首页 > 文章中心 > 地震勘探原理

地震勘探原理

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇地震勘探原理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

地震勘探原理

地震勘探原理范文第1篇

一、地震波场数值模拟简介

地震波模拟是根据给定地下介质的结构模型和相应物理参数来模拟地震波的传播过程,从而研究地震波在地下介质中的传播规律。由于模拟过程中可直观、形象、动态地显示地震波动力学和运动学传播特征,非常容易调动学生的学习兴趣和求知欲望,可以收到事半功倍的教学效果。一般来说,地震波模拟可分为物理模拟和数值模拟两种方法。物理模拟是在实验室内将野外的地质构造和地质体按照一定的比例制作成物理模型,然后利用超声波或激光超声波等方法对野外地震勘探方法进行模拟;数值模拟就是利用有限差分、有限元等数值方法求解波动方程,从而获得已知模型的地震波传播。采用物理模拟方法存在费用高、选材困难等缺点,并且不适合于课堂理论教学;而数值模拟只需要一台较高计算速度的计算机就可全部解决问题,既简单方便,成本又低,且非常适合于课堂理论教学。

地震波场数值模拟方法主要有几何射线法和波动方程法。几何射线法也称为射线追踪法,其主要理论基础是,在高频近似条件下,地震波的主能量沿射线轨迹传播,即根据地震波的传播规律确定地震波在实际地层中传播的射线途径,并运用惠更斯原理和费马原理来重建射线路径,利用程函方程等计算射线的旅行时间。射线法的主要优点是概念明确、显示直观、运算方便、适应性强,缺点是旅行时的计算在一定程度上是近似的,特别是对复杂构造进行三维射线追踪时繁琐且误差较大。波动方程数值模拟方法是以弹性(粘弹性)理论及牛顿力学为基础的,求解双典型偏微分方程-波动方程为手段的一种数值模拟方法。这种方法不仅能保持地震波的运动学特征,而且还能保持地震波的动力学特征。根据地震波场数值模拟所采用的这两种不同方法的特点,我们在地震勘探原理课程讲授过程中采用波动方程弹性波数值模拟方法,这种方法的模拟结果可以使学生更好地了解地震波在传播过程中的运动学和动力学特征。目前用于波动方程数值模拟的方法主要有限差分法、有限元法、虚谱法等,在这些方法中有限差分法在计算精度、计算效率上都占有较大的优势,因此我们在数值模拟时采用了有限差分模拟方法[5]。

二、应用实例

地震波数值模拟在地震勘探原理课程教学中的应用比较广泛,在大部分的知识点讲解中都可采用数值模拟来对一些方法原理进行动态演示。在本文中主要通过两个知识点的应用来说明数值模拟方法在地震勘探原理课程教学中的效果。

(一)地震波的传播及界面处的反射、折射、透射和波形转换

在讲解地震波场的基本知识一节中,主要讲解地震波的传播特点,其中一些名词如波前、波后、球面波、平面波等,学生理解起来比较抽象,一些概念只能靠死记硬背。在讲解地震纵、横波的传播特点时,对于波在界面处发生的反射、透射、折射以及波形转换等,由于学生对波场的概念没有直观的认识,所以老师讲解起来也非常抽象和费力。在这种情况下,我们将数值模拟技术引入到课堂教学中,通过开发地震波场实时模拟软件,只需设置好模型和参数,软件将以动画的形式动态展示波场传播的全过程。

下面以两层介质为例进行说明:模型大小为600m×300m,网格大小为 ,时间采样间隔为 。模型上层纵波波速为3 000m/s,横波波速为1 732m/s,密度为1.8g/cm3;下层纵波波速为4 000m/s,横波波速为2 300m/s,密度为2.0g/cm3。图1为两层介质模型波场传播快照(t=20~100ms),从图中可见,当t=20ms时纵波和横波以震源为中心向下传播,此时由于传播时间较短,P波(纵波)和S波(横波)在图上还不能完全分清楚。当t=40ms时,从图中可以看出,由于P波波速较快传播在前,S波在后,P、S波都是以震源为圆心的同心半圆。根据波场快照很容易让学生理解波前和波后的概念。当t=40ms时,从图1(d)中可以看出,P波到达界面后发生反射和透射,同时产生转换S波。当t=80ms时,从图1(g)中可以看出,此时S波到达分界面后也发生反射和透射,同时产生转换P波。在图1(h)中对于不同类型的地震波做了相应的标识,从图中可以看出对于两层介质中弹性波传播时波场也比较复杂,有直达P和S波、透射P和S波、反射P和S波、PS转换波和SP转换波。由于上述波场较为复杂,在学生认识波场特征时容易混淆,鉴于这种情况,我们对于数值模拟技术做了相应的改进,在模拟过程中对P波和S波进行了分离,图2为两层模型t=90ms时分离后的P波和S波波场快照,从图2中可以看出分离后的波场快照波场更加清晰,学生在认识波场传播特性时也会更加容易理解和掌握。

