首页 > 文章中心 > 经典逻辑推理问题

经典逻辑推理问题

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇经典逻辑推理问题范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

经典逻辑推理问题

经典逻辑推理问题范文第1篇

【英文摘要】Philosophicallogicisapolysemantincontemporarylogicalliterature.Webelieveit''''sanon-classicallogicwithphiloso-phicalpurportorcause.Itsrisearosesalotoftheoreticalproblems.Thisessayexpoundsthelimitsofclassicallogic,non-monotonyanddeduction,logicalmathematicalizationanddepart-mentalization,theownershipofinductivelogic,etc.

【关键词】经典逻辑/非经典逻辑/演绎性/数学化/部门化/哲学逻辑classicallogic/non-classicallogic/deduction/mathematicalization/departmentalization/philosophicallogic

【正文】

哲学逻辑的崛起引发一系列理论问题。我们仅就其中几个提出一些不成熟的看法。

一、经典逻辑和非经典逻辑的界限

在这里经典逻辑是指标准的一阶谓词演算(CQC),它的语义学是模型论。随着非经典逻辑分支不断出现,使得我们对经典逻辑和非经逻辑的界限的认识逐步加深。就目前情况看,经典逻辑具有下述特征:二值性、外延性、存在性、单调性、陈述性和协调性。

传统的主流观点:每个命题(语句)或是真的或是假的。这条被称做克吕西波(Chrysippus)原则一直被大多数逻辑学家所恪守。20年代初卢卡西维茨(J.Lukasiwicz)建立三值逻辑系统,从而打破了二值性原则的一统天下,出现了多值逻辑、部分逻辑(偏逻辑)等一系列非二值型的逻辑。

经典逻辑是外延逻辑。外延性逻辑具有下述特点:第一,这种逻辑认为每个表达式(词项、语句)的外延就是它们的意义。每个个体词都指称解释域中的个体;而语句的外延是它们的真值。第二,每个复合表达式的值是由组成它的各部分表达式的值所决定,也就是说,复合表达式的意义是其各部分表达式意义的函项,第三,同一性替换规则和等值置换定理在外延关系推理中成立。也是在20年代初,刘易士(C.I.Lewis)在构造严格蕴涵系统时,引入初始模态概念“相容性”(或“可能性”),并进一步构建模态系统S1-S5。从而引发一系列非外延型的逻辑系统出现,如模态逻辑、时态逻辑、道义逻辑和认知逻辑等等出现。

从弗雷格始,经典逻辑系统的语义学中,总是假定一个非空的解释域,要求个体词项解释域是非空的。这就是说,经典逻辑对量词的解释中隐含着“存在假设”,在60年代被命名为“自由逻辑”的非存型的逻辑出现了。自由逻辑的重要任务就在于:(1)把经典逻辑中隐含的存在假设变明显;(2)区分开逻辑中的两种情况:一种与存在假设有关的推理,另一种与它无关。

在经典逻辑范围内,由已知事实的集合推出结论,永远不会被进一步推演所否定,即无论增加多少新信息作前提,也不会废除原来的结论。这就是说经典逻辑推理具有单调性。然而于70年代末,里特(R.Reiter)提出缺省(Default)推理系统,于是一系列非单调逻辑出现。

经典逻辑总是从真假角度研究命题间关系。因而只考察陈述句间关系的逻辑,像祈使句、疑问句、感叹句就被排斥在逻辑学直接研究之外。自50年代始,命令句逻辑、疑问句逻辑相继出现。于是,非陈述型的逻辑存在已成事实。

经典逻辑中有这样两条定理:(p∧q)(矛盾律)

和p∧pq(司各特律),前者表明:在一个系统内禁不协调的命题作为论题,后者说的是:由矛盾可推出一切命题。也就是说,如果一个系统是不协调的,那么一切命题都是它的定理。这样的系统是不足道的(trivial)。柯斯塔(M.C.A.daCosta)于1958年构造逻辑系统Cn(1〈n≤ω)。矛盾律和司各特律在该系统中不普遍有效,而其他最重要模式和推理规则得以保留。这就开创了非经典逻辑一个新方向弗协调逻辑。

综上所述非经典逻辑诸分支从不同方面突破经典逻辑某些原则。于是,我们可以以上面六种特征作为划分经典逻辑与非经典逻辑的根据。凡是不具有上述六种性质之一的逻辑系统均属非经典逻辑范畴。

