首页 > 文章中心 > 高分子材料种类及用途

高分子材料种类及用途

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料种类及用途范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

高分子材料种类及用途

高分子材料种类及用途范文第1篇

关键词:高分子材料;可降解;生物

中图分类号:TQ464 文献标识码:A

我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3 种方式: 生物的细胞增长使物质发生机械性破坏; 微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。

1生物可降解高分子材料概念及降解机理

生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。

生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。

因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、PH值、微生物等外部环境有关。

2生物可降解高分子材料的类型

按来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。

2.1微生物生产型

通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ICI 公司生产的“Biopol”产品。

2.2合成高分子型

脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET) 和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺) 制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。

2.3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。

2.4掺合型

在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

3生物可降解高分子材料的开发

3.1生物可降解高分子材料开发的传统方法

传统开发生物可降解高分子材料的方法包括天然高分子的改造法、化学合成法和微生物发酵法等。

3.1.1天然高分子的改造法

通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。

3.1.2化学合成法

模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。

3.1.3微生物发酵法

许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。

3.2生物可降解高分子材料开发的新方法——酶促合成

用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。

3.3酶促合成法与化学合成法结合使用

酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料。

4生物可降解高分子材料的应用

目前生物可降解高分子材料主要有两方面的用途:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。通常,对高聚物材料的处理主要有填埋、焚烧和再回收利用等3种方法,但这几种方法都有其弊端。(2)利用其可降解性,用作生物医用材料。目前,我国一年约生产3000 多亿片片剂与控释胶囊剂,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是传统的糖衣片,而国际上发达国家80%以上使用水溶性高分子材料作薄膜衣片,因此,我国的片剂制造水平与国际先进水平有很大的差距。国外片剂和薄膜衣片多采用羟丙基甲纤维素,羟丙纤维素、丙烯酸树脂、聚乙烯吡咯烷酮、醋酸纤维素、邻苯二甲酸醋酸纤维素、羟甲基纤维素钠、微晶纤维素、羟甲基淀粉钠等。

参考文献

[1]侯红江,陈复生,程小丽,辛颖.可生物降解材料降解性的研究进展[J].塑料科技,2009,(03):89-93.

[2]翟美玉,彭茜.生物可降解高分子材料[J].化学与粘合,2008,(05).

高分子材料种类及用途范文第2篇

高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。

二、高分子材料的结构特征

高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。

三、高分子材料按来源分类

高分子材料按来源分,可分为天然高分子材料、半合成高分子材料(改性天然高分子材料)和合成高分子材料。

天然高分子材料包括纤维素、蛋白质、蚕丝、橡胶、淀粉等。合成高分子材料以及以高聚物为基础的,如各种塑料,合成橡胶,合成纤维、涂料与粘接剂等。

四、生活中的高分子材料

生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。下面就以塑料和纤维素举例说明。

(一)、塑料

塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、剂、色料等添加剂组成的,它的主要成分是合成树脂。

塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。2、塑料制造成本低。3、耐用、防水、质轻。4、容易被塑制成不同形状。5、是良好的绝缘体。6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。2、塑料容易燃烧,燃烧时产生有毒气体。3、塑料是由石油炼制的产品制成的,石油资源是有限的。

塑料的结构基本有两种类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物;第二种是体型结构,具有这种结构的高分子化合称为体型高分子化合物。线型结构(包括支链结构)高聚物由于有独立的分子存在,故有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。体型结构高聚物由于没有独立的大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。塑料则两种结构的高分子都有,由线型高分子制成的是热塑性塑料,由体型高分子制成的是热固性塑料。转

塑料的应用:透明塑料制成整体薄板车顶。薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗”,每扇窗都可单独打开和关闭。导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调节折叠薄板。这样可以形成三维立体结构,组件比平坦的薄板更加牢固。同时也大大降低了单个组件的数量。

(二)、纤维素

纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。纤维素是自然界中存在量最大的一类有机化合物。它是植物骨架和细胞的主要成分。在棉花、亚麻和一般的木材中,含量都很高。

纤维素的结构:纤维素是一种复杂的多糖,分子中含有约几千个单糖单元,即几千个(C6H10O5);相对分子质量从几十万至百万;属于天然有机高分子化合物;纤维素结构与淀粉不同,故性质有差异。