(二)瑞雷波传播特性

瑞雷波方法是近年来发展较为迅速的一种工程地球物理方法,在讲解瑞雷波传播特点时主要是通过其传播速度、能量衰减和频散特点等三个方面展开的。由于瑞雷波属于面波,与纵、横波所属的体波相比其传播特点有较大的差别。在瑞雷波传播特性这一节课程的讲解过程中,我们就充分运用了数值模拟方法[6]。图3为均匀半空间模型下利用数值模拟方法获得的t=260ms时瑞雷波波场传播快照,其中模型参数为:纵波速度 =1000ms,横波速度 =577m/s,密度 =2.0g/cm3。从图3中可以看出,瑞雷波沿地表传播,其传播速度和横波波速比较接近。从波场传播快照中计算可得瑞雷波的传播速度为 531m/s,而模型中已知的横波速度为 =577m/s,瑞雷波速度和横波速度两者相比为0.92倍。由于所给模型为泊松体, 从理论上分析可知,瑞雷波传播速度和横波传播速度比值为0.92,这样通过数值模拟,就很容易将瑞雷波和横波的关系讲解清楚,学生理解起来非常方便。

而对于瑞雷波传播深度的知识点,从理论分析可知,瑞雷波的传播深度为一个波长且波的能量呈指数衰减。对于瑞雷波的这个性质,由于和体波传播特性差别较大,学生们理解起来存在一定的困难。我们通过数值模拟,从波场传播快照上就可以对这个问题给予清楚说明。从图3的快照中可以测量出瑞雷波在模型空间中的传播深度约为50m,在50m以下基本上看不到瑞雷波的存在,通过计算模拟时瑞雷波传播的最大波长为44.2m,这充分说明瑞雷波的传播深度为一个波长。为了说明瑞雷波能量呈指数衰减的问题,我们从波场快照上提取了一道瑞雷波数据并进行指数拟合,得到该模型瑞雷波的能量衰减公式为: ,其拟合曲线如图4所示。从图中可见,在深度为44.2m处能量衰减到原来的0.8%,在22.1m(即半个主波长)处能量衰减到原来的7.9%。因此,对于瑞雷波用于工程地质勘察中,通常取二分之一波长为其有效勘探深度,就可以得到较合理的解释了。

三、结论

通过以上两个实例充分说明了数值模拟方法在地震勘探原理课程讲解过程中的作用,对于学生掌握知识要点领确实有很大的帮助。通过数值模拟技术,可以将一些抽象的地震波动力学和运动学传播理论进行直观、形象、动态的展示,提高学生的学习兴趣,使学生能够较好地理解和扎实地掌握地震勘探的基本理论。

参考文献:

[1] 孙建国.浅论地球物理专业本科阶段的创新能力培养[J].中国大学教育,2011(10):29-31.

[2] 张娟霞,郭献章,周秀艳.数值试验在材料力学课程教学中的应用[J].高等建筑教育,2009,18(3):128-130.

[3] 刘鹏程.采取多种教学措施提高“油藏数值模拟”课程的教学效果[J].中国地质教育,2010(3):114-116.

[4] 黄成玉,刘德国.《电磁场与电磁波》课程教学的改革与创新[J].创新与创业教育,2012,3(2):90-93.