二、非单调性与演绎性

通常这样来刻画演绎:相对于语句集合Γ,对于任一语句S,满足下述条件的其最后语句为S的有穷序列是S由Γ演绎的:序列中每个语句或者是公理,或者是Г的元素,或者根据推理规则由前面的语句获得的。它的一个同义词是导出(derivation)。演绎是相对于系统的概念,说一个公式(或语句)是演绎的只是相对于一不定的公理和推理规则的具体系统而言的。演绎概念是证明概念的概括。一个证明是语句这样的有穷序列:它的每个语句或是公理或是根据推理规则由前面的语句得出的。在序列中最后一个语句是定理。

现在我们考察单调逻辑中演绎情况。令W是一阶逻辑公式的集合,D为缺省推理的可数集,cons(D)为D中缺省的后承的集合。我们来建立公式Φ的缺省证明概念:首先我们必须确定从WUcons(D[,0])。导出Φ这种性质的缺省集合D[,0]。为确保在D[,0]中缺省的适用性,我们须确定缺省集合D[,1],致使能从WUcons(D[,1])中得出在D[,0]中缺省的所有必须的预备条件。我们从这种方式操作直至某一空的D[,K]。这意谓着从W得出在D[,K-1]中的必须的预备条件。然后我们确定一个证明,只是我们不陷入矛盾,即是W必须跟包括在证明中的所有缺省后承的集合相一致。例如,给定缺省理论

T=({p},{δ[,1]=p:r/r,δ[,2]=r:ps/pS})

({δ[,2]}),{δ[,1]},Φ是S在T中的缺省证明。

形式地说,Φ在正规缺省理论T=(W,D)中的一个缺省证明是满足下述条件的D的子集合的有穷序列(D[,0],D[,1],…D[,K]):

(i)Φ从WUcons(D[,0])得出。

(ii)对于所有i〈K,从Wucona(D[,i+1])得出缺省的所有预备条件。

(iii)D[,K]=Φ。

(iV)WUcons(U[,i]D[,i])是一致的。

由上面可以看出缺省推理中的证明是与通常的演绎证明是不同的,前者比后者要宽广些。

附图

由此可见,缺省逻辑中的推出关系比经典逻辑中的要宽。因而相应扩大了“演绎性”概念的外延。于是可把演绎性分为:强演绎性和弱演绎性。后者是随着作为前提的信息逐步完善,而导出的结论逐步逼近真的结论。

三、逻辑的数学化和部门化。

正如有人所指出的那样,“逻辑学在智力图谱中占有战略地位,它联结着数学、语言学、哲学和计算机科学不同学科。”[2]作为构建各学科系统的元科学手段的逻辑与各门科学联系越来越密切。它在当展中,表现出两个重要特征:数学化和部门化。

逻辑学日益数学化,这表现为:(1)逻辑采取更多的数学方法,因而技术性程度越来越高。一些逻辑问题(如系统特征问题)的解决需要复杂的证明技术和数学技巧。(2)它更侧重于数学形式化的问题。其实数学化的本质是抽象化、理想

化和泛化(普遍化)。这对像逻辑这样的形式科学显然是非常重要的,近一个世纪逻辑迅速发展就证明了这一点。逻辑方法论的数学化在本世纪下半叶正在加速。这给予逻辑的一些重要结论以复杂的结构和深入的处理,使逻辑变得更精确更丰富。但是,由于逻辑中数学专门化已定型并且限定了它自己,所以逻辑需向其他领域扩张,拓宽其研究领域就势所必然。

逻辑向其他学科领域的延伸并吸收营养,于是出现了各种部门逻辑,如认知逻辑、道义逻辑、量子逻辑等等。我们把逻辑学这种延伸和部门逻辑出现称做逻辑部门化。

哲学逻辑就是逻辑部门化的产物,它是方面逻辑或部门逻辑。众所周知,经典逻辑演算的理论、方法和运算技术具有高度的概括性,它适用于一切领域、一切语言所表达的演绎推理形式。所以,它具有普遍性,是一般的逻辑。有人认为一阶演算完全性定理表明“采用现代数学方法和数学语言来刻画的全体‘演绎推理规律’恰好就是人们在思维中所用的演绎推理规律的全体,不多也不少!”[3]。表达一阶逻辑规律的公式是普通有效的,即是这些公式在任何一种解释中都是真的。而哲学逻辑各分支只是研究某一方面或领域的演绎推理规律,表达这些规律的公式只是在一定条件下在某一领域是有效的,即是它们在具有某种条件解释下是真的。例如,模态公式(D)PP,(T)PP,(B)PP,(4)PP,(E)PP,分别在串行的、自反的、对称的、传递的、欧几里得的模型中有效。而动态逻辑的一些规律只适用于像计算程序那样的由一种状态过渡到另一种状态转换的动态关系。

