前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数学建模算法与实现范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2012)08-0106-03
运筹学应用分析、试验、量化的方法,对经济管理系统中人、财、物等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。该课程主要培养学生在掌握数学优化理论的基础上,具备建立数学模型和优化计算的能力。本文提出一种新的教学改革思路,将运筹学和数学建模两门课程合并为一门课程,即开设大容量交叉课程《运筹学与数学建模》来取代《运筹学》和《数学建模》两门课程,采用案例教学和传统教学相结合的教学方法,数学建模和优化算法理论并重的教学模式。这样既可以避免出现极端教学和随意选取教学内容的现象,又可以将新颖的教学方法与传统方法相结合,按照分析问题、数学建模、优化算法理论分析及其方案制定、实施等解决实际问题步骤展开教学。下面就该课程开设的必要性、意义、可行性、注意事项及其存在问题等方面进行分析。
一、开设《运筹学与数学建模》课程的必要性
1.一般院校的运筹学课程的教学课时大约为64或56(包含试验教学),所以教学中不能囊括运筹学的各个分支。一方面,由于课时量不足,教师选取教学内容时容易出现随意性和盲目性;另一方面,教学中为强化运筹学的应用,消弱理论教学,从而导致学生对知识的理解不透彻,在实际应用中心有余而力不足。
2.运筹学解决实际问题的步骤是:(1)提出和形成问题;(2)建立数学模型;(3)模型求解;(4)解的检验;(5)解的控制;(6)解的实施。大部分教学只涉及步骤(3),即建立简单数学模型,详细介绍运筹学的算法理论,与利用运筹学解决实际问题的相差甚远。因此,学生仍然不会应用运筹学解决实际问题,从而导致学生认为运筹学无用。
3.数学建模课程包含大量的运筹学模型;运筹学在解决实际问题的环节中包含建立数学模型步骤。目前两门课程分开教学,部分内容重复教学,浪费教学课时。
二、开设《运筹学与数学建模》课程的意义
1.激发学生的学习动机,培养学习兴趣。该课程包含数学建模和运筹学两门课程的内容,内容容量大,教学课时丰富,教学过程中能够以生产生活中的实际问题为案例,分析并完整解决这些问题,创造实际价值,使学生认识到该课程不但对未来的工作很重要,而且还有可以利用运筹学知识为企业或个人创造价值,改变运筹学“无用论”的观念。从而激发学生的学习动机,产生浓厚的学习兴趣。
2.合理处理教学内容。运筹学与数学建模的课时量相对充足,能够安排更多的内容,能够系统、完整地介绍相关知识,在一定程度上避免了运筹学内容安排的随意性和盲目性。
3.促进教学方法改革。运筹学与数学建模的教学不再是简单的数学建模和理论证明,教学内容丰富、信息量大,传统的一支笔一本教案一块黑板的模式不再适用,需寻找新的教学方法,促进了多种教学方法的融合。
4.培养学生综合能力。实际案例源于社会、经济或生产领域,需要用到多方面的知识,但学生不可能掌握很多专业知识。因而,在解决实际案例的过程中,需要查阅大量的相关文献资料,并针对性阅读和消化。而且,实际案例数据量大,需要运用计算机编程实现。因此,通过该课程的学习,可以提高学生多学科知识的综合运用能力和运用计算机解决实际问题的能力。
5.改变教学考核方式。教学改革后,教学内容已延伸到运用优化知识解决实际案例的整个过程。教学过程中既有对实际案例分析、建模,又有算法介绍、求结果的检验及其最终方案的实施。因而,传统的单一闭卷考试改为笔试和课后论文相结合的方式。
三、开设该课程的可行性
1.运筹学和数学建模互补性、递进性使得开设该课程在理论上可行。数学建模是利用数学思想去分析实际问题,建立数学模型;运筹学是利用定量方法解决实际问题,为决策者提供决策依据。由此可见,建立数学模型为运用运筹学解决实际问题的重要步骤。所以,运筹学可以认为是数学建模的进一步学习。同时,运筹学模型为数学建模课程介绍的模型中的一部分,并且运筹学处理实际问题的方法为数学建模提供了专业工具。因此,运筹学与数学建模在内容上是互补的。由此可知,开设该课程在理论上是可行的。
2.计算机的发展使得开设该课程在操作上可行。随着计算机的发展,能很快完成大数据量的计算,实际案例的数据分析、数学建模及其求解能快速实现,从而使得该课程的教学工作能顺利开展。
3.大学生的知识储备使得开设该课程在基础上可行。学习该课程的学生是高年级学生,通过公共基础课和专业基础课的系统学习,分析问题、解决问题的能力得到进一步提高。同时,运筹学和数学建模所需基础知识类似,学习该课程所需的线性代数、概率论与数理统计、高等数学及微分方程等课程也已经学习,运用运筹学与数学建模知识解决实际案例所需的基础知识已经具备。因此,开设该课程是可行的。
关键词:背景建模;骨架提取;运动分析
中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2013)05-1124-02
作为计算机视觉和模式识别发展的一个重要方向,行人检测技术被广泛应用于地铁站等智能交通的视频监控、检测中。对地铁站的行人检测,能有效预防环境安全及灾害事故的发生,保证行人的行车安全,具有很大的实用价值,是近年来人们研究的热点问题。车志富[1]等采用图像梯度向量直方图特征表征行人,改进了HOG特征提取算法,结合支持分类器SVM对行人进行检测。该方法对于一些有遮挡或有重叠的行人检测效率不高。雷涛[2]等提出了一种基于区域背景建模的运动人体分割算法,能够在复杂背景下提取运动人体骨架。该算法在RGB彩色模型中能快速提出阴影,提取图像前景,但在背景与前景灰度相似时,提取到的目标有空洞。综合目前检测技术可以看出,实时、准确的检测行人的难点在于:1) 行人自身特征提取;2) 受光照、设备自身局限的影响使得背景及其复杂;3) 人体骨架提取的精确性。