高分子材料种类及用途范文第3篇

关键词: 高中化学教学 新课标 基本策略

人的衣食住行、医疗保健、生命科学等无一不和化学密切相关。高一化学新教材卤素一章介绍了碘与人体健康,高二化学结合有机化学知识介绍了添加剂与人体健康,并以大量的彩图形象地介绍了各类无机物和有机物的用途。高三化学在电解池教学中,常识性介绍了以氯碱工业为基础的化工生产,结合生产实际及其他相关学科知识探讨硫酸工业的综合经济效益,树立学生的主人翁意识,这是素质教育、创新教育的一种方式。它随时空环境的改变而不断更新。环境科学是一门综合性的学科,而环境化学是解决环境问题的钥匙,环境教育与能源问题的提出对提高学生的创新意识和实践能力,培养公民综合素养有着重要的作用。

一、化学教育价值实现的基本策略

高中化学新课程要求课程实施遵循以下三个基本原则:

一是基础性原则:中学教育的基础性决定了化学教育是一种大众化的基础化学教育,从课程构建模式上来说,主要以化学学科基本结构为课程框架渗透有关化学与社会的内容。

二是社会价值原则:化学与社会内容十分广泛,作为课程形态的化学教学应全程体现化学——人类社会进步的关键。

三是动态发展性原则:由于教科书编著的时间性及使用的相对稳定性限制,使得教科书总有一定的滞后性,因此,教师要具有现代课程意识,要不断将动态的具有较高价值的新成果引入教学过程。

高中化学的教育价值定位,既决定着化学课程的知识、技能整体素质结构,又决定着化学教学的认知过程和操作过程。

二、遵循教学原则,在课改实践中总结基本策略

(一)主题型教学策略

化学—人类进步的关键是高中化学新课程的总主题,在整个高中化学教学过程中应该尽可能体现这一主题。如糖类、蛋白质、油脂可以人类重要的营养物质为主题;氮族元素结合生物圈中氮的循环以固氮为主题;硅和硅酸盐工业、金属和合成材料以材料为主题;化学反应与能量、原电池原理以开发新能源为主题;烃以石油化工为主题。主体型教学策略可以使学生认识到自己所学内容的社会价值及其实用性,有利于学生学习兴趣的激发和保持。

(二)用途联系型策略

在元素化合物教学中应该将现代最新的有价值的有关元素化合物用途纳入教学之中。如在学习NO的性质时,可联系医学新成就,介绍NO对人体某些疾病的治疗作用,然后提出问题:为什么大量NO吸入人体有害,而少量的NO吸入却能治疗某些疾病?在学习有机高分子材料时,可联系智能高分子材料、导点高分子材料、医用高分子材料、可降解高分子材料、高吸水性高分子材料等;在卤素学习时,可联系海水化学资源的开发、利用和饮水与消毒化学;在硅和硅酸盐学习时,可联系新型无机高分子材料等。

(三)情境渗透型策略

对某些与中学基础知识有密切关系的新的应用型成果可采取情境渗透型策略。例如,进行晶体类型与性质学习时,可以将晶体缺陷对晶体生长、晶体的力学性能、电学性能、磁学性能和光学性能等有重要影响,如许多过渡金属氧化物中的价态可以变化并形成非整比化合物,从而使晶体具有特意色彩等光学性质,甚至具有半导性或超导性。情境,讨论具有NaCl型结构的NiO晶体发生晶体缺陷形成的非整比化合物NiXO的结构特征等。

(四)实验探究式策略

化学是以实验探究为基本特征的,因此,化学教学也应体现这一特征,并将其作为化学教学的主模式。探究的内容有物质的组成、结构、性质、变化规律及物质的实用性等。在教学中,可把一些演示实验改为边讲边实验,将验证性实验改为探索性实验。如:联系生物实验空气中SO■含量的测定,可让学生联系化学知识设计反应原理,根据具体操作,提出问题:为什么抽拉活塞时不能过快也不能过慢?设计HCO■■结合H■容易还是CO■■结合H■容易等探索性实验。这些都是在创设出一种问题情境后,发挥学生的积极性和主动性,激发学生的求知欲,进而引导学生探索化学知识的价值活动。

(五)调查研究型策略

对于某些与社会联系紧密的、具有开放性的问题可采用“调查研究型”策略。如:调查食品添加剂的用途、种类;调查合成洗涤剂的成分、性能、种类、价格;调查各种电源的组成、性能、价格、使用寿命等;调查太原市工业污染的现状并提出合理的建议,等等。学生通过接触社会、接触生活的方式,进一步认识到化学在社会生活中的应用。