部门逻辑另一种含义是为某一特定领域提供逻辑工具。例如,当人们找出描述一个微观物理系统在某一时刻的可观察属性的命题的一般形式。对其进行运算时,发现一些经典逻辑规律失效,如分配律对这里定义的合取、析取运算不成立。于是人们构造一种能够描述微观物理世界新的逻辑系统,这就是量子逻辑。

四、哲学逻辑划界问题

哲学逻辑形形并且难于表征。在现代逻辑文献中,“哲学逻辑”是个多义词。它的涵义主要的有三种:它的第一种涵义是指关于现代逻辑中一些重要概念和论题的理论研究。例如,对于名称(词项)、摹状词、量词、模态词、命题、分析性、真理、意义、指涉、命题态度、悖论、存在乃至索引等概念及与它们相关的论题的理论研究以及利用形式逻辑工具处理逻辑和语言的逻辑结构的哲学争论。它的第二种涵义是指非经典逻辑中一个学科群体,它包括模态逻辑、多值逻辑等等众多逻辑分支。它的第三种涵义是兼指上述两种涵义的“哲学逻辑”。

我们认为,第一种涵义上的“哲学逻辑”不是研究推理有效式意义上的逻辑,而是逻辑哲学。我们赞成在第二种涵义上使用“哲学逻辑”一词。于是可以给出下述定义:哲学逻辑是具有哲学旨趣或涉及哲学事业的非经典逻辑,在这里应对“哲学”做广义的理解。哲学逻辑不仅与传统哲学中的概念和论题有直接或间接联系。而且也涉及各门科学中具有方法论性质的问题和其他元科学问题。

在我们看来,“归纳”和“演绎”一样,是传统哲学所关注的重要哲学概念,而且也是现代一些哲学家所争议的问题之一。同时归纳逻辑方法的启发作用在认知过程中不可低估,归纳的一些方法和技术同样是一些学科的元科学因素,是发现真理构建学科系统不可少的。因此,它应属于哲学逻辑。《哲学逻辑杂志》亦把它列入哲学逻辑诸分支之首。

问题在于,归纳推理的复杂性,对它的形式刻画和找出能行程序遇到不易克服的困难,致使其成果与演绎推理所获得成果相比,显得不那么丰硕。然而,由于人工智能等技术上的需要,推动着更多的人研究归纳推理,总会有一天,归纳逻辑也像演绎逻辑那样用形式方法来处理。

【参考文献】

[1]Antoniou,G.:1997,NonmontonicReasoning,TheMITPress,Cambridge,Masschusetts.

经典逻辑推理问题范文第2篇

[关键词]人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理

的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题:

·效率和资源有限的推理;

·感知;

·做计划和计划再认;

·关于他人的知识和信念的推理;

·各认知主体之间相互的知识;

·自然语言理解;

·知识表示;

·常识的精确处理;

·对不确定性的处理,容错推理;

·关于时间和因果性的推理;

·解释或说明;

·对归纳概括以及概念的学习。[①]

21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。

我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。

1.常识推理中的某些弗协调、非单调和容错性因素

AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②]转“次协调逻辑”(ParaconsistentLogic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。

在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立:以C0为经典逻辑,则系列C0,C1,C2,…Cn,…Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③]

非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。

2.归纳以及其他不确定性推理

人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。

首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出著名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④]有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤]这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。再谈模糊逻辑。现实世界中充满了模糊现象,这些现象反映到人的思维中形成了模糊概念和模糊命题,如“矮个子”、“美人”、“甲地在乙地附近”、“他很年轻”等。研究模糊概念、模糊命题和模糊推理的逻辑理论叫做“模糊逻辑”。对它的研究始于20世纪20年代,其代表性人物是L·A·查德和P·N·马林诺斯。模糊逻辑为精确逻辑(二值逻辑)解决不了的问题提供了解决的可能,它目前在医疗诊断、故障检测、气象预报、自动控制以及人工智能研究中获得重要应用。显然,它在21世纪将继续得到更大的发展。

3.广义内涵逻辑

经典逻辑只是对命题联结词、个体词、谓词、量词和等词进行了研究,但在自然语言中,除了这些语言成分之外,显然还存在许多其他的语言成分,如各种各样的副词,包括模态词“必然”、“可能”和“不可能”、时态词“过去”、“现在”和“未来”、道义词“应该”、“允许”、“禁止”等等,以及各种认知动词,如“思考”、“希望”、“相信”、“判断”、“猜测”、“考虑”、“怀疑”,这些认知动词在逻辑和哲学文献中被叫做“命题态度词”。对这些副词以及命题态度词的逻辑研究可以归类为“广义内涵逻辑”。