数学形态学是一种非线性图像信号处理和分析理论,它不但符合人的感知系统,而且在描绘区域和结构表达方面有很大的优势,所以受到了很大的重视。借助数学形态学在处理形态相关的图像中的优势,该文通过对地铁监控图像中提取的序列图像进行预处理;再用背景建模法,得到运动人体目标。
1 预处理
因为天气环境的变化等因素常常会引起拍摄图像的变形失真,所以有必要采取合理的预处理措施来改善图像质量。首先,对序列图像中值滤波,它在一定的条件下可以克服线性滤波器等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声较为有效。然后,采用直方图均衡对图片进行增强,增加对比度以便图像的后处理。
2 背景建模
相比于其他运动目标提取方法,背景建模可以完整的提取运动信息,计算较简便。它是基于序列图像中相邻两帧图像的比较,这样可以将背景与前景分割出来,实现运动目标的识别。基于这种理念,分割性能的好坏与场景中的动态变化联系密切。目前,背景建模的主要方式有Kalman滤波器模型、单高斯分布模型以及混合高斯分布模型等[3] 。为了减少动态变化的影响,利用文献2提出的更新背景区域的建模方法对背景进行建模,具体步骤如下:
1) 取出图像序列中第s帧和第s+1帧,并做两帧的差分图像,得到运动区域图像,记为[Mx,y]。得到的若干个运动区域表示为:
[M=M1,M2,...Mn]
2) 以第s帧为背景,取出第t帧和t+1帧,并做两帧的差分图像,得到运动区域图像,记为[Nx,y]。得到的若干个运动区域表示为:
[N=N1,N2,...Nn]
3) 利用1、2步在s帧中找出静止的区域,记为[Kx,y]。
4) 观察区域[Kx,y],若静止的概率大于3/4,则认为是背景区域。
5) 当背景区域不断更新时,前景区域也在不停更新,当背景帧图像近似均匀分布时,可作为终止条件,此时可以得到目标运动区域。
3 运动人体分割
数学形态学是一种非线性图像信号处理和分析理论,它不但符合人的感知系统,而且在描绘区域和结构表达方面有很大的优势,所以受到了很大的重视。该文首先对运动人体利用当前帧与背景帧做差,然后对差图像灰度化,再利用形态学开闭运算进行滤波,并二值化,通过填充孔洞和边界清除,便得到了完整且清晰的运动目标区域。
4 实验结果
本文对自然环境下,地铁站视频图像进行分析,在背景较为复杂的情况下,实现了运动人体检测。采用数学形态学处理,能够满足硬件并行计算的要求,同时满足了地铁站视频监控系统的实时性。从图1可以看出,该方法可以正确分割运动行人。
5 结束语
提出了一种将背景建模与形态学相结合的行人检测算法。通过对地铁站监控图像分析,该算法能在较为复杂的环境中,准确建模,解决了运动目标区域定位问题;实现了人体分割。但是,若地铁站行人较为密集,行人被一些物体遮挡以及光线过明、过暗等情况,该算法不能很好的提取目标区域。
参考文献:
[1] 车志富, 苗振江, 王梦思. 地铁视频监控系统中的行人检测研究与应用[J]. 现代城市轨道交通, 2010:31-36.
1软测量建模方法解析
典型的软测量模型结构如图1所示[3].与传统仪表检测技术相比,软测量技术具有通用性和灵活性强,易实现且成本低等优点[1]。影响热工过程参数软测量精度的主要因素为数据的预处理方法、辅助变量的选择、模型的算法和结构等[4G5].由于现场采集的数据存在一定的误差以及仪表测量误差等,因此在建立软测量模型时需要对建模数据进行预处理,以消除误差.此外,还需对算法中间及输出结果进行有效性检测,以避免输出不合理的数据.另外,辅助变量需要通过机理分析进行初步确定,并且对其的选取需要考虑变量的类型、数量和测点位置等,同时需要注意辅助变量对系统运行经济性、可靠性和可维护性等的影响,从而简化软测量模型和提高软测量精度.辅助变量选取的最佳数量与测量噪声、过程自由度及模型不确定性等有关,其下限值是待测主导变量的数量.所选辅助变量应与主导变量密切相关,且为与动态特性相似的可测参数,具有较强的鲁棒性和抗过程输出或不可测扰动的能力,易于在线获取,能够满足软测量的精确度要求.由于某些热工测量对象的辅助变量类型和数量很多,且各变量之间存在耦合关系,因此为了提高软测模型性能和精度,需对输入辅助变量进行降维处理.由于在工业过程中通常采用同时确定辅助变量的测定位置和数量方法,因此对测点位置的选择原则同于变量数量的选择原则.在构建软测量机理模型过程中,要求具有足够多能够反映工况变化的过程参数,并运用化学反应动力学、质量平衡、能量平衡等各种平衡方程,确定主导变量与一些可测辅助变量的关系.但是,经若干过程简化后的软测量机理模型难以保证测量精度,且有很多热工过程机理尚不明确,因此难以对软测量进行机理建模.针对复杂的非线性热工过程,辨识建模方法通过现场数据、试验测试或流程模拟,获得工况变化过程中的输入(辅助变量)和输出(主导变量)数据,根据两者的数学关系建立软测量模型.该方法主要有基于统计分析的主元分析(PCA)法和偏最小二乘(PLA)法、基于人工智能的神经网络(ANN)法、基于统计学习理论的支持向量机(SVM)法、模糊理论法等[6].
1.1主元分析方法
PCA法通过映射或变换对原数据空间进行降维处理,将高维空间中的问题转化为低维空间中的问题,新映射空间的变量由各原变量的线性组合生成[7].降维后数据空间在包含最少变量的同时,尽量保持原数据集的多元结构特征,以提高模型精度.通常,采用该方法对现场采集的系统输入输出变量数据进行相关性分析,以优选辅助变量集,并利用对应的输入输出变量建立预测模型.但是,该方法受样本噪声影响较大,建立的模型较难理解.PCA法基于线性相关和高斯统计的假设,而核主元分析(KPCA)法对非线性系统具有更好的特征抽取能力,因而针对飞灰含碳量等呈非线性特征的变量,基于KPCA法建立其软测量模型,效果较好[8].
