首页 > 文章中心 > 高分子材料的发展现状

高分子材料的发展现状

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料的发展现状范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

高分子材料的发展现状

高分子材料的发展现状范文第1篇

较详细地评述了高分子材料的研究方向和应用发展方向.

关键词:高分子材料 应用 现状 发展

高分子材料(macromolecular material),以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。

高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。

高分子材料的结构决定其性能,对结构的控制和改性,可获得不同特性的高分子材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等

目前,高分子材料的应用现状主要有以下几个方面:

1.传统产品

如纤维、橡胶、塑料等等

2.高分子分离膜

高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。

3.高分子磁性材料

高分子磁性材料,是人类在不断开拓磁与高分子聚合物(合成树脂、橡胶)的新应用领域的同时,而赋予磁与高分子的传统应用以新的涵义和内容的材料之一。早期磁性材料源于天然磁石,以后才利用磁铁矿(铁氧体)烧结或铸造成磁性体,现在工业常用的磁性材料有三种,即铁氧体磁铁、稀土类磁铁和铝镍钴合金磁铁等。它们的缺点是既硬且脆,加工性差。为了克服这些缺陷,将磁粉混炼于塑料或橡胶中制成的高分子磁性材料便应运而生了。这样制成的复合型高分子磁性材料,因具有比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等特点,而越来越受到人们的关高分子材料。

4.光功能高分子材料

所谓光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,主要包括光导材料、光记录材料、光加工材料、光学用塑料(如塑料透镜、接触眼镜等)、光转换系统材料、光显示用材料、光导电用材料、光合作用材料等。光功能高分子材料在整个社会材料对光的透射,可以制成品种繁多的线性光学材料,像普通的安全玻璃、各种透镜、棱镜等;利用高分子材料曲线传播特性,又可以开发出非线性光学元件,此外,利用高分子材料的光化学反应,可以开发出在电子工业和印刷工业上得到广泛使用的感光树脂、光固化涂料及粘合剂;利用高分子材料的能量转换特性,可制成光导电材料和光致变色材料;利用某些高分子材料的折光率随机械应力而变化的特性,可开发出光弹材料,用于研究力结构材料内部的应力分布等。

5.高分子复合材料

高分子材料和另外不同组成、不同形状、不同性质的物质复合粘结而成的多相材料。高分子复合材料最大优点是博各种材料之长,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质高分子结构复合材料包括两个组分:增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物;基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。

目前,我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上,重点发展以下方向:

1.工程塑料

全世界通用热塑性树脂约占97%,工程塑料的生产规模远不如通用塑料,但因市场的需求,近年来其发展的速度则远远高于通用塑料,年均增长率达7%~8%。近年来工程塑料的发展方向是研究开发工程塑料高分子合金、发展超韧尼龙、超韧聚甲醛、耐应力开裂聚碳、聚苯醚和聚矾等高性能合金研究开发特种工程塑料,如聚酞亚胺。

2.复合材料

复合材料合成一种新材料使之满足各种高要求的综合指标。复合材料的发展可以分为4个方面。一是以玻璃纤维增强为手段,对大品种塑料进行改性研究开发新的复合工艺;二是采用高性能增强剂如碳纤维等来增强耐高温等高性能树脂;三是开发新型热塑性树脂基体如热塑性聚酞亚胺;四是研究开发功能复合材料,如压电材料等。

3. 液晶高分子材料

液晶聚合物是介于固体结晶和液体之间的中间状态的聚合物 ,其分子排列的有序性虽不如固体晶体那样有序,但也不是液体那样的无序 ,而是具有一定的 一维或二维 有序性 ,当加工此种聚合物 ,如纺丝或注射成型时,其分子发生取向 这种分子取向一旦冷却即被固定下来,从而具有不寻常的物理和机械性能。

高分子材料的发展现状范文第2篇

【关键词】功能材料;高分子;现状;发展

材料是人类赖以生存和发展的物质基础,是人类文明的重要里程碑,如今有人将能源、信息和材料并列为新科技革命的三大支柱。进入本世纪80年代以来,一场与之相适应的“新材料革命”蓬勃兴起。功能材料是新材料发展的方向,而功能高分子材料占有举足轻重的地位,由于其原料丰富、种类繁多,发展十分迅速,已成为新技术革命必不可少的关键材料[1]。

1.功能高分子材料

功能高分子材料在其原有性能的基础上,赋予其某种特定功能。诸如:化学性、导电性、光敏性、催化性,对特定金属离子的选择螯合性,以及生物活性等特殊功能,这些都与在高分子主链和侧链上带有特殊结构的反应基团密切相关。