大多数副词以及几乎所有命题态度词都是内涵性的,造成内涵语境,后者与外延语境构成对照。外延语境又叫透明语境,是经典逻辑的组合性原则、等值置换规则、同一性替换规则在其中适用的语境;内涵语境又称晦暗语境,是上述规则在其中不适用的语境。相应于外延语境和内涵语境的区别,一切语言表达式(包括自然语言的名词、动词、形容词直至语句)都可以区分为外延性的和内涵性的,前者是提供外延语境的表达式,后者是提供内涵性语境的表达式。例如,杀死、见到、拥抱、吻、砍、踢、打、与…下棋等都是外延性表达式,而知道、相信、认识、必然、可能、允许、禁止、过去、现在、未来等都是内涵性表达式。

在内涵语境中会出现一些复杂的情况。首先,对于个体词项来说,关键性的东西是我们不仅必须考虑它们在现实世界中的外延,而且要考虑它们在其他可能世界中的外延。例如,由于“必然”是内涵性表达式,它提供内涵语境,因而下述推理是非有效的:

晨星必然是晨星,

晨星就是暮星,

所以,晨星必然是暮星。

这是因为:这个推理只考虑到“晨星”和“暮星”在现实世界中的外延,并没有考虑到它们在每一个可能世界中的外延,我们完全可以设想一个可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我们就不能利用同一性替换规则,由该推理的前提得出它的结论:“晨星必然是暮星”。其次,在内涵语境中,语言表达式不再以通常是它们的外延的东西作为外延,而以通常是它们的内涵的东西作为外延。以“达尔文相信人是从猿猴进化而来的”这个语句为例。这里,达尔文所相信的是“人是从猿猴进化而来的”所表达的思想,而不是它所指称的真值,于是在这种情况下,“人是从猿猴进化而来的”所表达的思想(命题)就构成它的外延。再次,在内涵语境中,虽然适用于外延的函项性原则不再成立,但并不是非要抛弃不可,可以把它改述为新的形式:一复合表达式的外延是它出现于外延语境中的部分表达式的外延加上出现于内涵语境中的部分表达式的内涵的函项。这个新的组合性或函项性原则在内涵逻辑中成立。

一般而言,一个好的内涵逻辑至少应满足两个条件:(i)它必须能够处理外延逻辑所能处理的问题;(ii)它还必须能够处理外延逻辑所不能处理的难题。这就是说,它既不能与外延逻辑相矛盾,又要克服外延逻辑的局限。这样的内涵逻辑目前正在发展中,并且已有初步轮廓。从术语上说,内涵逻辑除需要真、假、语句真值的同一和不同、集合或类、谓词的同范围或不同范围等外延逻辑的术语之外,还需要同义、内涵的同一和差异、命题、属性或概念这样一些术语。广而言之,可以把内涵逻辑看作是关于象“必然”、“可能”、“知道”、“相信”,“允许”、“禁止”等提供内涵语境的语句算子的一般逻辑。在这种广义之下,模态逻辑、时态逻辑、道义逻辑、认知逻辑、问题逻辑等都是内涵逻辑。不过,还有一种狭义的内涵逻辑,它可以粗略定义如下:一个内涵逻辑是一个形式语言,其中包括(1)谓词逻辑的算子、量词和变元,这里的谓词逻辑不必局限于一阶谓词逻辑,也可以是高阶谓词逻辑;(2)合式的λ—表达式,例如(λx)A,这里A是任一类型的表达式,x是任一类型的变元,(λx)A本身是一函项,它把变元x在其中取值的那种类型的对象映射到A所属的那种类型上;(3)其他需要的模态的或内涵的算子,例如€,ù、ú。而一个内涵逻辑的解释,则由下列要素组成:(1)一个可能世界的非空集W;(2)一个可能个体的非空集D;(3)一个赋值,它给系统内的表达式指派它们在每w∈W中的外延。对于任一的解释Q和任一的世界w∈W,判定内涵逻辑系统中的任一表达式X相对于解释Q在w∈W中的外延总是可能的。这样的内涵逻辑系统有丘奇的LSD系统,R·蒙塔古的IL系统,以及E·N·扎尔塔的FIL系统等。[⑥]转在各种内涵逻辑中,认识论逻辑(epistemiclogic)具有重要意义。它有广义和狭义之分。广义的认识论逻辑研究与感知(perception)、知道、相信、断定、理解、怀疑、问题和回答等相关的逻辑问题,包括问题逻辑、知道逻辑、相信逻辑、断定逻辑等;狭义的认识论逻辑仅指知道和相信的逻辑,简称“认知逻辑”。冯·赖特在1951年提出了对“认知模态”的逻辑分析,这对建立认知逻辑具有极大的启发作用。J·麦金西首先给出了一个关于“知道”的模态逻辑。A·帕普于1957年建立了一个基于6条规则的相信逻辑系统。J·亨迪卡于60年代出版的《知识和信念》一书是认知逻辑史上的重要著作,其中提出了一些认知逻辑的系统,并为其建立了基于“模型集”的语义学,后者是可能世界语义学的先导之一。当今的认知逻辑纷繁复杂,既不成熟也面临许多难题。由于认知逻辑涉及认识论、心理学、语言学、计算机科学和人工智能等诸多领域,并且认知逻辑的应用技术,又称关于知识的推理技术,正在成为计算机科学和人工智能的重要分支之一,因此认知逻辑在20世纪中后期成为国际逻辑学界的一个热门研究方向。这一状况在21世纪将得到继续并进一步强化,在这方面有可能出现突破性的重要结果。