1.2偏最小二乘法PLA法
通过计算最小化误差的平方和,匹配出数据变量的最优函数组合,是一种数学优化方法.该方法用最简化的方法求出某些难以计算的数值,通常被用于曲线拟合.偏最小二乘回归(PLSR)法建立在PCA原理上,主要根据多因变量对多自变量的回归建模,在解决样本个数少于变量个数问题时,特别是当各变量的线性关联度较高时采用PLSR法建立其软测量模型更为有效.
1.3人工神经网络
ANN法在理论上可在不具备对象先验知识的条件下,构造足够的样本,建立辅助变量与主导变量的映射关系,从而通过网络学习获得ANN模型.ANN由许多节点(神经元)相互连接构成,每个节点代表一个特定的输出函数(激励函数),2个节点间的连接代表通过该连接信号的权重(ANN的记忆).选取ANN运算模型的辅助变量和主导变量后,为使待测的主导变量近似于实际测量变量,还可利用最小二乘法、遗传算法、聚类法等神经网络算法训练己知结构网络,通过不断调整结构的连接权值和阈值训练出拟合度最优的ANN模型.ANN模型采用分布式并行信息处理算法,具有自学习、自适应、联想存储(通过反馈网络实现)、高速寻找优化解、较强在线校正能力、非线性逼近等特性,其在解决较强非线性和不确定性系统的拟合问题具有较大优势[9],因此成为应用最广泛的一种热工过程参数软测量建模方法.但是,神经网络系统受训练样本质量、空间分布和训练算法等因素影响较大,外推能力较差,受黑箱式表达方式限制,模型的可解释性较差.当实际样本空间超出训练样本空间区域时,模型输出误差较大.因此,实际工业过程中需定时对该方法的参数进行校正.ANN还包括反向传播神经网络(BP)和径向基神经网络(RBF).BP模型将样本输入输出问题变为非线性优化问题,采用最优梯度下降算法优化并迭代求得最优值.RBF包含输入层、隐含层(隐层)和输出层,为3层结构,隐层一般选取基函数作为传递函数(激励函数),输出层对隐层的输出进行线性加权组合,因此其节点为线性组合器.相比BP模型,RBF模型训练速度快,分类能力强,具有全局逼近能力等.
1.4支持向量机法SVM法
以结构风险最小化为原则,是一种新型针对小样本情况的机器统计学习方法.其需要满足特定训练样本学习精度的要求和具备准确识别任意样本的能力.该方法根据有限的训练样本信息尽可能寻求模型复杂性和学习能力间的最优关系,从而有效解决了基于经验风险最小化的神经网络建模方法的欠学习或过学习问题[10G11],且泛化能力强,能够保证较小的泛化误差,对样品依赖程度低,可以较好地对非线性系统进行建模和预测,是对小样本情况分类及回归等问题极优的解决方法.但是,当样本数据较大时,传统训练算法复杂的二次规划问题会导致SVM法计算速度较慢,不易于工程应用,抗噪声能力较差等,且参数选择不当会使模型性能变差.目前,对SVM法还没有成熟的指导方法,基于经验数据建模,则对模型精度的影响较大.对于工业过程对象,许多在SVM法基础上进行改进的算法和混合算法被用于软测量建模,并已取得了良好的试验效果.如基于最小二乘支持向量机(LSGSVM)法的建模方法将最小二乘线性系统的误差平方和作为损失函数代替二次规划方法,利用等式约束替代SVM法中的不等式约束.由于LSGSVM法只需求解1组线性等式方程组,因此显著提高了计算速度和模型的泛化能力[12G13].与传统SVM法相比,其训练时间更短,结果更具确定性,更适合工业过程的在线建模.1.5模糊理论法模糊理论法根据模糊逻辑和模糊语言规则求解新的模糊结果[14].由专家构造模糊逻辑语言信息,并转化为控制策略,从而解决模型未知或模型不确定性的复杂工业问题,尤其适合被测对象不确定,难以用数学方式定量描述的软测量建模[15G16].模糊理论法不需要被测对象的精确数学模型,但模糊系统本身不具有学习功能,如果能够将其与人工神经网络等人工智能方法相结合,则可提高软测量的性能.
2软测量技术研究现状
目前,软测量的机理、偏最小二乘、人工神经网络、支持向量机、模糊建模等方法均属于全局建模方法,而这些方法均存在待定参数过多、在线和离线参数难以同时用于建模、模型结构较难确定等问题.因此,20世纪60年代末,Bates等[17]提出了将几个模型相加的方法,该方法可以有效提高模型的鲁棒性和预测精度.该方法将系统首先拆分为多个子系统,然后分别对每个子系统建模并相加.全局模型被视为各子模型的组合,从而不仅可提高模型对热工过程参数的描述性能,而且较单一模型具有更高的精度.通常,在多模型建模时,首先通过机理分析建立带参数的机理模型,并利用输入输出数据对模型待测参数进行辨识.而对机理尚不清楚的部分,则采用数据建模,即根据输入输出数据构建补偿器进行误差补偿.基于此,本文以主要热工过程参数为对象,综述软测量技术的研究现状.
2.1钢球磨煤机负荷、风量和出口温度
钢球磨煤机(球磨机)制粉系统的用电量在电站厂用电中占比可高达15%.目前对球磨机煤量的测量方法有差压法、电流法、噪音法、物位法、振动法等[18],但这些方法都难以精确地测量球磨机煤量,从而导致制粉系统自动控制品质欠佳,使电耗量增加.建立球磨机负荷与相关辅助变量的关系,可实现球磨机负荷、煤量的软测量.辅助变量可选为给煤量、热风量、再循环风量、球磨机出口温度及出入口压差、球磨机电流等[19].王东风和宋之平[20]采用前向复合型人工神经网络建立了基于分工况学习的变结构式负荷模型,以测量球磨机负荷,其正常运行工况下采用延时神经网络法负荷模型,球磨机出口煤量较小(趋于堵煤)时采用回归神经网络法负荷模型,并通过仿真试验和实测数据证明了该建模方法的可行性和有效性,对运行指导也取得了较好的效果.司刚全等[21]提出了基于复合式神经网络的球磨机负荷软测量方法,选取球磨机噪音及出入口压差、出口温度、球磨机电流等作为辅助变量,获得了球磨机负荷变化规律.赵宇红等[22]基于神经网络和混沌信息技术建立了球磨机出力软测量模型,仿真结果表明该模型能够预测稳态和动态过程中的球磨机出力.汤健等[23]则提出了基于多源数据特征融合的软测量方法,其采用核主元分析提取各频段的非线性特征,建立了基于最小二乘支持向量机的模型,该算法运算精度较高.张炎欣[24]在即时学习策略建模框架下,首先通过灰色关联分析方法确定主要的辅助变量,随后采用混合优化算法进行支持向量机模型计算,发现其结果相比标准支持向量机模型和BP神经网络模型具有更好的预测性能.磨煤机一次风量的准确测量是确定合理风煤比,提高锅炉燃烧效率的重要因素.因此,杨耀权等[25G26]基于BP神经网络选取42个辅助变量建立了磨煤机一次风量的软测量模型,通过对某电厂数据的测试,验证了该方法较现场流量测量仪表输出值更准确,同时基于支持向量机回归方法建立的风量模型也较流量测量仪表的精度高,且能够适应机组变化.此外,梁秀满和孙文来[27]基于热平衡原理进行了机理建模,实现了球磨机出口温度的软测量.