2.功能高分子材料的研究现状

在原来高分子材料的基础上,可将功能高分子材料分为两类:一类是以改进其性能为目的的高功能高分子材料;另一类是为赋予其某种新功能的新型功能高分子材料[2]。

2.1高功能高分子材料

2.1.1化学功能高分子材料

化学功能高分子材料通常具有某种化学反应功能,它将具有化学活性的基团连接到以原有主链链为骨架的高分子上。离子交换树脂是一种带有可交换离子的活性基团、具有三维网状结构、不溶的交联聚合物,在水中具有足够大的凝胶孔或大孔结构,由于它具有高效快速分析和分离功能,目前已广泛用于硬水软化、废水净化、高纯水制备、海水淡化、溶液浓缩和净化、海水提铀,特别是在食品工业、制药行业、治理污染和催化剂中应用的更为广泛。

2.1.2光功能高分子材料

在光的作用下,实现对光的传输、吸收、贮存、转换的高分子材料即为光功能高分子材料。近年来,在数据传输、能量转换和降低电阻率等方面的应用增长迅速。感光性树脂由感光基团或光敏剂吸收光的能量后,迅速改变分子内或分子间的化学结构,引起物理和化学变化。光致变色高分子具有光色基团,不同波长的光对其照射时会呈现不同的颜色,而当其受到特定波长照射后又会恢复为原来的颜色。利用这种可逆反应可以实现信息的存储、信号的显示和材料的隐蔽,应用前景十分诱人。

2.1.3电功能高分子材料

依据材料的结构和组成,可将导电高分子分为两大类:一类是依靠高分子结构本身所能提供的载流子导电的结构型导电高分子,在电致显色、微波吸收抗静电、等领域显示出广阔的应用前景。另一类是高分子材料本身不具有导电性能,依靠添加在其中的炭黑或金属粉导电的复合型导电高分子,具有制备方便,实用性强的特点,在许多领域发挥着重要的作用,常用作导电橡胶电磁波屏蔽材料和抗静电材料。

2.1.4生物医用高分子材料

生物医用高分子包括医用高分子和药用高分子两大类。

医用高分子材料材料科学应用于生物医疗的交叉学科,将加工后的无生命的材料用来取代或恢复某些组织器官的功能。医用高分子材料作用于人体必须具备生物相容性、化学稳定性、耐腐蚀老化、易于加工等优点,主要用于人工器官、治疗疾患、诊断检查等医疗领域中。目前,医用功能高分子材料在心血管的植入、局部整形和眼睛系统的矫正等方面获得了较大成果。

新型高分子药物,具有缓释、长效、低毒的特点,分为两类:一类药物即为高分子本身,可以直接用作药物,也可以通过合成获得某些疗效。另一类高分子药物高分子本身没有药用价值,而是作为药物的载体,以离子键或共价键的形式连接具有药理活性的低分子化合物,制成高分子药物控制释放制剂。一方面达到将最小的剂量在作用于特定部位产生治效的目的;另一方面使药物的释放速率可控,在提高疗效的同时降低了毒副作用[3]。

2.2新型功能高分子材料

2.2.1高吸水性高分子材料

近年来开发的高吸水性树脂是一种新型功能高分子材料,它可吸收自身重量数百倍至上千倍的水,自身含有强亲水性基团同时具有一定交联度。此外,高吸水性树脂的保水性能极好,即使受压也不会渗水,而且具有吸收氨等臭气的功能。高吸水性树脂在石油、化工、轻工、建筑等部门被用作堵水剂、脱水剂、增粘剂、密封材料等;在农业上可以做土壤改良剂、保水剂、植物无土栽培材料、种子覆盖材料,并可用以改造沙漠,防止土壤流失等;在日常生活中,高吸水性树脂可用作吸水性抹布、餐巾、鞋垫、一次性尿布等。

2.2.2 CO2功能高分子材料

在不同催化剂作用下,以CO2为基本原料与其他化合物缩聚成多种共聚物。其中研究较多、已取得实质性进展、并具有应用价值和开发前景的共聚物是由CO2与环氧化合物通过开键、开环、缩聚制得的CO2共聚物脂肪族碳酸酯。把长期以来因石化能源燃烧和代谢而排放的污染环境、产生温室效应的CO2视为一种新的资源。利用它与其他化合物共聚,合成新型CO2共聚物材料,对解决当今世界日趋严重的CO2含量增高等问题有重要的现实意义。