地震勘探原理范文第2篇

关键词:高分辨率地震勘探;矿井地质 ;煤层构造形态

一、前言

目前来说,地震方法是在进行水温、工程、环境、地址调查的主要的勘察方法,这种方法的工作原理主要是通过在人工方面进行地震波的运动学和动力学的激发的方法用来解决在地质上的难题。这种方法在生产运用的过程中非常的常见,所以我们需要进行深入的研究。我们在进行地震方法研究的时候,首先要知道这种方法的主要工作原理是利用地震波,地震波会通过人工爆破产生,当地震波在传播到地下遇到了底层的界面的时候,就会按照波所产生的反射和折射原路返回到产生地震波的地方,这些返回的地震波会被我们在不同位置上所放置的验波器所接收,从而在机器中被记录,这些所记录的数据是呈现出一个规律的,所记录的数据再有我们进行处理,得到的资料可以用在我们需要的勘测地质的方面,方便我们在地质方面的生产活动。在以往的进行高分辨率在地震勘探中中的使用越来越频繁,几乎成为了地质勘探的主要的工具,在进行基岩的起伏和含水层等各种不同的地下构造的时候,积累了很多的经验。而矿井地质的工作上却很少用高分辨率解决煤矿中的问题,在煤矿的生产过程中,几乎还是使用传统的解决方法进行煤矿生产的问题。但是由于最近煤矿的生产对于矿井地质的工作的要求可以说是越来越严格,传统的工作方式已经无法满足我们对于生产上的需求,怎样将高分辨率运用在矿井的工作中,提高矿井工作的效率是当今矿井地质工作的当务之急。

二、高分辨率地震勘探原理和方法

地震在我们的日常生活中并不陌生,仅仅几年的时间就发生了大大小小十几起的地震时间,从汶山地震到玉树地震,地震似乎是我们生活中的随处可见的,然而高分辨率地震勘探原理就是利用这种地震波,所谓地震波就是利用爆炸或者是其他的人工方法使地面发生震动,这种震动就是通过波的形式向各个方向进行传播,这种波就是我们所说的地震波。波在同一种介质中可以以相同的速度进行传播,但是地下岩层的由各种各样不同的性质组成,这也就造成了这种地震波碰到他们的界面的时候会发生反射和折射,由于这种反射和折射就造成了有一部分的波返回到地面上,这种回到地面上的波可以通过验波器接收并且总结各种数据资料。地震勘探就是利用这种原理,将人工所激发的地震波向地下进行传播,遇到岩层的分界面的时候进行反射波和折射波,计算这其中的时间,地震勘探就可以通过这个时间来确定界面埋藏的深度和其基本形状。地震勘探的目的就是根据人工所发射的地震波的到达的时间,还有其频率和波形来进行地下的岩层的形状和构造的信息的分析。近几年,我国的地震勘探技术在不断的提高,高分辨地震勘探方法逐渐的变得成熟,传统的地震勘探的方法已经过时。高分辨地震勘探主要是分别从垂向和横向这两个方面进行了煤矿的岩层和断裂的构造的形状进行分辨的能力。本篇文章通过对于一个企业中的实例的描述进行对于高分辨地震勘探方法的发展前景进行分析。

三、高分辨率地震勘探的应用

安徽某煤矿具有非常悠久的历史,其地质工作在1958年的时候就开始了工作,分别有五个队进行钻探的工作,钻探工作主要是进行普查、详查和精查,在1960年的时候和1973年时分别提交了其进行的191个钻孔的普查和警察的勘探报告。这次进行的地震勘探区是在六采区之内,其延伸的控制面积在2.1千米的范围之内,地质勘探任务主要有两个,其一是要对于六采区内落差在十米以上的断层进行查明,其十米以上的精确度应该在三十米以内,而且还要对于落差在十米以下的那些断点给予一个合理的解释。其二是在主要的采取煤层2号和煤层9号的埋藏的深度和其形状特点进行查明,对于深度的误差不能小于百分之二以上。我们在进行地震勘探的时候所使用的钻孔有二十一个,这二十一个钻孔对于其地震的资料定性和定量的解释提供了非常重要的依据。此次高分辨率的勘探任务是有安徽的物测地质队完成的,在1994年进行了地震勘探的野外施工。其完成质量还是很高的,测线的长度为23.065千米,所测的物理点一千五百个,其中合格的物理点有一千四百九十六个,合格率达到了百分之九十九点七三。在进行工程的布置的时候考虑到实际情况,北东走向的地震测线是垂直地层的走线和构造,要尽可能的通过已有的钻孔,并且和北西走向的地震测线形成了网状的形状。网之间的间距是130米和160米。在野外进行工作的时候必须要在地震勘探施工之前在D8线上进行试验和研究,经过试验资料和实际情况的分析确定好野外的工作的方法,需要的一起是48道DFS-V型地震仪,两台M10型可控震源,二乘六次震动台,驱动电瓶至少有百分之五十,扫描的频率应该在25-109hz,扫描的长度是十四秒,除此之外还需要5串TZBS-60型的高频检波器,观测系统为道具10米。十二次单边激发。应用这些试验仪器所进行的高分辨地震勘探在全区内一共获得由一千五百个地震记录,其中包括一千四百七十个生产记录,还有三十张实验记录。生产记录中的甲级有百分之九十三点五,乙级有九十一张,废品四张,其中记录的成品率就有百分之九十九点七三。经过安徽省的每天地质局的评论组对勘探的数据进行抽查和评价合格率在百分之九十七点八。能够达到这样的一个勘测结果已经是说明勘测的结果非常的准确了,通过对于地震勘探我们查明了安徽地区的断裂结构的构造的发育程度和其平面分布的主要情况,对其二煤层和九煤层这两个主要的煤层的煤矿埋藏的深度和其构造的形态特点都取到了一个比较好的地质效果。这次地震的勘探对于地下的断层的控制和对于断点的解释是在平面上发现组合断层一共有七条其中有正断层有六条,另外一个是逆断层,而鼓励的断点是九个,在这些断电中其中的断点产生的落差是十三米,而其他的断点的落差都小于十米的距离。