2.2煤质
电站锅炉入炉煤质对机组安全、经济运行影响较大.对此,刘福国等[28G29]利用烟气成分、磨煤机运行状态、煤灰分和煤元素成分等建立了入炉煤软测量机理模型,实现了入炉煤质元素成分和发热量的在线监测.董实现和徐向东[30]利用模糊神经网络构建辨识模型,并进行了锅炉煤种低位发热量模型参数的辨识,其辨识误差在2%以内.马萌萌[31]利用BP神经网络法进行建模,研究了煤质元素分析,并利用遗传算法对BP神经网络各层连接值进行了提前寻优,结果表明经遗传算法优化后的模型较单纯BP神经网络模型误差更小.巨林仓等[32]采用遗传算法与BP网络联合的建模方式,分析了煤粉从制粉系统到完全燃烧的过程,结果表明煤质在线软测量模型能够有效预测煤种挥发分、固定碳含量和低温发热量.
2.3风煤比
电站锅炉各燃烧器出口的风煤比不能相差太大,否则可能造成锅炉中心火焰偏移、燃烧不稳定、结焦等问题.对此:金林等[33]基于气固两相流理论进行了机理建模,根据乏气送粉方式下风粉混合前后的压力差计算了风煤比,通过理论推导和仿真试验发现,风煤比计算值与混合压差呈良好的对应关系;陈小刚和金秀章[34]通过对风煤比机理模型的研究,发现一次风与煤粉混合后管道内压差呈明显的线性关系;刘颖[35]将给粉机转速、风粉混合前后动压、风粉温度等作为辅助变量,采用机理建模与支持向量机相结合的方法,进行风煤比软测量建模,仿真结果显示所建模型性能优于RBF神经网络模型.
2.4烟气含氧量
目前主要使用热磁式传感器和氧化锆传感器等测量锅炉烟气含氧量,其存在测量误差大、反应速度慢、成本高、使用寿命短等问题.对此,采用软测量方法测量烟气含氧量.锅炉烟气含氧量主要受煤质、煤粉未完全燃尽、炉膛漏风等因素影响,因此选取总燃料量、风机风量和电流、再热蒸汽温度、汽包压力、炉膛出口烟温、锅炉给水流量等参数作为辅助变量.韩璞等[36]构建了电站锅炉烟气含氧量的复合型神经网络软测量模型,并在不同机组负荷下通过实测方法验证了该模型的有效性.卢勇和徐向东[37]提出了基于统计分析和神经网络的偏最小二乘(NNPLS)法建立锅炉烟气含氧量软测量模型的方法,并进行了稳态和动态建模,结果表明所建模型具有很强的泛化能力.陈敏[38]引入主元分析理论和偏最小二乘法进行了辅助变量的优化选取,并采用BP神经网络算法实现了对烟气含氧量的预测分析.熊志化[39]进行了基于支持向量机的烟气含氧量软测量,通过8个辅助变量进行训练,并得出优于传统氧量分析仪和RBF神经网络模型的结论,尤其是在小样本情况下.张倩和杨耀权[40]采用了类似的支持向量机回归模型取得了良好的仿真结果.章云锋[41]提出了基于最小二乘支持向量机的烟气含氧量软测量模型.张炎欣等[24,42]采用基于即时学习策略的改进型支持向量机建立了烟气含氧量软测量模型,得到了与球磨机负荷相似的结论.王宏志等[43]构建最小二乘支持向量机模型时应用粒子群算法解决了多参数优化的问题,并将其应用于烟气含氧量建模中后,获得了较好的效果.赵征[44]等采用机理分析与统计分析相结合的建模方法,建立了一系列局部变量的软计算模型,较好地反映烟气含氧量的变化.
2.5飞灰含碳量
燃烧失重法是测试飞灰含碳量的传统分析方法.该方法测试时间长、所得结果无法实时反映飞灰含碳量,而反射法、微波吸收法,由于缺乏在线测量技术或成本较高,难以大规模应用于在线测量[45].煤质和锅炉运行参数是影响飞灰含碳量的主要参数,因此燃煤收到基低位发热量、挥发分、灰分、水分,以及锅炉负荷、磨煤机给煤量、省煤器出口烟气含氧量、燃烧器摆动角度、炉膛风量和风压等参数可被选为辅助变量.对灰含碳量的软测量难以采用机理建模方法.而BP神经网络因其强大的非线性拟合能力和学习简单的规则等优点被广泛用灰含碳量的软测量.周昊等[46]采用BP神经网络算法建立了电站锅炉的飞灰含碳量模型,该模型输出结果与试验实测结果基本吻合.李智等[47]采用BP神经网络进行了飞灰含碳量的建模和分析,得到了良好的预测结果.赵新木等[48]选取11个辅助变量进行了改进BP神经网络的计算和预测,并探讨了燃烧器摆动角度、锅炉燃料特性、煤粉细度、过量空气系数等单变量对飞灰含碳量的影响.王春林等[49]和刘长良等[50]分别采用基于支持向量机回归算法和最小二乘支持向量机算法进行建模,结果显示支持向量机法相比BP神经网络法等建模方法具有学习速度快、泛化能力强、对样本依赖低等优点.陈敏生和刘定平[8]利用最小二乘支持向量机建立了飞灰含碳量软测量模型,并采用KPCA法提取变量特征数据处理非线性数据,通过在四角切圆燃烧锅炉上的仿真试验验证了所建模型的有效性和优越性.