2.2.3形状记忆功能高分子材料

形状记忆功能材料的特点是形状记忆性,它是一种能循环多次的可逆变化。即具有特定形状的聚合物受到外力作用,发生变形并被保持下来;一旦给予适当的条件(力、热、光、电、磁),就会恢复到原始状态。根据不同的触发材料记忆功能的条件,可将其分为电致型、光致型、热致型和酸碱感应型。形状记忆高分子材料是高分子功能材料研究新分支,在电子、印刷、纺织、包装和汽车工业中具有良好的发展前景。

2.2.4生态可降解高分子材料

随着人类对环境的重视,材料的可降解性成为新的性能指标,因此生态可降解高分子材料受到广泛重视。目前我国生态可降解性高分子材料的发展还处于复制和仿制国外产品的初级阶段,国外产品占据主要市场。高分子的降解主要是各种生物酶的水解,其中聚乳酸类高分子是已开发应用于生命科学新型生物可降解材料,尽管已形成了多个品种,但目前应用的生物可降解材料在生物相容性、理化性能、控制其降解速率和缓释性等方面仍存在较多问题,有待进一步研究[4]。

3.开发功能高分子材料的重要意义

功能高分子材料其独特的功能和不可替代的特性已带来各个领域技术进步,甚至质的飞跃,且在各行业已产生相当高的经济和社会效益,并导致许多新产品的出现。随着人们对有机高分子材料研究的逐步深入和加强,功能高分子材料的方向包括两方面:一方面,改进通用有机高分子材料,在不断提高它们的使用性能的同时,扩大其应用范围。另一方面,与人类自身密切相关、具有特殊功能的材料的研究也在不断加强。因此,功能高分子材料是未来材料科学与工程技术领域的重要发展方向,必将影响人类的生产和生活产[5]。

【参考文献】

[1]张恒翔,蔡建,邱莎莎.功能高分子材料在军用包装中的应用[J].包装工程,2011,(23):60~62.

[2]杨晓红,王海英.新型有机高分子材料发展[J].科技资讯,2009,(4):7.

[3]杨北平,陈利强,朱明霞.功能高分子材料发展现状及展望[J].广州化工,2011,(6):17~18.

高分子材料的发展现状范文第3篇

关键词:高分子材料; 专业英语; 教学改革

中图分类号:G642 文献标识码:A 文章编号:1006-3315(2013)11-153-002

高分子材料相对于传统材料如玻璃、陶瓷、金属等而言是后起的材料,但其发展的速度及应用的广泛性却大大超越了这些传统材料,已成为工业、农业、国防和科技等领域的必不可少的材料。高分子材料除了作为通用材料使用外,同时向着功能化、智能化和复合化发展,这些都要求高分子材料专业的学生及时了解国内外研究进展和发展趋势,具备阅读英语专业资料的能力。

高分子材料专业英语作为高分子材料专业开设的一门专业基础课,是大学英语教学的一个重要组成部分。学生毕业后无论在企业、科研机构或高校进一步学习或工作,只要从事科技开发,需要大量查阅英文科技信息资料,这些信息多存在于当前发表的专利、期刊等专业文献中。因此,培养高分子材料学生的专业英语技能是科学研究和实际工作的迫切需要。针对目前高分子材料专业英语的实际教学状况,本文从高分子材料专业英语的特点着手,对于词汇教学、课堂教学内容,教学方法,考核方式等方面进行了研究和教学实践。

一、专业英语词汇教学

专业词汇是用来专门描述某一学科、某一领域中的具体事物或者过程的词汇,一般其词义较单一,应用范围仅限于专业领域。专业英语词汇是学习专业英语的基础,因此要求学生必须掌握大量的专业英语词汇。经过大学英语的学习,学生积累了丰富的普通词汇,对于浩繁复杂的专业词汇还知之甚少。这些专业词汇看似难识别和难记忆,但实际上大多数专业词汇的构成是有规律的,不少是由一些含有具体意义部件,即词根、前缀、后缀等所构成的组合体。如高分子材料专业中常见的表示元素的词缀有hydro-(氢),-oxy(氧),thio-(硫),chloro-(氯),fluoro-(氟);bromo-(溴)等;表示数量的词缀有poly-(聚,多),mono-(单);di-(二),tri-(三),tetra-(四),penta-(五)等;表示化学基团的词缀有methyl-(甲基),ethyl-(乙基),propyl-(丙基),butyl-(丁基),vinyl-(乙烯基),phenyl-(苯基)等;烷烃多以-ane结尾,烯烃多以-ene结尾,醇类多以-ol结尾等;表示属性的词缀有thermo-(热),electro-(电),cyclo-(环),opto-(光)等。以polytetrafluoroethylene(PTFE,聚四氟乙烯)为例分析,该词汇是由poly-,tetra-,fluoro-,ethyl-,-ene五个词缀构成,取前四个词缀的首字母就构成PTFE,记忆起来就简便多了。课堂上讲授这些规律对于学生专业词汇的掌握就会收到事半功倍的效果,同时也激发了学生学习的兴趣。