四、对于高分辨率的地震勘测的评价对于其发展前景的展望

通过对于安徽的地震勘探的实例的描述,我们可以看出,高分辨地震勘探对于矿质生产特别是对于煤矿的生产具有非常重要的作用,其利用高分辨地质勘探可以对于煤层埋藏的深度和其具体的形状都可以勘探的非常的准确,其准确性是比以往的传统的勘测的准确性要高的,而且对于断层的存在与否的解释也是比较准确的。如果高分辨地质勘探如果运用到真正的煤矿企业的生产当中的话,会对于生产作业起到非常大的作用。虽然高分辨地震勘探对于定量的解释上还应该进一步的提高技术,但是高分辨地质勘探相对于传统的地质勘探还是具有非常大的益处。高分辨地震勘探和其他的地震勘探的方法相比的话其具有很多其他的地质勘探所没有的优点,比如说具有探测能力强和解决的问题较多、成本低而且效率也很高。所以高分辨地震勘探对于矿质构造探测手段来讲具有很光明的发展前景的。

参考文献:

[1]崔秀琴;美刊报道对圣安德烈斯断层的研究进展情况[J];国际地震动态;1981年06期

地震勘探原理范文第3篇

本文对我国煤炭矿井主要地质勘探技术井巷二维地震勘探、高密度电阻率法、震波超前探测、槽波勘探法、地质雷达勘探方法进行了详细介绍,并对勘探技术发展方向进行展望。

关键词:

煤矿开采;巷探工程;地质雷达法;槽波地震法;地震勘探

煤炭在我国能源结构中占有重要比例,对我国经济发展意义重大。在煤矿生产中,运用地质勘探技术查明各种地质问题,对煤矿的安全高效生产具有重要意义。

1煤矿地质勘查技术

1.1巷探工程

利用矿井中的巷道来探测断裂构造、陷落柱等地质异常现象称为巷探。巷探在矿井地质工作中应用广泛。如图1,为了探测断层F1的位置和走向,向断层F1掘进探巷a、b、c。

1.2地球物理勘探技术

地球物理勘探指利用岩层密度、传播速度、弹性波、电性等物理性质的不同,进行地质勘查的一种技术方法。井巷二维地震勘探、震波超前探测、槽波勘探法、地质雷达勘探方法、高密度电阻率法和坑透法是目前最常用的物探技术。

1.2.1二维地震勘探

地震勘探是利用地下介质弹性和密度的不同,对人工激发地震波的响应进行观测、记录和分析,推测地下岩层的形态和性质的一种物探方法。通过沿测线布置炮点和检波点,对地震数据进行采集、解释和处理。

1.2.2震波超前探测

煤矿震波超前探测也是一种地震勘探技术,由于煤矿井下空间条件的限制,可供观测利用的空间十分有限,为充分利用井下空间,震波超前探测技术主要采用反射地震方法。即在巷道内尽可能多布置激发装置和接收装置,采集大量的地震波数据,以提高探测效果,更好地为煤矿生产服务。