2.6燃烧优化
高效低污染是电站锅炉燃烧优化的目标.顾燕萍等[51]基于最小二乘支持向量机算法建立了锅炉燃烧模型,进行了排烟温度、飞灰含碳量、NOx排放量等参数的软测量研究,随后采用遗传算法对锅炉运行工况进行寻优,得到了燃烧优化方案,研究结果表明该算法比BP神经网络算法性能更优越.王春林[11]建立了基于支持向量机,并以锅炉主要燃烧试验数据为辅助变量的软测量模型,其将遗传算法与支持向量机模型相结合,使得对飞灰含碳量、排烟温度、NOx排放量的软测量取得了良好的优化效果.高芳等[52]以锅炉热效率和NOx排放量为输入参数,建立了最小二乘支持向量机模型,试验结果表明模型输出误差很小,良好的参数组合可为锅炉优化运行提供指导.
2.7其他热工参数
对于主蒸汽温度、汽包水位、省煤器积灰、烟气污染物排放量等参数,学者们也进行了软测量研究.熊志化等[53]对主蒸汽流量进行了软测量,以给水温度等为辅助变量的历史数据仿真结果表明,支持向量机算法较RBF神经网络算法具有明显优势.何丽娜[54]提出了基于现场数据的神经网络建模,与传统神经网络建模相比,无需数学表达式和传递函数,只需要现场数据,以主蒸汽温度系统为建模对象,采用主元分析法对建模数据进行预处理,降维后,通过分析过热器运行机理确定了辅助变量,并合理预测了主蒸汽温度.梅华[16]提出了基于模糊辨识的自适应预测控制算法,并应用于发电厂主蒸汽温度控制中,仿真结果表明该算法具有良好的负荷适应性.李涛永等[55]以给煤量设定值为输入,主蒸汽压力为输出,利用聚类分析方法将热工过程的非线性问题分解并转化为若干个工况点的线性问题,得出了辨识模型及其拟合曲线.张小桃等[56]根据机组运行机理,利用主元分析法、多变量统计监测理论等确定不同机组运行过程中影响汽包水位变化的主导因素.王少华[57]建立了基于机理分析与数据统计分析方法相结合的锅炉汽包水位软测量模型,试验结果表明该模型可较好地反映锅炉参数在典型扰动工况下的汽包水位动态特性.王建国等[58]采用机理分析建模,以省煤器进出口烟气温度、省煤器管壁温度、烟气流速等为辅助变量,对在线监测锅炉省煤器积灰的软测量进行了分析.杨志[59G62]选取经遗传算法优化后的BP神经网络模型对SO2排放量进行了预测研究,其选取了硫分、负荷、给煤量、过量空气系数、排烟温度等参数作为模型输入变量,SO2排放量作为输出变量,试验结果表明该方法能够满足在线监测SO2排放量的要求.
3结语
关键词:建模算法 指示克里金 序贯指示模拟
一、确定性建模方法和随机建模方法
1.确定性建模方法
确定性建模是对井间未知区给出确定性的预测结果,即从已知确定性资料的控制点(如井点)出发,推测出点间(如井间)确定的、惟一的和真实的储层参数。主要手段是利用地震资料、水平井资料、露头类比资料和密井网资料1。利用插值方法对井间参数进行内插和外推是确定性建模的主要方法。插值方法包括数理统计插值方法和地质统计学克里金插值方法。其中克里金插值方法是最常用的插值方法。由于储层的随机性,储层预测结果便具有多解性。因此,应用确定性建模方法作出的唯一的预测结果便具有一定的不确定性,以此作为决策基础便具有风险性。为此,人们广泛应用随机模拟方法对储层进行建模和预测。
2.随机建模方法
所谓随机建模,是指以已知的信息为基础,以随机函数为理论,应用随机模拟方法,产生可选的、等可能的储层模型的方法2。这种方法承认控制点以外的储层参数具有一定的不确定性,即具有一定的随机性。因此采用随机建模方法所建立的储层模型不是一个,而是多个,即一定范围内的几种可能实现(即所谓可选的储层模型,以满足油田开发决策在一定风险范围的正确性的需要,这是与确定性建模方法的重要差别。对于每一种实现(即模型),所模拟参数的统计学理论分布特征与控制点参数值统计分布是一致的。各个实现之间的差别则是储层不确定性的直接反映。如果所有实现都相同或相差很小,说明模型中的不确定性因素少;如果各实现之间相差较大,则说明不确定性大。随机模拟与克里金插值法有较大的差别,主要表现在以下三个方面:
2.1克里金插值法为局部估计方法,力图对待估点的未知值作出最优(估计方差最小)的、无偏(估计值均值与观测点值均值相同)的估计,而不专门考虑所有估计值的空间相关性,而模拟方法首先考虑的是模拟值的全局空间相关性,其次才是局部估计值的精确程度。
2.2克里金插值法给出观测点间的光滑估值(如绘出研究对象的平滑曲线图),而削弱了真实观测数据的离散性(插值法为减小估计方差,对真实观测数据的离散性进行了平滑处理),从而忽略了井间的细微变化;而条件随机模拟结果在在光滑趋势上加上系统的“随机噪音”,这一“随机噪音”正是井间的细微变化。虽然对于每一个局部的点,模拟值并不完全是真实的,估计方差甚至比插值法更大,但模拟曲线能更好地表现真实曲线的波动情况(图3-1)。
2.3克里金插值法(包括其它任何插值方法)只产生一个储层模型,因而不能了解和评价模型中的不确定性,而随机模拟则产生许多可选的模型,各种模型之间的差别正是空间不确定性的反映。
二、指示克里金建模算法和序贯指示模拟算法
克里金方法(Kriging), 亦称克里金技术, 或克里金,为确定性建模方法,是以南非矿业工程师D.G.Krige(克里金)名字命名的一项实用空间估计技术, 是地质统计学的重要组成部3。 克里金估计是一种局部估计的方法。它所提供的是区域化变量在一个局部区域的平均值的最佳估计量,即最优(即估计方差最小)、无偏(估计误差的数学期望为0)的估计。 克里金估计所利用的信息,通常为一组实测数据及其相应的空间结构信息。应用变差函数模型所提供的空间结构信息,通过求解克里金方程组计算局部估计的加权因子即克里金系数,然后进行加权线性估计。克里金方法是一种实用的、有效的插值方法。它优于传统方法(如三角剖分法,距离反比加权法等),在于它不仅考虑到被估点位置与已知数据位置的相互关系,而且还考虑到已知点位置之间的相互联系,因此更能反映客观地质规律,估值精度相对较高,是定量描述储层的有力工具。指示克里金方法是一种基于指示变换值的克里金方法,即对指示值而不是原始值进行克里金插值,其核心算法则借用上述克里金方法。