二、以教材内容为基础,适当补充教学内容

目前高分子材料专业英语的教材有不少,覆盖了高分子化学、高分子物理和高分子材料加工等课程内容。但这些内容大多摘选自国外早期的原版专业书籍,不少内容陈旧,体裁单一,一方面不能反映高分子材料专业发展现状,同时让学生感到应用性不强,缺乏学习兴趣。针对以上教材内容的缺陷,笔者在有选择的讲述教材内容的同时,精心选择一些著名国际高分子专业期刊,如《Macromlecules》、《Polymer》、《Macromolecular Rapid Communications》等期刊的部分相关内容作为教材的补充,同时鼓励学生上网搜索一些相关资料,如美国化学会下的Chemical & Engineering News下有关高分子材料方面的报道,这些内容反映当今高分子材料发展的前沿,拓宽了学生的知识面。同时考虑到学生毕业之后在工作中或进一步深造中会接触到专利、说明书、技术标准、市场报告等多种体裁的专业文献,在课堂教学中适当增加这部分实用性的内容,起到学以致用的效果。

三、课堂理论教学方法的革新

专业英语教学内容一般为专业知识的论述,具有很强的逻辑性和学术性。为提高学生的专业英语阅读、翻译、初步写作的能力,笔者采取的方法如下。

1.师生互动是专业英语教学的重要手段

传统专业英语的教学模式是先讲解词汇,再阅读和翻译课文,这样的课堂单调且冗长,学生学习兴趣不高。考虑到语言教学的特殊性,为达到好的教学效果,需要学生在课堂中的积极参与,尝试改变以往教师讲学生听的简单教学模式,采用多种形式与学生互动交流。通过提前布置作业,学生做好预习工作,每次带着问题上课,在课堂上再随机指定学生朗读并讲解翻译,其他同学进行补充或修正,最后教师结合专业内容进行点评,并讲解相关的重要知识点和专业词汇。这样,充分调动每个学生的学习积极性,使之从被动学习变成主动学习,加深了学生对教学内容的理解和认识。

2.适当进行多媒体教学,丰富课堂教学内容

现在多媒体及网络等教学手段已广泛引入到课堂教学中,这些教学手段使课堂教学更加直观生动,增大了课堂的信息量,提高课堂效率,激发了学习兴趣。为此,在每次课文内容讲解结束后,笔者播放一些相关内容的科普性英文短片,比如介绍高分子材料合成、成型、应用等方面。由于刚学完相关内容,所以学生表现出浓厚的兴趣,通过看、听、讲述,留下了直观的知识,同时也锻炼了学生的听说能力。把一些信息量大、实用性强的专利、论文、技术标准等专业资料制作成多媒体课件进行课堂讲解,在有限的课堂时间内给学生传递了较多的信息内容,提高了课堂效率。

3.教学效果的检验

考核方式是教学中的重要环节,是检验教学效果和巩固学生所需知识的重要手段。考核主要涉及两个层次,平时考核与期末考试。平时主要考核学生以英语为工具进行专业信息交流的能力,期末考试则通过试卷形式检验学生对专业词汇的掌握情况,以及快速阅读科技论文并从中获取信息的能力。在完成每一阶段的教学环节后,教师要不断总结,了解学生对所授知识的掌握程度,确定考核指标,根据考核结果来修正下一阶段的目标,设计下一阶段的教学内容。平时的阶段性考核可以有多种方式,如根据教学内容,学生抽签选择一个题目用英语讲述,考察听说能力。或针对知识点,把常见的错误总结出来,引导学生纠错,考察语法知识的掌握情况。在课堂教学将结束的时候,我们对学生进行分组合作完成一次科研课题的汇报,学生自行分工,查找资料、设计制作多媒体课件、上台汇报讲演。在这个过程中,学生不但提高了自己的专业英语水平,还培养了团队合作的能力。

