前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇继电保护的整定范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:继电保护;整定计算;运行方式
中图分类号:TM744 文献标识码:A 文章编号:1006-8937(2014)35-0086-02
随着社会的进步和经济的迅猛发展,高参数、大容量的电力设备在电网得到广泛使用,人们对供电可靠性具有更高的要求,因此确保电网的可靠运行日益重要。然而在实际中,由于各种因素的影响,配电网系统的稳定性和可靠性受到严重影响。为了确保配电网运行的可靠性,除了要配置性能良好的继电保护装置,对其整定计算也必须加以重视。继电保护的整定计算不同于配电网中电流计算那样简单,计算方法十分繁琐、复杂。目前,国内对于整定计算要求必须按照继电保护对应电力系统最大的运行方式进行,对于灵敏度的检验则要按照最小的运行方式进行。然而上述采用的整定计算存在一定的不足之处,下面对其进行分析和探讨。
1 继电保护原理及整定计算
1.1 继电保护的要求和原理
为了确保配电网能够安全、可靠运行,继电保护必须满足以下要求:可靠、迅速、灵敏且具有选择性。继电保护工作原理包括以下两种:①保护电网输电线一端反应电气量。如果配电网的反应电流升高,必须对其实行电流保护,如常见的零序电流保护、相电流保护等。②对配电网输电线反应外部、内部故障的电流进行相位和功率差动保护。
1.2 整定计算
目前,国内继电保护通过对整定值采取离线计算,并按照整定计算的相关原则,避免继电保护受到外界干扰,这种方法具有以下两方面的特征:①不具有自适应能力;②具有固定行为特征,即计算所得到的整定值在运行时是恒定的。在进行整定计算时,通常选择序分量法、相分量法和故障电气保护的整定计算,这是目前应用最为广泛的计算方法,此方法是按照配电网电压变化和继电保护的适应性来对电力系统进行分析和计算的,然而在具体计算过程时还存在一定缺陷。
2 继电保护整定计算存在的问题
虽然人们对继电保护整定方法进行了很大改善,然而在具体计算时仍存在各种问题,主要具有以下四方面的不足。
2.1 分支系数计算偏差较大
在进行整定计算时,对于分支系数的选择没有足够重视,对于分布式电源运作变化趋势而导致分支系数的变化没有认真考虑,因此造成分支系数和实际存在较大差异,最终造成整个整定计算结果偏差较大,进而造成延时时段动作值参数出现错误。在进行延时时段参数整定计算时,对于分支系数的选择出现错误,从而导致整个计算结果出现错误,进而导致整定计算结果出现误差。
2.2 断相口位置开路电压参数误差较大
若配电网系统处于非全相震荡状态,在进行整定计算时,必须要考虑网络结构对电压参数的影响,否则会造成整个运算量过大,并且可能出现严重的偏差。
2.3 不同运行方式的选择
在进行整定计算时,若仅仅将继电保护所在线路的母线进行分开,并未考虑其他方式对系统运行的影响,这样会导致出现故障控制范围过大。
2.4 对线性流程运用过高
在对分支系数进行计算时,对线性流程运用较高,进而造成对于分支系数计算重复率过高,对继电保护系统的整定计算速率造成较大的限制。
3 继电保护整定计算的解决措施
3.1 分支系数的计算
在继续整定计算时,要考虑多个方面造成的影响,如果分布式电源发生了变化,必须重新对其所在区域的继电保护进行重新计算,最大限度地减少分支系数的误差,确保继电保护整定计算的准确性。
3.2 断相口开路电压的计算
在进行继电保护整定计算时,关键的计算对象是配电网的运作线路在非全相运作同时具有明显振荡情况下的电压参数。对于已经确定的配电网,发电机的等值电势参数、断相口电压参数、等值阻抗的参数之间都具有相关性。然而如果根据常用整定方法就会出现计算量过大,造成此问题的原因主要在于:发电机的等值阻抗和电势参数都在暂态稳定状态下计算,而其实这两个参数对着电网结构的变化也不断发生变化。再次计算时必须对上述参数重新计算,这就会导致整体运算量过大。因此,通常在进行计算时都假设发电机的电势幅值为固定值,并据此对计算公式进行适当、合理的简化。然而这种解决措施也存在一定缺陷,即忽视了网络结构对开路电压参数所造成的影响,所以如果配电网相对复杂,整体结果会出现较大误差。
基于此,对于上述问题可采取以下解决措施:在对断相口的开路电压进行计算时,通常采取网络等值计算方法,采取这种方法不仅能够有效控制运算工作量和工作难度,还能极大提高继电保护整定计算的准确度。对于网络系统模型参数可参考阻抗参数来确定,同时综合叠加原理,提出一种基于双端口网络的阻抗参数等值计算方法,以便得到自阻抗和互阻抗参数。
3.3 运行方式的查找计算与线路流程频率运用的解决
在进行继电保护整定计算时,对于运行方式的查找存在两方面不足:①查找最不利运行方式存在缺陷。按照最不利运行方式计算,具有以下两方面优势:第一,能够有效辅助校验灵敏度参数;第二,能够有效计算继电保护动作值。然而现阶段对于最不利运行方式的查找仅处在继电保护所处线路对侧母线查找阶段,同时采取轮流断开方式也很难有效对系统最不利性做出保证。②在进行整定计算时极易导致断开线路出现重复性。在进行整定计算时,频率进行开断操作,这样不仅造成计算结果误差较大,也会影响整个配电网系统的可靠性和稳定性。
对于运行方式查找过程中存在的不足之处,可通过以下两步进行改进:首先通过相关软件程序确定配电网在开路状态下的扰动域,根据确定的扰动域大概确定继电保护整定结果的取值范围,借助确定的范围对最不利运行方式查找。一般情况下,配电网中所认定的扰动域是指线路出现故障时会被影响到的区域。断开配电网某条线路,以此为圆心从内向外计算断开前和断开后线路的短路电流参数,根据计算结果确定扰动区域的边界和范围。在通过相关软件进行整定计算时,可以通过改变开断线路循环趋势对整定计算顺序进行二次组合,这样就能最大限度地避免频繁对线路进行开断操作,也会极大地减少对线路流程的应用,提高整定计算结果的准确性,也确保了电力系统供电可靠性和稳定性。
4 结 语
随着经济的快速发展,人们对电的需求量急剧增加,电力系统的容量和规模持续扩大,电网结构也越来越复杂,要确保配电网的稳定、可靠运行,继电保护起着十分重要的作用。而作为继电保护关键环节的整定计算方法更是起着关键作用,必须对整定计算方法中存在的问题引起重视,对于存在的问题必须及时采取相关的解决措施,保证配电网的安全运行。
参考文献:
[1] 周志辉,周玲,丁晓群,等.继电保护整定值计算中运行方式选择的新方法[J].电力设备,2010,18(2):67-68.