序贯指示模拟属于基于象元的随机建模方法范畴,其算法核心是将序贯模拟算法应用于指示模拟中。算法特点:既可用于离散的类型变量,又可用于离散化的连续变量类别的随机模拟。两个算法的特性对比表如下:
指示克里金算法和序贯指示模拟的共同点是都结合了指示变换方法,因此都可以对离散变量进行模拟(其他克里金方法是不能模拟离散变量的)。对于具有不同连续性分布的变量(如沉积相),可给定不同的变差函数,所以可用于模拟变异性较大的分布复杂的数据。另外两者都可以结合软数据。由于克里金插值法为光滑内插方法,所以指示克里金也具有这种光滑效应,做出来的砂体很光滑,更容易被地质人员接受。但是为减小估计方差而对真实观测数据的离散性进行了平滑处理,虽然可以得到由于光滑而更美观的等值线图或三维图,但一些有意义的异常带也可能被光滑作用而“光滑”掉了。指示克里金与序贯指示相比主要的弱点是空间数据的分布。所以当有好的地震数据时,砂体的分布也就确定了,这样就弥补了指示克里金空间数据分布的问题,但是指示克里金的模拟结果具有光滑效应,所以指示克里金和序贯指示算法同时当结合地震数据时,使用指示克里金的模拟效果会比序贯指示模拟的算法效果好,模拟的砂体更连续和光滑。
三、结论
1.建模前根据数据资料和地质情况确定使用确定性建模方法和随机建模方法
2.建模如果有高分辨率的地震资料时,使用指示克里金算法比序贯指示模拟算法模拟出的砂体更连续。
参考文献
[1] 刘颖等.储层地质建模方法.中外科技情报.1994.
关键词:系统模拟与仿真;课程教学;实例演示
中图分类号:TP391文献标识码:A文章编号:1009-3044(2010)22-6369-03
Simulation Exemplars for System Simulation Course
HUANG Han-ming
(College of Computer Science and Information Engineering, Guangxi Normal University, Guilin 541004, China)
Abstract: This paper briefly narrates the general concepts of system and various system theories, and introduces the necessity of system simulation for the researches of systems. Then the teaching purpose and main contents of system simulation course are given. After that, some understandings in this course teaching experiences are presents. Finally, several having applied measures which might be helpful to enhance the effect of teaching are discussed:reinforce simulation principles teaching, guide students broadening scope of knowledge, use simulation case studies as education emphases
Key words: system simulation; course pedagogy; exemplar demonstration
系统是一个与环境相对的概念,任何相互联系、相互影响、相互作用的部分所组成的一个整体皆可称为一个系统。系统的各个组成部分之间,通过物质、能量和信息的交换而相互关联、相互影响、相互作用;系统与环境之间,亦存在着物质、能量和信息的输入、输出关系。早在古代中国和古希腊的哲学中,就包含朴素的系统思想。随着社会的发展和近、现代科学技术的兴起与进步,在军事、工程、经济、社会等诸多领域,都存在着大量的有关系统的问题。为解决这些问题,20世纪40年代相继产生了运筹学、控制论、信息论和一般系统论等系统理论;20世纪40年代以来,系统理论被大量应用于工程实践,系统工程应用学科迅速发展,同时其他科学技术学科也在不断获得新的突破与发展,从而对各种系统的性质和规律的认识在不断深入,产生的一些新的系统理论:耗散结构理论、协同学、动力系统理论、混沌理论、突变论等。
当前,对复杂及复杂适应系统的研究是系统科学这门学科的热点。国际上,有关复杂系统的系统科学研究可分为三个主要学派:“欧洲学派” ―― 以非线性自组织理论为核心内容的系统理论(系统元素为无机物,源于物理、化学系统);“美国学派” ―― 以圣菲研究所(SFI)为代表的理论框架(系统元素为有机物,具主动性,源于生物系统);“中国学派” ―― 以开放的复杂巨系统理论为核心的体系(系统元素为“人”,源于大工程协作系统)。其实,这三个主要学派的主要区别只是从系统的不同层次为出发点去把握系统的性质和规律;它们的共同点可认为是要从整体上去认识问题和解决问题,对系统的许多性质,部分和的累加并不一定等于整体,整体很可能大于部分和,由于涌现性,整体会出现一些任一部分所不曾拥有的新性质。
由于现实系统的广泛性、多样性和复杂性,如果直接对系统进行观测、实验和研究,可能会对真实系统造成破坏性影响而且可重复性很可能也差,或者用真实系统试验时间过长,或费用太昂贵。对于工程系统,在系统建立之前需要对其结构、行为特性开展研究,但真实系统尚不存在。这些情况下,系统的模拟仿真是唯一可行的研究手段。