4.对自然语言的逻辑研究

对自然语言的逻辑研究有来自几个不同领域的推动力。首先是计算机和人工智能的研究,人机对话和通讯、计算机的自然语言理解、知识表示和知识推理等课题,都需要对自然语言进行精细的逻辑分析,并且这种分析不能仅停留在句法层面,而且要深入到语义层面。其次是哲学特别是语言哲学,在20世纪哲学家们对语言表达式的意义问题倾注了异乎寻常的精力,发展了各种各样的意义理论,如观念论、指称论、使用论、言语行为理论、真值条件论等等,以致有人说,关注意义成了20世纪哲学家的职业病。再次是语言学自身发展的需要,例如在研究自然语言的意义问题时,不能仅仅停留在脱离语境的抽象研究上面,而要结合使用语言的特定环境去研究,这导致了语义学、语用学、新修辞学等等发展。各个方面发展的成果可以总称为“自然语言逻辑”,它力图综合后期维特根斯坦提倡的使用论,J·L·奥斯汀、J·L·塞尔等人发展的言语行为理论,以及P·格赖斯所创立的会话含义学说等成果,透过自然语言的指谓性和交际性去研究自然语言中的推理。

自然语言具有表达和交际两种职能,其中交际职能是自然语言最重要的职能,是它的生命力之所在。而言语交际总是在一定的语言环境(简称语境)中进行的,语境有广义和狭义之分。狭义的语境仅指一个语词、一个句子出现的上下文。广义的语境除了上下文之外,还包括该语词或语句出现的整个社会历史条件,如该语词或语句出现的时间、地点、条件、讲话的人(作者)、听话的人(读者)以及交际双方所共同具有的背景知识,这里的背景知识包括交际双方共同的信念和心理习惯,以及共同的知识和假定等等。这些语境因素对于自然语言的表达式(语词、语句)的意义有着极其重要的影响,这具体表现在:(i)语境具有消除自然语言语词的多义性、歧义性和模糊性的能力,具有严格规定语言表达式意义的能力。(ii)自然语言的句子常常包含指示代词、人称代词、时间副词等,要弄清楚这些句子的意义和内容,就要弄清楚这句话是谁说的、对谁说的、什么时候说的、什么地点说的、针对什么说的,等等,这只有在一定的语境中才能进行。依赖语境的其他类型的语句还有:包含着象“有些”和“每一个”这类量化表达式的句子的意义取决于依语境而定的论域,包含着象“大的”、“冷的”这类形容词的句子的意义取决于依语境而定的相比较的对象类;模态语句和条件语句的意义取决于因语境而变化的语义决定因素,如此等等。(iii)语言表达式的意义在语境中会出现一些重要的变化,以至偏离它通常所具有的意义(抽象意义),而产生一种新的意义即语用涵义。有人认为,一个语言表达式在它的具体语境中的意义,才是它的完全的真正的意义,一旦脱离开语境,它就只具有抽象的意义。语言的抽象意义和它的具体意义的关系,正象解剖了的死人肢体与活人肢体的关系一样。逻辑应该去研究、理解、把握自然语言的具体意义,当然不是去研究某一个(或一组)特定的语句在某个特定语境中唯一无二的意义,而是专门研究确定自然语言具体意义的普遍原则。[⑦]美国语言学家保罗·格赖斯把语言表达式在一定的交际语境中产生的一种不同于字面意义的特殊涵义,叫做“语用涵义”、“会话涵义”或“隐涵”(implicature),并于1975年提出了一组“交际合作原则”,包括一个总则和四组准则。总则的内容是:在你参与会话时,你要依据你所参与的谈话交流的公认目的或方向,使你的会话贡献符合这种需要。仿照康德把范畴区分为量、质、关系和方式四类,格赖斯提出了如下四组准则:

(1)数量准则:在交际过程中给出的信息量要适中。

a.给出所要求的信息量;

b.给出的信息量不要多于所要求的信息量。

(2)质量准则:力求讲真话。

a.不说你认为假的东西,。

b.不说你缺少适当证据的东西。

(3)关联准则:说话要与已定的交际目的相关联。

(4)方式准则:说话要意思明确,表达清晰。

a.避免晦涩生僻的表达方式;

b.避免有歧义的表达方式;

c.说话要简洁;

d.说话要有顺序性。[⑧]

后来对这些原则提出了不和补充,例如有人还提出了交际过程中所要遵守的“礼貌原则”。只要把交际双方遵守交际合作原则之类的语用规则作为基本前提,这些原则就可以用来确定和把握自然语言的具体意义(语用涵义)。实际上,一个语句p的语用涵义,就是听话人在具体语境中根据语用规则由p得到的那个或那些语句。更具体地说,从说话人S说的话语p推出语用涵义q的一般过程是:

(i)S说了p;

(ii)没有理由认为S不遵守准则,或至少S会遵守总的合作原则;

(iii)S说了p而又要遵守准则或总的合作原则,S必定想表达q;

(iv)S必然知道,谈话双方都清楚:如果S是合作的,必须假设q;

(v)S无法阻止听话人H考虑q;

(vi)因此,S意图让H考虑q,并在说p时意味着q。

试举二例:

(1)a站在熄火的汽车旁,b向a走来。a说:“我没有汽油了。”b说:“前面拐角处有一个修车铺。”这里a与b谈话的目的是:a想得到汽油。根据关系准则,b说这句话是与a想得到汽油相关的,由此可知:b说这句话时隐涵着:“前面的修车铺还在营业并且卖汽油。”

经典逻辑推理问题范文第3篇

关键词:数理逻辑;命题逻辑;一阶逻辑;推理理论

离散数学是现代数学的重要分支,是研究离散量的结构及相互关系的学科,它在计算机理论研究及软、硬件开发的各个领域都有着广泛的应用。其内容大致包含数理逻辑、集合论、代数结构、组合数学、图论和初等数论6部分,这6部分从不同的角度出发,研究各种离散量之间数与形的关系。本文主要研究数理逻辑部分在计算机科学领域中的应用。

1.为计算机的可计算性研究提供依据

数理逻辑分为命题逻辑和一阶逻辑两部分,命题逻辑是一阶逻辑的特例。在研究某些推理问题时,一阶逻辑比命题逻辑更准确。数理逻辑中的可计算谓词和计算模型中的可计算函数是等价的,互相可以转化,计算可以用函数演算来表达,也可以用逻辑系统来表达。

某些自然语言的论证看上去很简单,直接就可以得出结论,但是通过数理逻辑中的两种符号化表达的结果却截然不同,让人们很难理解,这就为计算机的可计算性研究埋下伏笔。下面举一个简单例子加以说明。

例1  凡是偶数都能被2整除。6是偶数,所以6能被2整除。

可见,一个复杂的命题或者公式可以利用符号的形式来说明含义,来判断正确性,这使得计算机科学中的通过复杂文字验证的推理过程变得简单、明了了。

2.为计算机硬件系统的设计提供依据

     数理逻辑部分在计算机硬件设计中的应用尤为突出,数字逻辑作为计算机科学的一个重要理论,在很大程度上起源于数理逻辑中的布尔运算。计算机的各种运算是通过数字逻辑技术实现的,而代数和布尔代数是数字逻辑的理论基础,布尔代数在形式演算方面虽然使用了代数的方法,但其内容的实质仍然是逻辑。范式正是基于布尔运算和真值表给出的一个典型公式。

下面以计算机科学中比较典型的开关电路的设计为实例说明数理逻辑中布尔代数和范式的应用。整个开关电路从功能上可以看做是一个开关,把电路接通的状态记为1(即结果为真),把电路断开的状态记为0(即结果为假),开关电路中的开关也要么处于接通状态,要么处于断开状态,这两种状态也可以用二值布尔代数来描述,对应的函数为布尔函数,也叫线路的布尔表达式。接通条件相同的线路称为等效线路,找等效线路的目的是化简线路,使线路中包含的节点尽可能地少。利用布尔代数可设计一些具有指定的节点线路,数学上既是按给定的真值表构造相应的布尔表达式,理论上涉及到的是范式理论,但形式上并不难构造。

例2  关于选派参赛选手,赵,钱,孙三人的意见分别是:赵:如果不选派甲,那么不选派乙。钱:如果不选派乙,那么选派甲; 孙:要么选甲,要么选乙。以下诸项中,同时满足赵,钱,孙三人意见的方案是什么?