[2] 张锋,李银红,段献忠.电力系统继电保护整定计算中运行方式的组合问题[J].继电器,2012,22(7):89-90.
[3] 王慧芳.继电保护整定计算软件中的若千问题分析[J].继电器,2010,20(12):45-47.
(北方民族大学电气信息工程学院,宁夏银川750021)
摘要:继电保护整定计算是保障配电网稳定运行的主要办法与措施。设计了利用专家系统的继电保护整定计算系统,其中知识库的表征方式采用产生式表征法、面向对象表征法和框架表征法相融合的方法,增强了整定计算知识库的完整性;系统推理机方式采用正向与反向推理的混合方式,有效提高了整定计算系统的计算速率。利用专家系统改进知识库的表征方法与推理机的混合工作原理,设计了继电保护整定计算模块,并针对实际电厂模型,验证了设计系统的准确性。
关键词 :继电保护;知识库;推理机;整定计算
中图分类号:TN702?34 文献标识码:A 文章编号:1004?373X(2015)18?0049?04
收稿日期:2015?03?06
基金项目:国家自然科学基金:基于制备纳米薄膜和机械刷提高太阳能电池光电转换效率的机理研究(51365001);宁夏自然科学基金:变速恒频双馈风力发电系统软并网控制策略的研究(NZ14106)
本文设计了利用专家系统的继电保护整定计算系统,其中知识库利用产生式表征法、面对对象表征法和框架表征法相融合方法做模块设计,推理机运用正向和反向相结合的混合推理方法,在整定功能的实现方式上,分别提供了手动和自动两种方式,以此来满足电厂操作人员的工作要求。
1 专家系统知识库的设计
专家系统的知识库的表征方法利用产生表征法、面向对象表征法、框架表征法相结合的方式,通过分级分步骤的方式对继电保护整定计算做详细描述。其中知识库的流程步骤如图1所示。
2 专家系统推理机的设计
系统推理机方式采用正向与反向推理相融合的推理方式。推理方式首先采用正向推理法对动作电流进行计算,但因为系统数据库中故障计算模块求解的流过保护短路电流不止一项,例如单相接地短路、两相短路、三相短路,所以推理机会提供多个短路电流值,不能进一步做筛选。而当添加反向推理法后,从短路电流目标中集中选定最大故障电流,作为下一步计算的原始数据,可计算出最合适的动作电流值大小。
从操作人员给定的具体实际问题出发,通过设计模块进行推理求解,总结出会出现的几种计算情况,如下:
(1)当针对所给定的实际问题没有找到相应的目标结果时,则模块需调用报错步骤。
(2)当针对所给定的实际问题只找到惟一的目标结果时,即最理想的模块运行状态,则模块直接输出计算结果或继续执行相应操作。
(3)当针对所给定的实际问题能够找到多个目标结果时,需要进一步做判定,从诸多目标结果中选定最优解。
3 整定计算数学模型
在整定计算原则中的任何一个保护定值在公式层中都有与之相对应的整定方程式,且整定方程式在相应的整定变量层中都含有定值变量集(R ) V ,经数学分析,保护装置的定值变量集(R ) V 的数学模型:
RVS = f (k1,k2 ,…,kn ,x1,x2 ,…,xn ,
y1,y2 ,…,yn ,z1,z2 ,…,zn ), n ∈ N
式中:yj ( j ∈ n) 代表整定计算公式中含有的系数和常量,如可靠系数、进行整定计算工作人员的经验系数和返回系数等,具体数值由用户人员通过输入的方式存储到模块知识库中;zj ( j ∈ n) 代表以上3类变量以外的其余变量。
利用上述数学模型,对繁琐的定值变量分类做知识存储,其中定值变量集所包含的变量均为离散型数据,当中的任何一个整定计算变量值变化后,仅仅是该变量发生了改变,但不会致使该整定计算变量所在的整定方程式中的其他变量发生数值变化;且整定计算方程式也具有离散型,整定计算方程式是跟随者整定计算变量的变化而变化的,所以无论系统所含设备的参数变化,或是发生其他故障类型,都可以准确求解出被保护设备的整定值,体现了继电保护装置整定值的可靠性。
4 整定计算模块设计
在对系统做整定计算前,需要对其中一部分故障参数做计算存储,因为在进行整定计算原则中涉及了大量的故障参数,其中有一部分数值可以在整定过程中直接提取,这样就能够缩短整定计算的运作时间。在所涉及的系统中,设定了手动与自动整定两种功能,系统用户可以根据特定的工作环境与要求自行选择,整定计算视图如2所示。
整定计算过程为自动运行,整个计算过程不需要工作人员的任何操作,并能直接输出计算书,可以实现任务书的保存与管理功能。在手动整定计算过程中,需要工作人员在相应的参数设置界面对系统参数进行选定和设置,如图3所示。
计算书对于电厂实际操作人员是非常重要的,其中不仅包括相应继电保护装置对保护设备定值的设置,也包括整定原则。针对厂用变压器相间短路故障的备用保护,模块自动进行整定计算,并输出计算书与定制单,具体如图4,图5所示。
5 整定计算模块仿真解析
为了验证本文设计的继电保护整定计算模块的准确性,这里建立了电厂一次主接线系统图并设置了相关参数,如图6所示。
当完成电厂主接线图的设定后,针对该系统添加6KVIIB 段母线A,B 两相相间短路故障,并做故障量计算,图7显示为2号高厂变故障量。