(六)专题研讨型策略

化学与能源、材料、环境、人体健康、军事等社会问题领域有着密切的联系,教学中,可以将上述领域内容作为专题组织学生进行交流讨论。教师和学生可以通过查阅图书资料、上网进行充分的讨论前准备。这样的活动既拓宽了学生的化学视野,又培养了学生多渠道获取信息的能力,同时也很好地体现了教学的民主性。

有关新教材中化学教育价值的体现还有很多,其他方面就不一一赘述了。诸如上述化学教育的价值,它们的具体实施需要手段,它包括观念手段(即无形手段)和操作手段(即有形手段),二者要有机地结合起来。

综上所述,面对知识经济的挑战,联系当前社会发展的实际,对于化学教育价值的研究投以探索的目光,是组建化学教育价值体系的一种科学方法,对研究化学教学的观念、模式及改革有着重要的指导意义。学校里的化学教育,无论是从理论还是从实践的角度来看,都是一个大型的人文系统工程。按照系统论的观点,它应该包括价值目标、时空环境、价值手段、过程监控和评估反馈等结构环节。

高分子材料种类及用途范文第4篇

一、用途

聚丙烯酸钠因其相对分子质量的不同而具有不同的用途。高相对分子质量的聚丙烯酸钠(106~107)用作絮凝剂及高吸水性树脂。聚丙烯酸钠用作絮凝剂有以下几个方面的用途:天然水澄清,去除污水中的磷酸盐,从氧化铝中分离赤泥及用做土壤改良剂等。聚丙烯酸钠类吸水性树脂是近年来国内外广泛开发研究的一种新型功能高分子材料,它是一种具有松散网络结构的低交联度的强亲水性高分子化合物,具有超高的吸水和保水性能,无毒无臭,在医疗卫生、石油化工、土壤保水等方面得到广泛应用。中相对分子质量聚丙烯酸钠(104~106)可用作增稠剂和保水剂,低相对分子质量聚丙烯酸钠(103~104)可用作分散剂、阻垢剂,超相对低分子质量(700以下)聚丙烯酸钠的用途还未被完全开发。

二、工艺路线及其合成方法

聚丙烯酸钠的生产工艺路线如下。

1.聚合法

先用丙烯酸和烧碱反应生成丙烯酸钠单体,再将单体在过硫酸盐、还原剂引发下聚合成聚丙烯酸钠。

2.中和法

首先将丙烯酸在氧化还原剂作用下聚合成聚丙烯酸,然后将聚丙烯酸与烧碱中和生成聚丙烯酸钠。

3.皂化法

先由丙烯酸与甲醇反应生成丙烯酸甲酯,将丙烯酸甲酯聚合后的悬浮液或乳胶在氢氧化钠水溶液中加热,制得聚丙烯酸钠。

4.水解法

先有丙烯酰胺聚合生成聚丙烯酰胺,然后在碱性条件下将聚丙烯酰胺水解生成聚丙烯酸钠。

目前一般使用聚合工艺路线,中和后的丙烯酸钠聚合速率平稳,工业反应容易控制。

聚丙烯酸钠主要合成方法有本体聚合、水溶液聚合、反相悬浮聚合、反相乳液聚合、辐射聚合等。本体聚合、水溶液聚合是高分子化学中常用的聚合方法。反相悬浮聚合法是将反应物分散在油溶性介质中,单体水溶液作为水相液滴或粒子,水溶性引发剂溶解于水相中引发聚合的方法。从20世纪90年代开始,研究者将反相悬浮聚合工艺应用于丙烯酸钠聚合,不仅解决了黏度高及搅拌传热困难等难题,并兼有聚合速度大和产物相对分子质量高等优点,且反应条件温和,可直接制成粉状或粒状产物。对于反相悬浮聚合而言,有效的悬浮分散剂包括亲水性高岭土、硅烷化的硅酸或者矿物填料等,其他的悬浮分散剂有山梨糖醇油酸酯和带有-COOH、-SO3H和-NH2等亲水性取代基的可溶性聚合物,也可以采用一些含有亲油亲水基的嵌段共聚物。反相悬浮聚合法还存在受搅拌速率影响大、易聚结、共沸时体系不稳定、易产生凝胶、出水时间长等问题。反相乳液聚合法是将反应物分散在油性介质中,通过乳化剂的作用,在搅拌或剧烈震荡下分散成乳液状进行聚合的方法。该方法与一般的乳液聚合的不同之处在于:单体是亲水性或水溶性的,水相中的单体分散在油性介质中,为“油包水”型聚合系统。采用乳化剂的亲水亲油平衡值(HLB)为3~8。反相乳液聚合法具有广阔的发展前景,引起了国内外高分子学者的高度重视。辐射聚合可归结为本体聚合,该方法在生产过程中不添加任何助剂,产品纯度高。近年来虽然有对高吸水性树脂的辐射聚合研究,但工业化尚有困难。