1.2.3槽波勘探法

槽波地震勘探是煤矿探测断裂构造、陷落柱等地质异常体的常用方法。原理是利用地震波在不同密度介质中传播速度的差异,在密度大的介质中传播速度大于密度低的介质中传播速度。岩石密度大于煤层,因此地震波在岩层中传播速度大于煤层中传播速度。所以,在煤层中的地震波将有一部分在煤层底板与顶板接触面上发生全反射,形成一个沿煤层传播的槽波(导波或煤层波)。槽波在介质接触面会发生透射和反射,当槽波的变化被仪器探测到时,即可确定接触面的位置和大小。槽波地震勘探有透射波法与反射波法两种,透射波法分别在两条巷道中激发和接收槽波,根据槽波的变化,确定地质构造体是否存在,如图2。反射法在一条巷道中布置激发点与接收槽波,根据槽波反射信号,确定地质构造置,如图3。

1.2.4地质雷达勘探方法

地质雷达勘探是利用地层电性参数的不同,应用高频电磁脉冲波的反射作用,探测目标地层和地质现象的一种勘探方法。原理为利用雷达接收在不同地质界面上反射的电磁波,并根据反射电磁波的特征,对异常地质体探测和识别。对井下岩浆侵入体、断层、老窑和陷落柱等的探测具有良好的效果。在山西、河南、山东、安徽等地矿井应用广泛。

1.2.5高密度电阻率法

电阻率法指利用岩土的导电性,通过观测地层中电流场的分布规律,来分析地层中地质现象的一种地质勘探方法。高密度电阻率法是在煤矿勘探中应用的一种新的技术方法。

1.2.6坑透法

坑透法指应用发射器向地质异常体发射高频率无线电波,并监测电磁波在传播过程中的强弱情况,以确定地质异常体的位置和范围的一种勘探方法。其原理为不同电性岩层对电磁波能量吸收作用具有差异性,电阻率高的岩层对电磁波吸收作用强,电阻率低的岩层对电磁波能量吸收作用弱。同时,电磁波在地层断裂面会发生反射、折射和散射,电磁波能量也会减弱,一些地质异常体(如导水断层)也吸收电磁波。因此,可设计电磁波的发射点和接收点,电磁波通过地质异常体时,接收点无线电波明显减弱,设计多个发射点和接收点位置对地质异常体多次观测,即可确定其范围。

2煤矿开采地质勘探技术的发展方向

煤矿地质勘查是一项复杂的工作,除了传统钻探工程、巷探工程、地质雷达勘探和坑透法等勘探技术外,还应该发展地质勘查新技术,如三维地震、瞬变电磁等,综合利用多种地质勘查技术。并且将地质勘探技术与地理信息系统相结合,建立多元煤矿信息集成系统,实现地质资料的信息化、数字化和可视化,实现对煤矿地质条件的精准评价、生产地质工作高效管理和突发性煤矿地质灾害的有效防治。

3结论

我国煤矿地质条件复杂,煤层褶皱、断层等地质构造发育对煤矿的安全生产造成严重影响,易引发煤矿生产事故。对于煤矿生产中遇到的各种地质问题,不但需要采用传统的地质勘探技术,还要发展新技术,对各种地质因素进行动态分析,综合应用多种勘探技术手段,为煤矿的安全高效生产提供地质预测预报保障。

参考文献:

[1]闵康.对煤矿地质勘探技术及地质环境综合治理的研究[J].内蒙古煤炭经济,2014,(7):11-12.

[2]王远德.煤矿地质勘探技术及其重要性研究[J].技术与市场,2016,23(9):101-102.

[3]岳嵩.浅谈煤矿地质勘探技术及其重要性[J].河南科技,2014,(8):44.

[4]徐文科.浅议煤矿地质勘探技术及其重要性[J].华东科技(学术版),2014,(8):402.

[5]陈晓雷.浅谈煤矿地质勘探技术及其重要性[J].科技信息,2009,(15):329.

地震勘探原理范文第4篇

[关键词]煤田 地震勘探 观测系统 工程设计 卓越工程师

[中图分类号] G642 [文献标识码] A [文章编号] 2095-3437(2015)08-0146-02

“煤炭黄金十年”大大地推动煤炭地质事业的发展,尤其是煤田地震勘探技术的应用和煤田三维地震勘探技术的普及推广,为煤矿开采提供了更为有效的勘探手段和可靠的地质依据。[1]同时也推动了煤田地震勘探课程教学的改革与发展。我校资源勘查工程、地质工程、水文及水资源工程、地球信息科学与技术及煤与煤层气工程先后增加了煤田地震勘探教学内容或煤田三维地震勘探课程。[2]受“卓越计划”启发,就传统的煤田地震勘探教学谈谈自己的看法。