将电厂继电保护原则逐一录入并完成继电保护装置的设定工作,对系统全部设备做整定计算,将计算结果与电厂工作人员做整定值检验。检验结果显示大部分计算结果与电厂实际运行结果完全相同,只有小部分存在数值误差,具体误差如表1所示。
简述误差产生的主要原因如下:
(1)近似因素。整定计算过程中,数值大部分都是以小数形式存在,为了降低计算的繁冗度,计算过程中将小数数值保存到小数点后2位。不同的是,计算机在做计算过程中,不进行近似计算,而是在最终的计算结果显示的时候,保留小数点后1位,所以电厂实际工作人员的手动计算与计算机整定的最终结果略有差别。
(2)取整因素。在继电保护整定计算的过程中,需要设置保护定值,几乎全部设置为整数,当遇到小数时需要进位成整数,所以,定值的设置与计算机的计算值之间也存在一定的误差。
(3)继保装置退保护因素。表1 中,2 号高厂零序过电流保护的整定值设置为100,当该保护装置停止工作时,也就不对高厂变起任何保护作用,所以退保护因素是影响整定结果的主要因素之一。
经上述理论分析可得,除以上原因引起的误差外,继电保护整定计算模块的计算结果误差率如表2所示。
通过上述结果可以看出,通过本文设计的继电保护整定计算模块得出的结果同发电厂原始数据相差不大,误差的大小在电厂稳定运行的允许范围内,且整定模块的计算速率足够快,能够满足实际操作人员的要求。
6 结语
本文通过专家系统设定了整定计算模块,建立了火电厂继电保护整定计算所需的知识库,将产生表示法、面向对象表示法、框架表示法相互结合的知识表征方式与通过混合推理方法,分别从正向和反向做为推理机原理的专家系统设计,优化了电力系统继电保护整定计算速率与结果的准确度。通过实际测验,验证了设计的整定模块的准确性与可维护性。
参考文献
[1] 张伟.继电保护整定计算软件的应用开发[D].保定:河北农业大学,2011.
[2] 陆贤群.微机继电保护的发展趋势分析[J].科技信息,2011(9):733?734.
[3] LIU T,ZHU Q S,LI W D. Conception of the new power sys?tem operating status display on platform [J]. Automation of the Electrical Power Systems,2008,8(5):72?75.
[4] 石培进.电厂继电保护整定及定值管理系统研究[D].西安:西安工业大学,2010.
[5] 张妍,胡卫东,熊丽霞.火电厂继电保护整定计算系统的应用现状分析[J].江西电力,2012,36(1):48?50.
[6] ZHANG H,ZHAOD M,ZHANG X,et al. Research on inte?gration tool of graph,model and database in power plant relay protection intelligent setting calculation system [J]. Power Sys?tem Protection And Control,2011,39(12):112?117.
[7] 胡桃涛.可视化继电保护整定计算模块的设计现[D].成都:电子科技大学,2012.
[8] ZENGLI Y,DONGYUAN S,XIANZHONG D. Study on flexi?ble power system protection relaycoordination software based on user?definedprinciple [C]// Proceedings of the 42nd Interna?tional Universities Power Engineering Conference. Brighton,UK:IEEE,2013:277?282.
[9] 张锋,李银红,段献忠.电力系统继电保护整定计算中运行方式的组合问题[J].继电器,2002(7):23?26.
[10] 许建安.继电保护整定计算[M].北京:中国水利水电出版社,2011.
[11] 苏忠阳,赵有铖,刘之尧.能量管理系统和继电保护信息系统集成平台研究[J].南方电网技术,2008(6):71?74.
[12] 杨国福.电力系统继电保护技术的现状与发展趋势[J].电气制造,2007(7):36?38.
[13] KIMURA T,NISHIMATSU S. Development of an expert sys?tem for estimating fault section in control center based on pro?tective system simulation [J]. IEEE Transactions on Power De?livery,1192,7(1):167?171.
[14] 吴坚.发电厂继电保护整定计算与管理智能系统的研究[D].北京:华北电力大学,2010.
[15] 万丹.电网系统继电保护的发展趋势分析[J].机电信息,2010(24):85?86.