解答:把赵,钱,孙三个人的意见看做三条不同的线路,对三条线路化简得到接通状态(既使公式结果为1)。

可见,这类选择问题应用数理逻辑来解决,不但思路清晰、运算结果准确,而且省时、省力。

3.为计算机程序设计语言提供主要思想

专家系统和知识工程的出现使人们认识到仅仅研究那些从真前提得出真结果的那种古典逻辑推理方法是不够的,因为人类生活在一个充满不确定信息的环境里,进行着有效的推理。因此,为了建立真正的智能系统,研究那些更接近人类思维方式的非单调推理、模糊推理等就变得越来越必要了,非经典逻辑应运而生。非经典逻辑一般指直觉逻辑、模糊逻辑、多值逻辑等。这些也可以用计算机程序设计语言来实现。计算机程序设计语言的理论基础是形式语言、自动机与形式语义学,数理逻辑的推理理论为二者提供了主要思想和方法,程序设计语言中的许多机制和方法,如子程序调用中的参数代换、赋值等都出自数理逻辑的方法。推理是人工智能研究的主要工作。逻辑的思想就是通过一些已知的前提推理出未知的结论。

例3 著名的n皇后问题是:是否可以将n(n为正整数)个皇后放在的棋盘上,使得每行每列都有且仅有一个皇后,并且每条对角线上如果有皇后且仅有一个。

通过上述几个实例的验证,会发现数理逻辑在计算机科学中的应用非常广泛,可以把计算机科学中表面上看似不相干的内容通过找出其内在的联系作为前提,利用数理逻辑中的推理理论得到结论。

参考文献:                        

经典逻辑推理问题范文第4篇

关键字:计算智能 模糊计算 遗传算法 蚂蚁算法 PSO

计算智能是在神经网络、模糊系统、进化计算三大智能算法分支发展相对成熟的基础上,通过各算法之间的有机融合而形成的新的科学算法,是智能理论和技术发展的一个新阶段,广泛应用于工程优化、模式识别、智能控制、网络智能自动化等领域[1]。本文主要介绍模糊逻辑、遗传算法、蚂蚁算法、微粒群优化算法(PSO)。

1 、模糊计算

美国系统工程教授扎德于1965年发表的论文《FUZZY SETS》首次提出模糊逻辑概念,并引入隶属度和隶属函数来刻画元素与模糊集合之间的关系,标志着模糊数学的诞生。模糊计算将自然语言通过模糊计算转变为计算机能理解的数学语言,然后用计算机分析、解决问题。

在古典集合中,对于任意一个集合A,论域中的任何一个x,或者属于A,或者不属于A;而在模糊集合中,论域上的元素可以"部分地属于"集合A,并用隶属函数来表示元素属于集合的程度,它的值越大,表明元素属于集合的程度越高,反之,则表明元素属于集合的程度越低。与经典逻辑中变元"非真即假"不同,模糊逻辑中变元的值可以是[0,1]区间上的任意实数。要实现模糊计算还必须引入模糊语言及其算子,把含有模糊概念的语言称为模糊语言,模糊语言算子有语气算子、模糊化算子和判定化算子三类,语言算子用于对模糊集合进行修饰。模糊逻辑是用If-Then规则进行模糊逻辑推理,将输入的模糊集通过一定运算对应到特定输出模糊集,模糊推理的结论是通过将实施与规则进行合成运算后得到的。

模糊逻辑能够很好地处理生活中的模糊概念,具有很强的推理能力,在很多领域得以广泛应用研究,如工业控制、模式识别、故障诊断等领域。但是大多数模糊系统都是利用已有的专家知识,缺乏学习能力,无法自动提取模糊规则和生成隶属度函数,需要与神经网络算法、遗传算法等学习能力强的算法融合来解决。目前,很多学者正在研究模糊神经网络和神经模糊系统,这是对传统算法研究和应用的创新。[2]

2、遗传算法

遗传算法由美国学者Holland及其学生于1975年首次提出,以达尔文的进化论和孟德尔的遗传学说为基本思想,通过编码将问题的可能解转换为遗传算法可以解决的搜索空间。一般采用二进制编码,若变量连续,采用实数编码精度较高且便于大空间搜索。遗传算法的三个基本算子有选择算子、交叉和变异,用于模仿生物界中的繁殖、杂交和变异。

遗传算法的基本思想为通过随机编码产生一个初始种群,每一个编码即问题的可行解,通过适应度为评价标准来选择个体,适应度高的个体保留下来复制下一代,适应度低的个体被淘汰。保留下来的个体通过交叉、变异来提高个体质量,重组为新的一代。通过这一过程,使得新一代的个体组合优于上一代。个体不断进化,当达到设定的迭代次数或者给定条件时,算法结束,得到的最优编码即为问题的最优解。[3]