一、细化专业理论教学,掌握知识点

针对二维地震勘探观测系统设计教学,主要知识点包括以下几方面:其一,深刻理解观测系统概念、设计相关参数及相关参数的计算公式。其二,理解地面的观测方式与地下勘探的反射点对应关系,掌握利用综合平面图示法绘制观测系统图的要领,目的是对已知的观测系统参数通过图示的方法表达观测系统中炮点、检波点和排列的所有道,并确定满覆盖次数起止位置,会计算满覆盖次数的范围。其三,设计的观测系统在生产中如何实施。

(一)勘探深度与勘探的排列长度之间的关系

勘探排列长度与勘探深度一般是0.5~1.5倍的关系,视具体情况而定,主要依据以下计算公式来确定排列的参数。

设激发点移动道数为r,覆盖次数为n,仪器接收道数为N,S为与观测系统有关的常数,单边激发S=1,双边激发S=2;则有

r=NS / 2n

这里着重强调以下几点:

1.双边激发就是一个排列不动的情况下先后分别在两端激发;

2.中间激发时S=2;仪器接收道数为N,与排列长度有关,排列长度≈目的层埋深;

3.煤田二维地震勘探在浅层地震地质条件好的地区一般覆盖次数n=12次;

4.煤田地震勘探目的层比较浅,故道距一般采用10米。

(二)地面观测点与地下勘探目的层反射点之间的关系

大家知道地震勘探就是在地面进行人工炸药激发地震波向地下传播,遇界面反射回地表,检波器接受到信号传输仪器记录下来。那么地面观测点与地下界面的反射点之间的关系就是观测系统。综合平面图是反映观测系统关系的表达方式。

综合平面图示法是沿测线标出若干炮点和第一个排列的检波点。将检波点投影到过炮点的45度线上,过任一个检波点做垂线,垂线相交的炮线条数,即该CDP点的叠加次数。[3]

概念比较抽象,采用综合平面图示法画出相应的地下反射点就一目了然了。偏移距为0,采集道为12道3次覆盖观测系统图如图1所示。第一个反射点与地面测点横向位置一致,地面测点间距就是道距10米,而地下反射点CDP间距是5米。

从图1不难看出,测线50米处是满3次覆盖起点,放6炮所观测满3次覆盖的范围是75米。通过观测系统的制作可以了解到反射点CDP间距是5米,是接收道距10米的一半。

图1 12道3次覆盖观测系统图

(三)观测系统在工程勘探中的移动方式

地震勘探野外数据采集施工是按放炮的顺序,对于一个固定的观测系统排列,简单理解看似整体搬家一样,炮和排列的相对位置不变,而实际施工起来为了省时省力,施工采用滚动的方式,放完一炮,相应下一炮的接收排列往施工前方滚动,收起后面不用的地震道,增加前面的备用道。

通过以上知识点的学习,把知识点联系起来就形成了对二维地震勘探由观测系统设计到工程实施过程的了解。

二、勘探工程观测系统设计

通过对二维地震勘探观测系统的学习,学生们基本上理解和掌握了观测系统设计的概念、参数和步骤。如果不联系实际或解决具体的地质问题,就难以与生产实际结合起来,所以理论学习结束后应布置课程设计一次,让同学们针对煤矿生产需求做一个煤田二维地震勘探的观测系统设计,让他们知道学有所用之道。

实例:某煤矿开采过程中,煤层(埋深500米,煤厚6米)突然缺失,无法继续进行生产,请问采用什么技术手段解决这一地质问题?请提供可行性方案。

课程设计初步方案:生产矿井煤层突然缺失初步判断为前方出现断层(断距应大于6米)导致煤层缺失,如何判断断层性质、断距大小最有效的技术手段应为二维地震勘探方法,因为目前地震勘探主要就是解决地质构造问题。那么根据已知煤层埋深可以分析判断以下观测系统参数:

1.根据目的层埋深可以判断排列长度是500米左右,由于煤层埋深浅,一般采用道距10米,满覆盖次12次就可以解决地质构造问题,那么根据炮间距与覆盖次数的计算关系式,初步确定排列长度为480米比较适宜。

2.在地层倾角不大或是单斜地层时,最好采用单边下倾激发,这里S=1。

3.如果要确定地下煤层缺失区构造,至少地面要勘探1000米(满12次覆盖),并且测线布置方向垂直构造走向。

4.采用综合平面图示法画出观测系统图可知这次地震勘探施工参数如下:加上附加段测线长度为1580米,偏移距为0,道距10米,48道采集道,总计地震生产物理点51个,测点159个。