[16] 陆贤群.浅释微机继电保护的发展趋势[J].科技信息,2011(9):733?734.
[17] 韩祯祥,文福拴,张琦.人工智能在电力系统中的应用[J].电力系统自动化,2000(2):2?10.
[18] 许成哲.通用性发电厂继电保护整定计算系统的开发[D].吉林:东北电力大学,2007.
[19] 余兆荣.电力系统继电保护技术发展前沿[J].江西电力,2001(3):35?36.
作者简介:刘凡齐(1986—),男,黑龙江人,助教,硕士。研究方向为电力系统电压稳定性分析。
张秀霞(1963—),女,宁夏人,二级教授,博士后,博士生导师。研究方向为太阳能光伏发电。
【关键词】电力系统;继电保护装置;零序电流保护
前言
供电高压电网的各种电压等级的接地系统中广泛采用零序电流保护,是基于其工作原理简单,动作速度快,然而要将此保护应用到电网中,主要解决是保护定值计算。零序电流整定计算的结果,关系到电力系统运行的安全性,零序电流保护装置也是电力系统重要的二次设备之一,正确的保护定值是防止事故进一步扩大的基础,在电力生产运行工作和电力工程的设计中,零序电流保护整定计算就是保障电网安全运行的重要工作之一。
1 零序电流整定配合原则
1.1 电网运行方式的选择
零序电流保护受其运行方式变化对定值影响较大。合理、恰当的选择运行方式,可以改善保护性能,充分发挥保护的作用。选择电网运行方式的一般原则如下:
(1)整定计算应以电力系统常见的运行方式为依据。电力系统常见的运行方式为正常运行方式和正常检修方式,正常运行方式就是指系统经常(指一年中大部分时间)所处的状态,此时系统内的线路、变压器等设备全部投入运行,发电设备按照系统正常负荷的要求全部或部分投入,要充分发挥保护的作用,首先要改善正常运行情况下的保护性能。因此整定计算时,要着眼于正常运行方式,尽量保证在正常运行方式下,保护有较好的功能。
(2)对于发电厂和外部系统运行方式的改变,目前国内外各电网进行整定保护计算时,一般认为在正常运行方式下,系统内所有发电厂均处于最大运行方式(按负荷要求,投入的机组最多)。而最小运行方式,在与该电厂相连接在同一条母线上的线路进行整定计算时,才需考虑。
(3)对正常检修方式外的其他方式,可视为特殊运行方式,不作为整定计算的依据,可先做一个补充方案。
(4)考虑保护整定方案,按变电所零序阻抗能保持基本稳定的条件,特殊运行方式下根据具体运行条件采取措施满足运行要求。
(5)对于一个具体的保护装置来说,在上述各种常见的运行方式下,当整定计算点发生短路时,通过该保护的短路电流达到最大值(或最小值)时所对应的运行方式称为该保护的最大或(最小)运行方式。
1.2 故障类型和故障方式的选择
零序电流保护的整定,和其他整定也一样,应以常见的故障类型和故障方式为依据,具体如下:
(1)只考虑单一设备故障"对两个或两个以上设备的重迭故障,可视为稀有故障,不作为整定保护的依据。
(2)只考虑常见的,在同一点发生单相接地和两相短路接地的简单故障,不考虑多点同时短路的复杂故障。
(3)要考虑相邻线路故障对侧开关先跳闸或单侧重合于故障线路的情况,但不考虑相邻母线故障,中性点接地变压器先跳闸的情况(母线故障时,应按规定,保证母线联络开关或分段开关先跳,因为中性点接地变压器先断开,会引起相邻线路的零序故障电流突然增大,如果靠大幅度提高线路零序保护瞬时段定值来防止其越级跳闸,显然会严重损害整个电网保护的工作性能。所以必须靠母线保护本身来防止接地变压器先跳闸。
(4)对单相重合闸线路,考虑两相运行的情况(分相操作开关的相重合闸线路,原则上靠开关非全相保护防止出现两相运行情况。
(5)对三相重合闸线路,应考虑开关合闸三相不同期的情况。
2 零序电流整定计算存在的问题
根据继电保护整定计算原则,利用计算机进行这类继电保护整定计算的步骤为:
①采用对称分量法计算电力系统故障时的电气量。
②利用故障时的电气量计算继电保护的整定值。
目前基于以上两种点利用计算机进行继电保护整定计算存在几个问题:
2.1 网络开断时,阻抗矩阵的修改计算速度慢
用计算机进行继电保护整定计算,其计算核心就是查找运行方式变化时,网络的开断计算。往往进行保护整定时,只需开断保护本侧母线上所连支路及对侧母线所连支路。因此在计算中就没有必要,因为开断一支路,而重新形成全网的阻抗阵。此时必须有合理的,快速的方法来模拟网络的开断。
2.2 不适当的故障点、故障类型、运行方式选择
由于零序电流在整定计算的过程包括对不同的故障点(例如线路上任意一处、末端母线、相继动作)。不同的故障类型主要是单相接地故障和两相接地故障计算;对110kV网络在Ⅲ或者Ⅳ整定时,按照躲过线路末端变压器另一侧短路时可能出现的最大不平衡电流时,要考虑计算相间最大短路电流不同运行方式的计算(如切出电源支路、切除变压器支路、切除线路)各种组合进行计算,这样计
算复杂繁多,降低了计算速度。
2.3 查找运行方式造成多次重复开断同一线路
在整定计算中,为计算动作值和校验灵敏度,必须查找电力系统最不利的运行方式。
2.4 用常规分支系数计算时,计算量大