遗传算法具有智能性、并行性、通用性等众多优点,使得其应用范围也极广,如函数优化、机器人学、组合优化、图像处理、信号处理、人工生命、生产调度等。遗传算法的广泛应用也促进了自身的发展和完善,各种改进算法相继提出。近几年来,遗传算法的研究已经从理论方面逐渐转向应用领域,图像处理和机器人学也在逐渐成为研究的热点。随着数据挖掘技术的广泛应用,遗传算法在数据挖掘领域的研究会成为新的热点。[4]

3、蚂蚁算法

蚂蚁算法又叫蚁群算法,受蚂蚁寻找食物的启发,由意大利学者Marco Dorigo及其导师于1991年提出。蚂蚁从巢穴出发寻找食物,在其经过的路径上释放一种信息素,信息素浓度会随着时间增加而逐渐降低。其他蚂蚁识别到这种信息素,便会沿着这一路径寻找食物并释放信息素。某一路径信息素浓度越大,选择这一路线的蚂蚁越多,经过的蚂蚁越多,信息素浓度越大,呈现一种正反馈效应。最终,蚂蚁会找到食物源和巢穴之间的最佳路线。

蚂蚁算法的典型应用是旅行商问题(TSP),二次分配问题(QAP)、车间任务调度问题(JSP)、大规模集成电路中的综合布线以及电信网络中的路由等方面。蚂蚁算法因其很强的鲁棒性,把TPS问题中的经典模型稍加改动,就可用于其他问题。它的正反馈性和协同性使之可用于分布式系统;蚂蚁算法比较容易与其他算法工具相结合,可以改善算法的性能。

实际应用中,不同的优化问题有着不同的束缚条件,需要采取对应的措施来处理,因此出现了各种改进的蚂蚁算法,如最大最小蚂蚁算法、多群蚂蚁算法等。但是,不是所有的基本蚂蚁算法都能解决优化问题,改进后的算法也并不是在任何情况下都适用的。目前,蚂蚁算法还没有形成系统的分析方法和坚实的数学基础,绝大多数情况下依据实验和经验来选择参数,且计算时间偏长。[5]

4、PSO

微粒群优化算法(PSO)是一种基于种群的随机优化技术,由Eberhart和Kennedy于1995年提出。是继遗传算法、蚁群算法之后提出的一种新型进化计算技术。

PSO算法中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为"粒子",算法初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己。第一个极值就是粒子本身所经历的最优解,这个解被称为个体极值。另一个极值是整个种群目前所经历的最优解,这个极值被称为全局极值。另外也可以只选取整个种群中的一部分作为粒子的邻居,在所有邻居中的极值被称为局部极值。

PSO算法具有收敛快、容易理解及易于实现等优点,发展很快,在图像处理、模式识别及优化等方面得到了广泛应用。同时,PSO算法也存在一些问题,如容易陷入局部最优、进化后期收敛速度慢、精度差等,研究人员从各个方面对该算法进行改进,得到了各种改进的PSO算法,如标准PSO算法,带收缩因子的PSO算法,二阶振荡PSO算法、量子PSO算法等,实际应用中每一种算法并不是对所有问题都普遍使用,因此将PSO和其他算法相结合是一个可行的选择。[6]

经过多年的发展,PSO算法的优化速度、质量以及算法鲁棒性都已经有了很大的提高,但是目前的研究大都集中于算法的实现、改进和应用方面,相关的基础理论研究远远落后于算法的发展,而数学理论基础的缺乏极大地限制着微粒群算法的进一步推广、改进与应用。

5、结束语

每个算法各有特点,却有着共同的仿生基础,这使得各算法之间存在必然的联系。将模糊逻辑、进化算法、蚂蚁算法、PSO、DNA算法以及其他算法结合起来是目前计算智能一项新的研究课题。计算智能目前研究的最新趋势:一是理论研究, 即对现有的智能算法的理论和应用进一步深入研究; 二是引入新的算法,即发掘更先进、功能更强大的新型智能算法并拓宽其应用领域; 三是智能算法的融合, 将不同的算法结合,取长补短以增强算法的适应性。[3]

参考文献:

[1]赵永.计算智能及其在无线传感器网络优化中的应用[D].海南:海南大学,2010

[2]周红梅.智能算法主要算法的概述[J].人工智能及识别技术,1009-3044(2010)09-2207-04

[3]张睿,黄晋英,张永梅.计算智能方法及应用研究[J].电脑开发与应用,1003-5850(2012)10-0001-03

[4]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,4(1):1001-3695