1 系统模拟仿真课程的教学目的
系统模拟仿真课程的教学目的为:培养学生科学分析和解决各类学科中出现的一般复杂系统问题的能力,掌握多种解决各种复杂系统问题的研究、设计与分析方法。通过本课程的教学,希望学生能了解系统模型的形式化描述;掌握连续系统的时域与频域建模仿真方法:龙格-库塔法、线性多步法、离散相似法、替换法、根匹配法等;了解离散事件系统的一般概念和离散事件系统的建模工具――Petri网,掌握经典的离散事件系统:单服务台与多服务台排队系统,库存系统等的仿真方法;掌握离散事件系统的仿真输出数据的分析方法;了解现代仿真技术――虚拟现实技术的一般概念、分析建模方法和和基于Agent的的建模方法及Swarm仿真和分布建模仿真。
系统科学专业硕士点的设立是为了满足国家和广西的经济和社会发展的需要,旨在培养高层次的复合型研究与管理人才。系统科学专业硕士点有两个专业:系统理论和系统分析与集成,其中系统理论专业从2004年起开始面向全国招生,系统分析与集成专业从2006年起招生。系统模拟仿真课程是系统科学专业硕士生的必修课程,本人从2006年起到目前为止连续5年担任了本门课程的任课教师,在此对这几年的教学实践作些总结,以图对本课程后续的教学水平的提高和教学效果的完善能有所帮助。
2 课程基础建设
专业课程与选修课程的组成,不同课程的先后安排和教材的选择对教学目的之达成与教学效果之提高至关重要。系统模拟仿真课程的先修课程为:控制理论,概率统计,至少一种通用程序设计语言(如:C/C++程序设计语言和Matlab编程语言)。这几年教学过程中的有些学期,在本课程刚开始时,有些学生反映从未接触过其中一门或两门先修课程,应学生的要求,用一、两次课程的时间介绍相应课程,解释其中的重要内容,并鼓励学生自学相应课程,难懂之处同学之间互相探讨,并及时向老师请教。教材选择的是美国多家高校系统仿真类课程普遍采用的, 由清华大学出版社出版的原版影印英文教材[1]。该教材着眼于离散事件系统仿真的原理和方法学的阐述,基本概念通过实例加以阐述展开,对仿真方法、技术谈论深入,对新技术发展方向描述明确。该教材以C/C++和Fortran为仿真算法的主要编程语言。
开始的连续2年只使用该教材进行教学,有些学生反应跟不上教学进度,仔细了解,跟不上的原因是难以完全读懂教材中的英文内容和从未学过C/C++和Fortran语言。为让每位学生都能掌握好基本仿真方法、技术而又不失去对仿真前沿研究的了解,后增加系统科学与系统的一般理论及其工程应用[2]的介绍,连续系统仿真原理[3]的介绍和较容易编程实现的仿真实例教学[4]。作业与考试方式、频次的安排设置对加强学生的学习动力和提高学习效果起着极大的作用,除了常规作业和期末考试外,增加了每学期每位学生上讲台讲解至少30分钟提前布置的、要求学生课后完成的仿真建模实例小作业并接着深入讨论。还安排了学期结束时应完成的较复杂的系统仿真编程大作业,并撰写一份系统仿真应用的研究报告。
3 提高教学效果的措施
3.1 加强仿真原理教学
现代仿真是基于计算机、利用合适的算法通过模型(物理的或数学的)以代替实际系统进行实验和研究的一门学科和实验技术。 仿真过程中系统、模型与计算机(包括软、硬件)的关系如图1所示。这里模型通常是指数学模型。常用的数学模型[5]有:初等模型、确定性连续模型、确定性离散模型和随机模型。如该图所示,系统建模、仿真建模和仿真实验为系统仿真的三个基本活动。
系统的模型是实际系统的简化或抽象,分物理模型与数学模型。系统模型的形式化描述一般可表述为:
S=(T,U,Ω,X,Y,δ,f)
其中:T―时间基, 其若为整数,则系统S为离散系统,若为实数,则系统S为连续系统;U―输入集,U?奂Rn,n∈I+;Ω―输入段集,某时间内的输入模式,是(U,T)的子集;X―系统状态集,是系统内部结构状态建模的核心;Y―系统输出集;δ―系统状态转移函数;f―系统输出函数,可表达为:f:X×U×TY。
实际建模时,模型描述的详细程度可用如下3个水平来表示:(1)行为水平,只知系统的输入输出,系统被视为“黑箱”;(2)分解结构水平,系统输入输出及结构组成已知,系统被视为多个简单“黑箱”的组合;(3)状态结构水平,系统的输入输出,内部状态及转移函数皆为已知。要全面了解仿真过程的核心内容,需要较全面的数学知识、计算方法知识和编程语言知识。
由图1可知,系统仿真的第1步是建立系统的数学模型。虽然另有一门课程―《数学模型》(或称《数学建模》)(应用数学专业课程)专门介绍个各种数学建模方法,如不特别介绍,本专业学生或许不知有该课程的存在。在建立好系统数学模型的基础上,可能需要利用《计算方法》中的专门知识,基于学生熟悉的编程语言(Fortran,C/C++, C#或Matlab等),如学生对任一编程语言都不了解,推荐学生优先选择较容易入门且有大量编程工具箱可资利用的Matlab编程语言,把数学模型转化为计算机算法程序,得到仿真模型。在设置好各可调参数条件下运行仿真模型(即仿真算法程序),即可得到一系列的输出,这些输出要进行各种分析[1],如条件允许,并应该与实际系统的相应数据作对比分析。
3.2 引导学生扩展知识面
仿真技术广泛应用于工程领域--机械、航空、电力、冶金、化工、电子等方面,和非工程领域DD交通管理、生产调度、库存控制、生态环境以及社会经济等方面。几乎渗透于每一个需要计算的领域和学科,相关文献十分丰富。许多学术期刊都刊登有系统模拟仿真方面的研究论文,其中系统科学领域的期刊,尤其值得同学们去了解和学习,以扩展知识面和了解建模仿真方面的前沿研究。