分支系数的大小等于故障线路零序电流和保护线路零序电流的比值,要求得最小分支系数,需要对故障类型!运行方式、故障点的考虑。运行方式存在重复开断,无须选择两种接地故障计算,故障点选择不合理。
2.5 重复计算同一分支系数
按上述计算机进行继电保护整定计算中采用线性流程,造成多次重复计算同一分支系数。以图1所示为例分析:
图1 网络结构图
例如在整定AB线路A侧Ⅱ段分支系数计算方法和整定计算A侧Ⅲ段是完全相同,这样的重复运算降低了整定的计算速度。因此计算时就应该加快分支系数的计算。
2.6 查找不到系统最不利的运行方式
在继电保护整定计算过程中,为计算动作值和校验灵敏度,必须查找电力系统最不利的运行方式。在计算继电保护的动作值时,为查找电力系统的最大运行方式,仅轮流开断保护所在线路对侧母线上所连接的线路,在校验继电保护的灵敏度时,为查找电力系统的最小运行方式,仅轮流开断保护所在线路背后母线上所连接的线路(一般轮流开断一回)。实际上,这种轮流开断方法在某些情况下,查找不到电力系统最不利的运行方式。现以图2中A线路上继电保护1、2的I、Ⅱ段保护动作值为例进行讨论。
图2 电力系统运行方式的选择
计算图中保护1的I段动作值时,根据现有方法故障点应选在母线,然后在母线上轮流开断一回,但由图可见,对保护1来讲,断开E-C线路才为电力系统最大运行方式;校验保护2的Ⅱ段灵敏度时,根据现有方法故障点应选在母线A,然后在母线上轮流开断一回线,但由图可见,对保护2来讲,断开E-C线路才为电力系统最小运行方式。由此可见,按现有方法可能查找不到继电保护整定计算所需的电力系统最不利的运行方式。
3 零序电流保护整定优化技术措施
对线路出现三相不同期合闸操作时,可能产生更大的零序电流而误动作,此时使保护带一个小小的延时(0.15内)以躲开,下面将讨论其优化技术措施:
3.1 故障类型和故障点的选择
就故障类型的选择来说,产生零序电流的故障类型只有单相接地和两相接地故障。在进行计算时要分别计算单相接地故障和两相接地故障零序电流进行其比较,选择最大值,实际上,根据故障分析理论,如果零序阻抗(Z0)大于正序阻抗(Z1)(Z0>Z1),单相接地短路的零序电流大于两相接地短路的零序电流,所以计算最大零序电流时,选取单相接地故障计算短路电流。反之取两相接地故障计算短路电流。这样计算工作就没有必要把两种类型的故障电流都计算出来再比较,减少了一半的计算工作量,就故障点的选择,根据零序电流整定计算原则,零序电流I段保护定值一定要大于保护范围外最大零序电流才能不越级跳闸又能始保护范围最大,此时故障点在开关对侧母线上比在线路上比更能满足上述要求。相继动作就不必考虑,因为如此零序电流增大而跳闸正是我们需要的。所以故障点只计算保护开关对侧母线节点。
3.2 运行方式的选择
3.2.1 不重复切线
图3 电力系统整定计算运行方式的选择
在继电保护整定计算过程中,为计算动作值和校验灵敏度,必须查找最不利的运行方式。在计算动作值时,要查找电力系统的最大运行方式,要计算不切线方式;轮流开断保护对侧母线上所连一线路、两条线方式。在校验灵敏度时,要查找最小运行方式,要轮流开断保护所在线路背后线上所连线路(一般轮流开断一回)。实际上在利用计算机进行整定计算时,通常是采用线性流程完成继电保护整定计算(即先整定完上一段再整定下一段的流程方式)。因此,上述方式在查找运行方式中存在大量的重复开断计算。以上图3为例。
在计算图3中线路AB的保护开关A的I段的动作值时,在B母线上要分别进行不切线和切一条线计算。在进行线路PC的F侧开关计算时就存在了重复计算开关A所开断线路,在计算延时段时也存在同样的重复计算。大量的重复计算影响了继电保护整定计算的速度和效率,影响程度和电网的结构有关。
此时为了避免线路的重复开断,改用不再按继电保护循环确定整定计算的顺序,具体方法为:首先计算不切线运行方式下,所有开关A、B、C、D、E、F、G、H的零序电流计算;然后再计算切一条线(如切BC)的运行方式下,开关A、D、E、F、G、H的零序电流计算;这样既没有重复运算,又对各个运行方式下,每个开关的零序电流值进行了计算。上述思想也可以用来在计算最小零序电流整定计算时运行方式的选择。
3.2.2 减少运行方式选择
在I段整定计算时计算最大零序电流,只考虑大方式及大方式下轮流切线情况。不考虑切除发电机的小方式,当然也不考虑小方式小轮断线路的计算;切除中性点接地变压器,有零序补偿措施。在求最小零序电流时,就只考虑小方式及小方式下轮流切线的情况,对大方式不必考虑。
3.2.3 查找最不利运行方式的方法
用扰动域方法,和下面发电机扰动域确定方法一样,扰动变量是零序电流变化值。
4 结束语
供电线路零序保护整定计算的目的是对电力系统中已经配置好的零序保护,按照具体的电力系统的参数和运行要求,通过计算分析给出所需的各项定值,使全系统中的零序保护及其他保护有机协调地部署,正确地发挥作用以适应了电力行业。
参考文献:
[1]陈永琳.电力系统继电保护的计算机整定计算.北京:水利电力出版社,1994
[2]许建安.继电保护整定计算.北京:中国水利水电出版社,2001.