三、研究方向及展望

随着国民经济的飞速发展,水处理的必要性日益突出,絮凝技术是提高水处理效率的最常用技术之一。特别是作为絮凝剂的高相对分子质量聚丙烯酸钠,已经成为国内外科研人员竞相研究的课题。研究丙烯酸及其共聚单体的反相乳液聚合,首先应对乳化剂的选配、引发剂体系的选择及其用量、聚合温度及时间的确定等方面进行探讨,研究体系的中和度、共聚单体的种类和配比、单体总浓度、非极性溶剂的种类和混配等。应继续发展和完善现有的聚合方法和工艺条件,对各个聚合机理及聚合动力学进行深入研究,开发新的高效、合理的聚合引发体系,探讨高性能的缓聚剂,探索更有效的聚合方法(比如半连续聚合方法、微乳液聚合方法、反相微乳业聚合方法),研究如何提高相对分子质量以优化其性能,研究高固含量聚合和新技术在各聚合方法中的应用,研制高分子型的乳化剂,探索反相微乳液聚合方法,从而使聚丙烯酸钠从实验室研究向产业化、工业化进军。随着经济建设的蓬勃发展,科学技术的不断进步,对高分子水溶性的聚合物尤其聚丙烯酸类的产品性能要求会越来越高,其势必会有更广阔的发展前景。

高分子材料种类及用途范文第5篇

关键词:选择性激光烧结;高分子粉末材料

中图分类号: F406 文献标识码: A

0前言

目前 SLS 高分子粉料的制备工艺处于行业保密状态,没有完整、公开的工艺流程可供参考,本文根据高分子粉末的制备方法,通过资料分析,总结出了低温粉碎法和溶剂沉淀法两种可行的 SLS 高分子粉料的制备方法和工艺流程。合理的工艺参数组合是获得良好成型质量的关键,成型工艺参数的设置和材料的性能有关,

1选择性激光烧结材料的概况

烧结材料是 SLS 技术发展的关键环节,它对烧结件的成型速度和精度及其物理机械性能起着决定性作用,直接影响到烧结件的应用以及 SLS 技术与其他快速成型技术的竞争力。因此,在 SLS 技术方面有影响力的公司如 3D(DTM)、EOS 公司都在大力研究并提供激光烧结材料,有很多科研机构和一些从事材料生产的专业公司也加入到激光烧结材料的研究开发当中。目前已开发出多种激光烧结材料,按材料性质可分为以下几类:金属基粉末材料、陶瓷基粉末材料、覆膜砂、高分子基粉末材料等。金属基粉末材料主要有两大类,一类是用聚合物作粘结剂的金属粉末,包括用有机聚合物包覆金属粉末材料制得的覆膜金属粉末及金属与有机聚合物的混合粉末。另一类是不含有机粘合剂的金属粉末,这类金属粉末可用大功率的激光器直接烧结成致密度较高的功能性金属零件和模具。金属粉末的直接烧结成型因工艺简单而倍受关注,但因烧结温度高,用激光烧结成型有较大的难度。陶瓷粉料的烧结温度很高,难以直接用激光烧结成型,因此,用于 SLS 工艺的陶瓷基粉末材料是加有粘结剂的陶瓷粉。在激光烧结过程中,利用熔化的粘结剂将陶瓷粉末粘结在一起,形成一定的形状,然后再通过后处理以获得足够的强度。目前陶瓷基粉末的激光烧结工艺尚不成熟,还没有实现商品化。