总之,通过理论学习,了解观测系统设计是二维地震勘探工程观测系统设计的关键技术,覆盖次数、接收道数的多少决定炮点移动道数的多少,即决定炮间距,同时也决定地震勘探的工作量的大小;掌握综合平面图示法,可以位置画出观测系统图,可直观地看出目的层界面上地震观测次数,并可判断满覆盖次数的起止和范围及观测系统生产实施过程的滚动方式。

三、结束语

通过“卓越计划”培养模式的实施,应试教学过渡为动手解决问题能力培养模式,不仅了解了二维地震勘探原理、概念、基本的观测系统设计参数、计算公式及能解决什么样的地质问题,而且了解了针对煤矿生产遇到的具体问题,采用二维地震勘探方法是如何设计制作观测系统,并能够应用于生产的。这样,增加了学生学习煤田地震勘探的兴趣及创新能力,增强了为勘探服务的信念。

[ 注 释 ]

[1] 杨双安.煤田三维地震勘探技术的应用及发展前景[J].物探与化探,2004(28):51-52.

地震勘探原理范文第5篇

【关键词】综合;物探方法;隧道;侦查;应用

中图分类号:U45 文献标识码:A 文章编号:

一、前言

目前我国的综合实力不断发展,各行各业日新月异,在新时代的要求下,我国各项事业都蓬勃发展。隧道是一些工程的基础项目,隧道的好坏关系到工程项目的质量、使用寿命及施工人员的安全,因此,应该更加关注隧道工程。隧道的侦查方法很多,综合物探方法是隧道侦查中很有前景的侦查方法,我们应该努力学习其相关知识,加强对综合物探方法的应用。

二、综合物探方法简介

近些年来,为了解决近地表地层的各种地质灾害的调查问题,人们经过不断努力,深入研究,推出了多种行之有效的地球物理探测方法。这些方法各具特色,各自从不同的方向出发,通过不同的手段,解决不同的问题,给各种地质灾害的调查工作奠定了坚实的基础,下面简单介绍几种探测方法。

1、地震横波反射勘探

横波勘探起步较早,但应用较少。近些年来,随着浅层探测任务的增多,对浅层勘探的分辨率要求越来越高,横波勘探才得以广泛应用。由于横波频率低、速度低、波长短,对地层的分辨率高,而且不受地层含水的影响,因此适合于对近地表地质体及各种地质灾害的探测。

2、地震映象技术

地震映象技术又称最佳偏移距技术,是最近几年才发展起来的一种新的浅层地震勘探技术。由于该方法施工简便,资料处理方法简单,分辨率高,抗干扰能力强,比较适合于近地表的浅层地震勘探,尤其适合浅海及江、河、湖等浅水域的水下浅层地震勘探,是一种解决浅层地质问题的有效方法。近些年来,随着适用于地震映象的仪器出现,大大提高了工作效率,促进了地震映象技术的应用。

3、地质雷达

地质雷达是利用高频电磁波(工作频率"#$%&!’(%&)以宽频带短脉冲形式,由地面通过发射天线送入地下,经地层或目的物反射后返回地面,为另一接收天线所接收。电磁波在介质中传播时,其路径、电磁波强度与波形将随所通过介质的电性质及几何形态而变化。

4、井间电磁波层析成像(CT)

井间电磁波层析技术是利用井间透射电磁波测量数据,依照一定的物理和数学关系通过计算机技术揭示物体内部物理量的分布,最后以图像的形式表现结果。电磁波实际测量的是波动过程沿射线路径对介质吸收系数的积分结果,当同一平面内密集的平行射线簇对研究区域进行了全方位扫描后,便可把所有的投影函数依Radon反变换的关系组成方程组,经反演计算重建出介质吸收系数的二维分布图像。

5、高密度电法勘探原理

高密度电阻率法的物理前提是地下介质间的导电性差异,和常规电阻率法一样,它通过A、B电极向地下供电,电流为I,然后在M、N极间测量电位差U,从而求得该记录点的视电阻率ps=KU/I。

三、各种综合物探方法的原理

1、浅层地震勘探原理

浅层地震勘探是工程地质勘查中的一种重要手段,其特有的高分辨率特性有利于确定地层界面、基岩起伏变化的形态和地层的弹性波速度。它利用人工方法(如爆炸、敲击等)产生振动(地震),研究振动在地下的传播规律,以查明地下地质情况的一种勘探方法。