关键词:电力系统 继电保护 整定计算
随着经济的发展,电力系统也不断扩大和改进,以大容量、高参数为主的机组成为配电网工作中的主要重点,对电力稳定性和动力设备的安全性提出了有效的保证。配电线路保护装置不仅集成了各种新技术和新设备的可靠性要求。同时在工作中由于自然、人为或设备故障等因素引起的配电故障不断涌现,严重影响着整个设备运行安全,同时也造成了经济发展严重受损和制约。因此在目前的电力系统中,继电保护就显得十分重要,是确保电力运输效率和质量的主要衡量标志。
一、高压电网继电保护整定计算
继电保护装置广泛应用于高压电网之中,通过在工作中对于响应单方面电气量的不断增加,要求保护模式也日益繁杂,现阶段的主要保护方式有继电器保护,零序电流保护,三相电流保护,距离保护和接地距离保护。这些保护方法和保护措施是一种固定行为特征的非自适应继电保护的整定,是通过对整定值进行离线计算获得和保持不变的操作。进而根据继电保护整定计算原则,使得这些整定方式不受影响,计算机整定之中的关键环节。
1、整定计算步骤
在目前的高压电网整定计算过程中,最常见的计算方法是想分量发和序分量法的计算模式,这种计算措施和计算方式在目前的电力系统中最为常见;其次是故障电气继电保护装置的整定值计算方式,是通过继电保护在电力系统中的适应能力和电压变化量来进行合理分析和整定计算的过程。分别对应电力系统的操作模式计算的最大程度的保护动作值继电保护整定计算的,根据每组继电保护电力系统的运行模式相对应的奇偶校验保护的灵敏度最小的,和拖延采取行动的继电保护II,III段和IV段,在时间,以满足严格的匹配关系的控制要求。
2、整定计算中存在问题
(1)计算非全相振荡时正序网络阶段的输出开路电压不计划和影响的网络结构,造成严重的错误的计算结果;
(2)继电保护计算延迟时间的行动的价值为分支因子,导致行动值计算结果误差;
(3)计算分支系数不充分考虑电力系统运行方式的分布变化,导致分支系数本身存在误差;
(4)继电保护整定计算过程中使用的线性过程,造成重复相同的计算分支系数;
(5)继电保护整定计算过程中的断电保护电路总线是连接线,无法找到最不利运行模式的电力系统。
二、电流速断保护计算
由于10kV线路一般为保护的最末级,所以在整定计算中,定值计算偏重灵敏性,对有用户变电所的线路,选择性靠重合闸来保证。在以下两种计算结果中选较大值作为速断整定值。
1 按躲过线路上配电变压器二次侧最大短路电流整定。实际计算时,可按距保护安装处较近的线路最大变压器低压侧故障整定。
Idzl=Kk×Id2max式中:Idzl为速断一次值;Kk为可靠系数,取1.5;Id2max为线路上最大配变二次侧最大短路电流。
2 当保护安装处变电所主变过流保护为一般过流保护时(复合电压闭锁过流、低压闭锁过流除外),线路速断定值与主变过流定值相配合。Ik=Kn×(Igl-Ie) 式中: Kn为主变电压比,对于35/10 降压变压器为3.33;Igl为变电所中各主变的最小过流值(一次值);Ie为相应主变的额定电流一次值。
3 特殊线路的处理:
1)线路很短,最小方式时无保护区;下一级为重要的用户变电所时,可将速断保护改为时限速断保护。动作电流与下级保护速断配合(即取1.1倍的下级保护最大速断值),动作时限较下级速断大一个时间级差(此种情况在城区较常见,在新建变电所或改造变电所时,建议保护配置用全面的微机保护,这样改变保护方式就很容易了)。在无法采用其它保护的情况下,可靠重合闸来保证选择性。
2)当保护安装处主变过流保护为复压闭锁过流或低压闭锁过流时,不能与主变过流配合。
三、分支系数计算方面存在的问题与解决对策
1 存在的问题
显而易见,最小分支系数对应的电力系统运行方式与最大短路电流对应的电力系统运行方式不一致,即继电保护延时段动作值对应的电力系统最不利的运行方式是一种实际上根本不存在的虚拟运行方式。分支系数的引入造成了相间电流保护延时段动作值偏大,偏大程度取决于电力系统网络结构复杂程度。
2 分支系数本身存在计算误差
由于电源在电力系统中的分散性和运行方式变化的多样性,在继电保护整定计算过程中,难以准确地考虑电源运行方式变化对分支系数的影响。在利用计算机进行继电保护整定计算的过程中,在计及网络操作的情况下,仅考虑了整定保护所在线路对侧母线上直接连接电源的运行方式变化对分支系数的影响。这种处理方法给分支系数的计算带来了误差。
四、整定计算对策及建议
1 励磁涌流问题
1.1 励磁涌流对继电保护装置的影响
励磁涌流是变压器所特有的,是由于空投变压器时,变压器铁芯中的磁通不能突变,出现非周期分量磁通,使变压器铁芯饱和,励磁电流急剧增大而产生的。变压器励磁涌流最大值可以达到变压器额定电流的6~8倍,并且跟变压器的容量大小有关,变压器容量越小,励磁涌流倍数越大。励磁涌流存在很大的非周期分量,并以一定时间系数衰减,衰减的时间常数同样与变压器容量大小有关,容量越大,时间常数越大,涌流存在时间越长。