2 选择性激光烧结高分子粉末材料分类

2.1热塑性塑料粉

热塑性塑料粉又可分为晶态和非晶态两类,非晶态由于从熔融状态到固态没有结晶过程,故收缩率较低,成型工艺易于控制。玻璃化温度 Tg、粘流温度 Tf和材料的熔融指数是非晶态材料成型的三个重要的工艺控制参数。Tg与 Tf差值对成型过程材料的收缩变形有很大影响,而熔融指数直接影响成型零件的密度和强度。晶态成型粉料的特点是材料本身的模量和强度较高,同时在熔点以下粉末颗粒不会粘接,因而易于控制成型温度,获得较高密度的成型件。结晶类材料的缺点是从熔体到固体存在结晶相变,材料的收缩变形大,因此必须设法在烧结时给予补偿。对此类材料的成型,控制结晶的过冷区和速率是关键。现在已投入使用的结晶类成型粉料还不多,一般只是尼龙及共聚尼龙的粉料,由于结晶类成型材料具有较高的强度和韧性,有较大的发展潜力。

2.2热固性塑料材料

热固性塑料粉的成型过程是在激光的热作用下,材料分子间发生交联反应使粉体颗粒彼此粘接。最常用的热固性材料是环氧树脂和酚醛树脂,此类材料一般不能单独使用,它们可以作为粉末颗粒间的粘结剂。因此树脂颗粒在母体材料表面的包覆状态是至关重要的。热固性树脂的优点是零件变形小,尺寸稳定,价格低廉,缺点是固化反应时间一般高于激光扫描停留时间,因此来不及充分反应,零件的初始强度往往较低,需要做后期固化处理。现在较成熟的热固化成型材料是覆膜树脂砂,可用于铸造成型的型芯和型壳。

3选择性激光烧结高分子粉料烧结件的用途

由于 SLS 技术的灵活性和快捷性,它的应用领域几乎包括了制造领域的各个行业,在医疗、艺术、人体工程、文物保护等行业也得到了越来越广泛的应用。

3.1制造业领域

在制造业特别是航空、航天、国防、汽车等重点行业,其核心部件一般均为金属零件,而且相当多的金属零件是非对称性的、有不规则的曲面或结构复杂且其内部又含有精细结构。这些零件的生产常采用铸造或解体加工的方法。在铸造生产中,模板、芯盒、压铸模的制造往往是用机械加工的方法完成的,有时还需要钳工进行修整,不仅周期长、耗资大,而且从模具设计到加工制造是一个多环节的复杂过程,略有失误有时甚至要全部返工。特别是对一些形状复杂的铸件,如叶片、缸体等模具的制造更是一个难度相当大的问题,在加工技术与工艺可行性方面仍有很大困难。可以设想,如果遇到此类零件的样品或小批量生产,其制造周期、成本及风险是相当大的。

3.2新产品开发过程中的设计验证与功能验证

RP 技术可快速地将设计的 CAD模型转换成物理实物模型,这样可以方便地验证设计人员的设计思想和产品结构的合理性、可装配性、美观性,发现设计中的问题可及时修改。如果用传统方法,需要完成绘图、工艺设计、工装模具制造等多个环节,周期长、费用高。如果不进行设计验证而直接投产,则一旦设计失误,将会造成极大的损失。例如,家电及通讯产品的外形、结构设计,装配试验、功能验证,模具制造等;为客户提品样件,进行市场宣传等,快速成型技术已成为并行工程和敏捷制造的一种技术途径。

3.3医疗、人体工程、文物保护领域

医疗器械的设计、试产、试用。以医学影像数据为基础,把 CT 扫描信息实物化,利用 RP 技术制作人体器官模型作为医疗专家的可视模型,进行模拟手术或对特殊病变部分进行修补,人体骨关节的配制,文物的仿制等。

4 结语

目前,国内使用的 SLS 高分子粉料仅限于 PS、PA、PC 等粉料,大多数是各研究单位针对自己研发的 SLS 设备而研制的,成本较高,对设备的依赖性强,并且成型性能不稳定,成型件表面粗糙,表面硬度和强度不高。成型粉料和成型工艺是获得良好烧结成型质量的关键,SLS 高分子材料和工艺的改进研究仍有以下工作要做: 1.需要研制出更多种类、不同用途的粉料,逐步扩大 SLS 技术的工业应用领域。SLS 成型粉料的开发和生产应向商品化、系列化、规模化方向发展。国内目前尚无专业的快速成型材料制造商和销售商,各快速成型技术的研发单位开发的粉料品种比较单一,工艺适应性较差,不便于推广应用。2.开发高性能、低成本、低污染的高分子粉料,改变目前价格昂贵制约工业应用的现状。

参考文献