口、视频监视终端等。③充电区。在充电区完成电能的补给,内部建设充电平台、充电机以及充电站监控系统网络接口,同时应配备整车充电机。④更换电池区。更换电池区是车辆更换电池的场所,需要配备电池更换设备,同时应建设用于存放备用电池的电池存储间。⑤电池维护间。电池重新配组、电池组均衡、电池组实际容量测试、电池故障的应急处理等工作都在电池维护间进行。其消防等级按化学危险品处理。

充电站结构可同时满足整车充电方式和电池组更换方式,且考虑了相关维护操作需求。但是,对于一个实际的充电对象,应该基于运行要求和环境条件,根据实际的功能进行组合,以降低建设成本。

2 汽车充电站配电系统设计

配电系统为充电站的运行提供电源,它不仅提供充电所需电能,也是整个充电站正常运行的基础。电动汽车充电站的电力负荷级别确定为2级,采用双路供电但不配置后备电源。配电电压:380V/220v。动力(充电机)采用三相四线制、380V供电,照明采用单相220v供电。

2.1 配电变压器选择

①变压器类型的选择。变压器可分为干式变压器和油浸式变压器。充电机(站)变压器类型可根据工程实际情况选定。建议充电机(站)变压器采用sc(环氧树脂浇注包封式)干式变压器。环氧树脂干式变压器具有良好的电气和机械性能、较高的耐热等级,并且是一种可靠的安全性的环保、节能型新产品,能适应多种恶劣环境。②变压器台数的选择。变压器台数的选择应满足负荷对供电可靠性的要求。若采用集中式充电,然后在小区设立电池经营店(运营模式类似于水站送饮用水),则有必要选用2台变压器保证充电站的高可靠性。若充电机(站)像加油站一样较为普遍,则只需l台变压器即可,充电站的可靠性的降低由充电站的数量来弥补。若在小区建充电机(站),可考虑利用小区配电变压器而不另设变压器,以减少投资。③变压器接线的选择。根据《供配电系统设计规范》第7.0.7条,在TN及1rr接地型式的低压电网中,推荐采用Dyrm接线组别的配电变压器。条文解释中说明Dynll接线有利于抑制高次谐波。充电站采用TT接地型式,因此变压器采用Dynll接线。

2.2 配电室位置选择

配电室的位置选择原则:考虑电源的进线方向,偏向电源侧;进出线方便;不应妨碍充电站的发展,要考虑扩建的可能性;设备运输方便;尽量避开有腐蚀性气体和污秽的地段;室外配电装置与其他建筑物、构筑物之间的防火间距符合规定。

2.3 配电容量计算

配电系统的容量应包括动力用电、监控和办公等用电。只装一台变压器时,变压器的容量SN应能满足全部用电设备的计算负荷sC,并留有一定的容量裕度。车辆数量、电池容量以及运营方式决定了充电站的容量。

①蓄电池数量:充电站设计有两种运营模式:整车充电模式和更换电池模式。前者需要为每车配备一组电池,后者需要根据运营方式确定后备电池的数量。②充电机数量:车辆类型、行驶里程和运营模式决定了充电机的配置。充电机的选择包括确定充电机的输出功率和需配备的台数。③配电容量:单进线单变压器时,整个充电站需要的配电容量即全部用电设备的用电量SC=S1+S2,其中s1为动力用电量,s2为照明及办公用(下转第15页)

2.4 配电运行方式要求及设备

①配电运行方式要求。10kV进线2路,单线进线容量不小于充电站所需容量;正常工作时,高低压侧母线分段断路器均断开,两路电源通过2****立变压器输出,各承担50%的工作;当任一母线失去电源时,通过合闸分段断路器从另一供电线路取得电源;配电室设有照明消防电源;每路低压母线应配置相应的谐波抑制与无功补偿装置;配电系统继电保护及自动装置应满足电力行业标准和规定的要求。②主要设备。计量装置、谐波抑制及无功补偿装置各2套;主变10kV/0.4kV干式变压器2台;10kV高压开关柜和0.4kV低压开关柜(含断路器和隔离开关);继电保护装置、自动装置。

2.5 配电主接线设计

对充电站配电主接线有下列基本要求:安全,应符合国家标准有关技术规范的要求,能充分保证人身和设备的安全。可靠,应符合电力负荷特别是其中一、二级负荷对供电可靠性的要求。灵活,能适应各种不同的运行方式,便于切换操作和检修,且适应负荷的发展。经济,在满足上列要求的前提下,尽量使主接线简单,投资少,运行费用低,并节约电能和有色金属消耗量。

对于电动汽车充电站,配电室有2路10kV电源进线,通过变压器等设备供给充电机,并满足照明、控制设备的用电。在高压侧装设高压计量柜,低压侧采用中性点直接接地的三相四线制系统,还应提供独立的接地回路;10kV母线、0.4kV母线均采用单母线分段的主接线形式,通过分段断路器实现暗备用;在变压器低压侧装设谐波抑制与无功补偿装置;配电室必须配备相关消防设施。配电主接线运行灵活性较好,供电可靠性较高,适用于一、二级负荷。当任一主变压器或任一电源线停电检修或发生故障时,通过备自投装置自动闭合母线分段开关,即可迅速恢复对整个充电站的供电。根据实际要求和条件也可简化主接线,例如采用桥式接线。

需要说明的是,上述配电设计方案适用于大负载功率的充电站,其安全系数高、可靠性好。在实际工程中应该对充电站服务对象进行具体分析、设计,比如:①示范区车辆:结合示范区的电网建设,考虑在变电站附近建设充电站。②集团车队:可在停车场建立用户配电室,按照内部车辆类型提供各类电源。③社会车辆:根据车辆的不同特点,或建设可靠性高的社会运营的大功率充电站,或充分利用现有的配电资源,就近提供充电站。④微型车辆:利用现有的低层电网资源,在自行车停车场、社区服务中心、公共场所、配电间(站)等附近为用户提供交流220V的普通插座(插头)。

3 结语