1.2 防止涌流引起误动的方法
励磁涌流有两个明显的特征,一是它含有大量的二次谐波,二是它的大小随时间而衰减,一开始涌流很大,一段时间后涌流衰减为零。利用涌流这个特点,在电流速断保护装置上加一短时间延时,就可以防止励磁涌流引起的误动作,这种方法最大优点是不用改造保护装置(或只作简单改造)。
2饱和问题
2.1饱和对保护的影响
在10kV线路短路时,由于饱和,感应到二次侧的电流会很小或接近于零,使保护装置拒动,故障要由母联断路器或主变后备保护来切除,不仅延长了故障时间,使故障范围扩大,还会影响供电的可靠性,且严重威胁运行设备的安全。
2.2 避免TA饱和的方法
避免TA饱和主要从两个方面入手,一是在选择TA时,变比不能选得太小,要考虑线路短路时TA饱和问题,一般10kV线路保护TA变比最好大于300/5;另一方面要尽量减少TA二次负载阻抗,尽量避免保护和计量共用TA,缩短TA二次电缆长度及加大二次电缆截面;对于综合自动化变电所,10kV线路尽可能选用保护测控合一的产品,并在控制屏上就地安装,这样能有效减小二次回路阻抗,防止TA饱和。
配电系统由于自然的、人为的或设备故障等原因,使配电网的某处发生故障时,继电保护装置能快速采取故障切除、隔离或告警等措施,以保持配电系统的连续性、可靠性和保证人身、设备的安全。因此,继电保护在电力系统中具有十分重要的作用。
2、常规10kV线路整定计算方案
我国的10kV配电线路的保护,一般采用电流速断、过电流及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护(如:保护Ⅱ段、电压闭锁等)。
2.1 电流速断保护
由于10kV线路一般为保护的最末级,所以在整定计算中,定值计算偏重灵敏性,对有用户变电所的线路,选择性靠重合闸来保证。在以下两种计算结果中选较大值作为速断整定值。
2.1.1 按躲过线路上配电变压器二次侧最大短路电流整定。实际计算时,可按距保护安装处较近的线路最大变压器低压侧故障整定。
Idzl=Kk×Id2max
式中:Idzl为速断一次值;Kk为可靠系数,取1.5;Id2max为线路上最大配变二次侧最大短路电流。
2.1.2 当保护安装处变电所主变过流保护为一般过流保护时(复合电压闭锁过流、低压闭锁过流除外),线路速断定值与主变过流定值相配合。
Ik=Kn×(Igl-Ie)
式中: Kn为主变电压比,对于35/10 降压变压器为3.33;Igl为变电所中各主变的最小过流值(一次值);Ie为相应主变的额定电流一次值。
2.1.3 特殊线路的处理:
1)线路很短,最小方式时无保护区;下一级为重要的用户变电所时,可将速断保护改为时限速断保护。动作电流与下级保护速断配合(即取1.1倍的下级保护最大速断值),动作时限较下级速断大一个时间级差(此种情况在城区较常见,在新建变电所或改造变电所时,建议保护配置用全面的微机保护,这样改变保护方式就很容易了)。在无法采用其它保护的情况下,可靠重合闸来保证选择性。
2)当保护安装处主变过流保护为复压闭锁过流或低压闭锁过流时,不能与主变过流配合。
3)当线路较长且较规则,线路上用户较少,可采用躲过线路末端最大短路电流整定,可靠系数取1.3~1.5。此种情况一般能同时保证选择性与灵敏性。
4)当速断定值较小或与负荷电流相差不大时,应校验速断定值躲过励磁涌流的能力,且必须躲过励磁涌流。
(4)灵敏度校验。在最小运行方式下,线路保护范围不小于线路长度的15%整定。允许速断保护线路全长。
Idmin(15%)/Idzl≥1
式中Idmin(15%)为线路15%处的最小短路电流;Idzl为速断整定值。
2.1.4 灵敏度校验。在最小运行方式下,线路保护范围不小于线路长度的15%整定。允许速断保护线路全长。
Idmin(15%)/Idzl≥1
式中Idmin(15%)为线路15%处的最小短路电流;Idzl为速断整定值。
2.2 过电流保护
2.2.1 按躲过线路最大负荷电流整定。此方法应考虑负荷的自启动系数、保护可靠系数及继电器的返回系数。为计算方便,可将此三项合并为综合系数KZ。
即:KZ=KK×Izp/Kf
式中:KZ为综合系数;KK为可靠系数,取1.1~1.2;Izp为负荷自启动系数,取1~3;Kf为返回系数,取0.85。
微机保护可根据其提供的技术参数选择。而过流定值按下式选择:
Idzl=KZ×Ifhmax
式中Idzl为过流一次值;Kz为综合系数,取1.7~5,负荷电流较小或线路有启动电流较大的负荷(如大电动机)时,取较大系数,反之取较小系数;-Ifhmax为线路最大负荷电流,具体计算时,可利用自动化设备采集最大负荷电流。
2.2.2 按躲过线路上配变的励磁涌流整定。变压器的励磁涌流一般为额定电流的4~6倍。因此,重合闸线路,需躲过励磁涌流。由于配电线路负荷的分散性,决定了线路总励磁涌流将小于同容量的单台变压器的励磁涌流。因此,在实际整定计算中,励磁涌流系数可适当降低。