应该特别留意的期刊有:中科院数学与系统科学研究院期刊学会(/)主办的《系统科学与数学》(中) ,《系统科学与复杂性》(英)和《系统工程理论与实践》,中国系统仿真学会与航天科工集团706所主办的《系统仿真学报》,美国伊利诺伊大学复杂系统研究中心主办的《复杂系统 》,美国UL控制与系统工程学会和弗罗茨瓦夫理工大学主办的《系统科学 》,IEEE的《智能系统》,圣菲研究所的《复杂系统学报》等。
每年都有多次由不同机构发起、在不同国家举办的有关系统仿真的国际学术会议。通过各个级别的系统科学学会或系统仿真学会网站,或直接通过搜索引擎(如, )可检索到最近举办过的系统仿真会议介绍或论文,以及即将举办的系统仿真会议的地点、时间和投稿须知, 如:国际系统科学学会(International Society for the Systems Sciences, ISSS)网站上 /world/index.php 有当年的年度会议信息和最近几年的会议资料。
3.3 以仿真实例教学为教学重点以提高学生的实际分析问题和解决问题的能力
课堂上详细讲解一些较简单的系统问题的仿真实例,可以使学生逐步明确并不断加深对建模仿真整个流程的理解:从分析系统结构或行为导出系统的数学模型,再根据所导出的数学模型使用某种编程工具实现仿真建模,形成相应的仿真算法程序,最后运行仿真算法程序,分析结果并与实际系统相应数据对比。
编程工具的介绍也要兼顾学习效率和算法理解彻底性, 教学过程中发现如只介绍通用编程语言(如C/C++)实现仿真算法程序,学生表示是可以彻底理解所讨论问题的算法及代码;但过后一段时间,再面对类似但稍微复杂些的问题,学生就显得有些不知如何下手改写原来的程序以解决当前的问题。而如使用Matlab .m源码文件实现仿真代码,学生基本能正确改写程序。如使用更高抽象层上的Simulink模型实现仿真,学生可以轻松解决类似新问题。现在采用初次碰到典型案例问题时,采用C语言实现仿真算法,再次碰到类似问题时使用Matlab.m源码,更多的或更复杂的仿真案例,则采用Simulink构建仿真模型。
所选择的仿真实例兼顾确定与随机系统,连续与离散系统。所列举过的离散随机系统有:单服务员排队系统(M/M/1)和多服务员排队系统(M/M/N)的仿真;多工作站排队系统的仿真;采用不同排队策略的银行排队系统仿真。 列举过的连续确定系统有: 机构运动仿真;传染病感染传播仿真;森林救火策略仿真;战斗减员仿真;游击战策略仿真;香烟有害物质进入人体体内的累积量仿真以及生物种群规模涨落(Volterra模型)仿真等。
下面以机构运动仿真和战斗减员仿真为例,对建模仿真的整个过程进行简要描述:
仿真实例一.曲柄滑块机构的运动学仿真:
对图示单缸四冲程发动机中常见的曲柄滑块机构进行运动学仿真。已知连杆长度:r2=0.1m,r3=0.4m,连杆的转速:ω2=2,ω3=3,设曲柄r2以匀速旋转,ω2=50r/s。初始条件:θ2=θ3=0。仿真以ω2为输入,计算ω3和1,仿真时间0.5s。
利用Simulink建模如下:
模块程序运行过程中自动显示如图4所示动画。
所求仿真时间0.5s内1和ω3的变化图像如图5。
图5 0.5s内的滑块运动速度1 (上图)和连杆转速ω3(下图)
仿真实例二.战斗减员问题仿真:
该战争模型只考虑双方兵力的多少和战斗力的强弱。 假设:(1) 用x(t)和y(t)表示甲乙交战双方时刻t的兵力,不妨视为双方的士兵人数;(2)每一方的战斗减员率取决于双方的兵力和战斗力,用f和g表示; (3)现只对甲方进行分析。甲方士兵公开活动,处于乙方的每一个士兵的监视和杀伤范围之内,一旦甲方某个士兵被杀伤,乙方的火力立即集中在其余士兵身上,所以甲方的战斗减员率只与乙方兵力有关,可以简单地设f与y成正比,即f=ay。a表示乙方平均每个士兵对甲方士兵的杀伤率(单位时间的杀伤数),称乙方的战斗有效系数。a可以进一步分解为a=rypy,其中ry是乙方的射击率(每个士兵单位时间的射击次数),py是每次射击的命中率。由这些假设可得本问题的连续时间模型(方程):
又设系统输入为甲乙方的射击率rx,ry,每次射击的命中率px,py,双方初始兵力x0,y0。系统输出为哪一方获胜以及获胜时的剩余兵力。要求有输入、输出界面及仿真过程。如何对微分方程进行求解,并判断哪一方获胜是本问题仿真的关键。
使用GUIDE(图形用户接口开发环境)接口实现以上简单的一阶微分方程。
调入该模型程序,按F5运行,出现如图6所示界面。
在界面中输入参数,点击“执行仿真计算”按钮,就会在结果栏中显示哪一方获胜,及其剩余人数。
设甲乙双方射击率都为0.03,初始兵力都为1000,每次射击的命中率分别为0.023和0.026。执行仿真计算后可知是“乙方获胜”,剩余兵力为339。如图7所示。
4 总结
努力加强系统仿真原理教学,以较简单的经典系统建模实例的仿真模型的建立为依托,让学生在仿真实例的课堂教学中逐步明确并不断加深对建模仿真整个流程的理解。仿真技术广泛应用于工程领域和非工程领域,相关文献十分丰富,涵盖面十分广阔的,而课堂教学的课时十分有限。如果我们把系统模拟与仿真这门学科比作是一片森林,文献可看作是其中的树木,仿真的实际应用则可看作生活于森林中的动物,当然动物也依赖于这片森林的邻域森林(其他学科)。课堂教学只是带学生来到这片森林边沿,仿真原理、理论教学是引导学生仔细观察了眼前的树木,而课堂仿真实例教学则是与学生一起欣赏了树枝上美丽的小鸟。 对这片森林更深入的了解需要学生自己出发去跋涉的、去游历、去探索、去欣赏。当然,带学生到这片森林应该先哪个边沿,才能让学生对这片森林有准确的了解并迅速喜欢上这片森林,需要带领者对这片森林整体的和更准确的了解,也需要到过这片森林的同学们的意见反馈。
参考文献:
[1] Law A M.Simulation Modeling and Analysis[M].北京:清华出版社,2000.
[2] 许国志.系统科学与工程研究[M].上海:上海科学技术出版社,2001.
[3] 肖田元.系统仿真导论[M].北京:清华大学出版社,2001.