2、探地雷达勘探原理

探地雷达简称GPR,是一种对地下的或物体内不可见的目标体或界面进行定位的电磁技术。探地雷达利用高频电磁波以宽频带脉冲形式,由地面通过天线定向送人地下,经存在电性差异的地下地层或目标体反射后返回地面,被另一天线所接收。电磁波在介质中传播时,其路径、电磁场强度与波形的处理和分析,可确定地下界面或地质体的空间位置及地下介质的结构。

3、TSP203基本原理

TSP是瑞士安伯格测量公司于20世纪90年代研制开发的一套超前预报系统,属多波分量高分辨率地震反射波探测技术。该系统能长距离预报地下施工的地质情况变化,在围岩较好地段可测出前方100~200m范围内的岩层分界面、岩层的物理性质、断层等;围岩完整性较差时,预测范围在50—100m之间。该系统探测的基本原理是应用了地震波的反射波原理(主要是联合纵波和横波的地震勘探)。地震波是由特定位置进行小型爆破产生。

4、瞬变电磁法(TEM)基本原理

TEM方法是一种时间域电磁法。它是利用阶跃波形电磁脉冲激化,利用不接地回线向地下发射一次场,在一次场断电后,地下介质就会产生感应二次场,由于良导电介质内感应的热损耗,二次场大致按指数规律随时间衰减,形成瞬变磁场。二次场主要来源于良导电介质内的感应电流,因此它包含着与地下介质有关的地质信息。二次场经过接收回线观测,对所观测的数据进行分析和处理,据此,可解释地下介质及相关物理参数。

四、综合物探方法的选取

1、高密度电阻率法仍属于电阻率法的范畴,但其具有观测精度高、数据采集量大、地质信息丰富、生产效率高等特点。其广泛应用于地层划分、探测隐伏断层构造,岩溶空洞、采空区、地质滑坡体等工程勘察,但是高密度电法测线铺设受地形影响较大,要求接地条件较高。

2、地质雷达是工程勘察中的一项高科技方法,虽然其探测深度较浅(数米至数十米)。但波长为分米数量级,且可进行拖动天线式的连续剖面测量,因而有较高的垂直和水平分辨力,特别适合于浅层、极浅层的目的层勘探。它可与浅层地震反射波法在调查深度上形成组合,互为补充。

五、应用综合物探技术在隧道侦查的必要性

科学技术发展到今天,“原创性”发展越来越难,而“组合式”发展已成为主流,即将众多不同的技术有机地组合在一起便会产生质的飞跃,达到1+1>2的效果.与其他科技领域一样,工程物探也必须实现多学科、多专业的结合,形成综合地球物理方法,来提高物探技术水平和工程物探效果。综合可使不同内涵的多学科相互渗透,不同机制的参数优化组合,以克服单方法、单参数的多解性和局限性。隧道勘察中更是如此,隧道往往处于丘陵地带,地形起伏较大,区域内经受多期构造运动及岩浆岩脉侵入,隧道洞身地质体变化较大,地质条件复杂,因而需要解决的地质问题众多且难度大。然而,准确地查清地质情况是制定隧道设计方案、确保施工安全、加快施工进度的重要前提。在这种情况下,任何一种单独的物探方法由于其条件性和局限性(多解性,勘察效果偏重性)难以解决全部地质问题,此时,合理选择多种物探方法,开展综合物探工作是解决问题的最佳途径。

六、隧道侦查中的常见物探方法

虽然应用于隧道勘察中的物探方法有很多,但每一种方法都有其应用的物理前题,没有这种“前题”存在,物探方法就不可能获得好的应用效果。怎样根据工区的地质特征来发挥各种物探方法的勘察优势,这是综合物探的核心。各种常用方法如表1所示:

七、结束语

随着我国市场经济的快速发展,对我国各行各业都提出了新的要求。隧道是很多工程的基础项目,也是很容易出现地质灾害的项目,其对工程质量的影响是不容忽视的。对隧道综合物探方法的使用,不仅使各个工程可以迅速勘察地质情况,而且可以预防隧道地质灾害。

参考文献

[1]周黎明,尹健民,侯炳绅.弹性波反射法在地质超前预报中的应用研究[J].长江科学院院报,2008,25(1):61—65.

[2]赵永贵.国内外隧道超前预报技术评价与推介[J].地球物理学进展,2007,22(4):1344—1352.

[3]刘志刚.隧道隧洞施工地质技术[J].中国铁道出版社,2001,101—152