Idzl=KK×Kcl×Sez/(×Ue)
式中Idzl为过流一次值;Kcl为线路励磁涌流系数,取1~5,线路变压器总容量较少或配变较大时,取较大值;Sez为线路配变总容量;Ue为线路额定电压,此处为10kV。
2.2.3 特殊情况的处理:(1)线路较短,配变总容量较少时,Kz或Klc应选较大的系数;(2)当线路较长,过流近后备灵敏度不够时,可采用复压闭锁过流或低压闭锁过流保护,此时负序电压取0.06Ue,低电压取0.6~0.7Ue,动作电流按正常最大负荷电流整定。当保护无法改动时,应在线路中段加装跌落式熔断器;(3)当远后备灵敏度不够时,由于每台配变高压侧均有跌落式熔断器,可不予考虑;(4)当因躲过励磁涌流而使过流定值偏大,而导致保护灵敏度较低时,可考虑将过流定值降低,而将重合闸后加速退出。
2.2.4 灵敏度校验:近后备按最小运行方式下线路末端故障,灵敏度大于等于1.5;远后备灵敏度可选择线路最末端的较小配变二次侧故障,接最小方式校验,灵敏度大于或等于1.2。
Km1=Idmin1/Idzl≥1.25
Km2=Idmin2/Idzl≥1.2
式中Idmin1为线路末端最小短路电流;Idmin2为线路末端较小配变二次侧最小短路电流;Idzl为过流整定值。
3、重合闸
10kV配电线路一般采用后加速的三相一次重合闸,由于安装于末级保护上,所以不需要与其他保护配合。重合闸所考虑的主要为重合闸的重合成功率及缩短重合停电时间,以使用户负荷尽量少受影响。
重合闸的成功率主要决定于电弧熄灭时间、外力造成故障时的短路物体滞空时间(如:树木等)。电弧熄灭时间一般小于0.5s,但短路物体滞空时间往往较长。因此,对重合闸重合的连续性,重合闸时间采用0.8~1.5s;农村线路,负荷多为照明及不长期运行的小型电动机等负荷,供电可靠性要求较低,短时停电不会造成很大的损失。为保证重合闸的成功率,一般采用2.0s的重合闸时间。实践证明,将重合闸时间由0.8s延长到2.0s,将使重合闸成功率由40 %以下提高到60 %左右。
4、10kV保护整定中容易忽视的问题及对策
4.1 励磁涌流问题
4.1.1 励磁涌流对继电保护装置的影响
励磁涌流是变压器所特有的,是由于空投变压器时,变压器铁芯中的磁通不能突变,出现非周期分量磁通,使变压器铁芯饱和,励磁电流急剧增大而产生的。变压器励磁涌流最大值可以达到变压器额定电流的6~8倍,并且跟变压器的容量大小有关,变压器容量越小,励磁涌流倍数越大。励磁涌流存在很大的非周期分量,并以一定时间系数衰减,衰减的时间常数同样与变压器容量大小有关,容量越大,时间常数越大,涌流存在时间越长。
10kV线路装有大量的配电变压器,在线路投入时,这些配电变压器是挂在线路上,在合闸瞬间,各变压器所产生的励磁涌流在线路上相互迭加、来回反射,产生了一个复杂的电磁暂态过程,在系统阻抗较小时,会出现较大的涌流,时间常数也较大。二段式电流保护中的电流速断保护由于要兼顾灵敏度,动作电流值往往取得较小,特别在长线路或系统阻抗大时更明显。励磁涌流值可能会大于装置整定值,使保护误动。这种情况在线路变压器个数少、容量小以及系统阻抗大时并不突出,因此容
易被忽视,但当线路变压器个数及容量增大后,就可能出现。我公司就曾经在变电所增容后出现10kV线路由于涌流而无法正常投入的问题。 4.1.2 防止涌流引起误动的方法
励磁涌流有两个明显的特征,一是它含有大量的二次谐波,二是它的大小随时间而衰减,一开始涌流很大,一段时间后涌流衰减为零。利用涌流这个特点,在电流速断保护装置上加一短时间延时,就可以防止励磁涌流引起的误动作,这种方法最大优点是不用改造保护装置(或只作简单改造)。
4.2 TA饱和问题
4.2.1 TA饱和对保护的影响
在10kV线路短路时,由于TA饱和,感应到二次侧的电流会很小或接近于零,使保护装置拒动,故障要由母联断路器或主变后备保护来切除,不仅延长了故障时间,使故障范围扩大,还会影响供电的可靠性,且严重威胁运行设备的安全。
4.2.2 避免TA饱和的方法
避免TA饱和主要从两个方面入手,一是在选择TA时,变比不能选得太小,要考虑线路短路时TA饱和问题,一般10kV线路保护TA变比最好大于300/5;另一方面要尽量减少TA二次负载阻抗,尽量避免保护和计量共用TA,缩短TA二次电缆长度及加大二次电缆截面;对于综合自动化变电所,10kV线路尽可能选用保护测控合一的产品,并在控制屏上就地安装,这样能有效减小二次回路阻抗,防止TA饱和。
4.3 所用变保护问题
4.3.1 所用变保护存在的问题
所用变是一比较特殊的设备,容量较小,可靠性要求高,且安装位置特殊,通常接在10kV母线上,其高压侧短路电流等于系统短路电流,可达十几kA,低压侧出口短路电流也较大。人们普遍对所用变保护的可靠性重视不够,这将对所用变直至整个10kV系统的安全运行造成严重威胁。