四、结束语

综上所述,对于高分子材料专业的学生而言,高分子材料专业英语是继大学英语后非常重要的英语教学课程,教学应培养学生以英语为工具解决专业学习中的实际问题的能力,为学生今后毕业设计、实际工作或进一步深造学习奠定良好的基础。为此,从教学内容、教学方法及考核方式及内容等方面改革高分子材料专业英语的教学是很有必要的。

参考文献:

[1]曹同玉,冯连芳,张菊华.高分子材料与工程专业英语[M]北京:化学工业出版社,2011

高分子材料的发展现状范文第4篇

电子结构计算的有限元方法

气体信号分子的荧光小分子探针

铂类抗肿瘤药物的设计开发进展

全钒液流电池碳电极材料的研究进展

锂离子动力电池隔膜的研究及发展现状

靶向雌激素受体荧光探针及其生物应用

T形微通道中气泡分散流的传质性能

纳米颗粒-蛋白相互作用及其生物效应研究

同步辐射技术研究汞的环境健康效应与生态毒理

间苯二甲酸自组装形成的人工跨膜离子通道

化学生物融合转化反应研究的最新进展及挑战

无黏结剂复合孔分子筛催化烯烃裂解制丙烯技术

基于绿色前驱体制备高质量硒/碲化物纳米晶

聚苯乙烯分子链构象与其薄膜的玻璃化转变行为

页岩气滑溜水压裂用降阻剂研究与应用进展

非对称加外给电子体调控聚丙烯分子链结构

化纤单体生产的绿色化进程回顾与量化

超分子有机膦大环化合物研究进展

多孔甲烷水合物样品导热系数的测定和模拟

新型低带隙聚合物结构和性质的理论研究

适应多种原料的生物航煤生产技术的开发

基于小分子的核酸结构探针最新研究进展

氮杂糖应用于溶酶体蓄积症治疗的研究

反应性挤出加工制备无卤阻燃高分子材料

叶酸高分子纳米胶束在小鼠体内的靶向分布

稠油中饱和烃复杂混合物成分解析及其意义

油页岩固定床热解反应器中内构件强化作用

钌多吡啶配合物与DNA相互作用研究新进展

室温钠离子储能电池电极材料结构研究进展

不同粒度八面体纳米钼酸镉的表面热力学性质

利用双水相分离回收离子液体的研究进展

基于分子催化剂光驱动水氧化器件的研究进展

富勒烯和富勒烯衍生物中的Stone-Wales旋转

南京夏季大气有机气溶胶老化过程在线观测研究

面向资源和环境的石油化工技术创新与展望

氯化胆碱/尿素和氯化胆碱/甘油的性质与应用

基于质谱技术的代谢组学研究及其在中国的发展

基于微流控芯片-质谱联用的细胞分析研究进展

穿插和缠绕结构配位聚合物的合成与性能研究

有机金属配合物控制的活性自由基聚合研究进展

稀土在机动车尾气催化净化中的应用与研究进展

稀土/L型沸石主-客体发光功能材料的研究进展

钠离子取代对气相分子氢氘交换反应的影响

由可控聚合反应直接制备不同形貌的聚集体

环境友好的选择性催化还原氮氧化物催化剂

酸性溶液中二硫甲脒水解和氧化的动力学研究

二氧化铈表面氧的活化及对氧化反应的催化作用

高分子材料的发展现状范文第5篇

关键词:活性碳纤维、碳化、活化

活性碳纤维主要是制成碳纤维增强塑料这种复合材料来应用碳纤维是一种纤维状碳材料。碳纤维化学组成中含碳量在90%以上,它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性。碳纤维具有优越的物理力学性能广泛应用于航空器材、运动及休闲器材、医疗卫生等领域。【2】然而,碳纤维的主要原料是石化制品,且成本较高,研究新型碳纤维的制备方法是大势所趋。由于在生产木制品的过程中剩余大量的树皮,所以能高效利用这些废弃物能很好的节约资源。

树皮含有大量的化学物质, 树皮液化方法可以效仿木材液化的方法。树皮的化学成分和化学性质,与木材的化学成分和化学性质基本上是相似的,但也有一些明显的差异。树皮的化学成分一般更为复杂,而且不同树种之间的变化范围较大。树皮中的灰分和抽提物的含量都比木材高,其中矿物质的含量甚至比木材高达十倍。树皮中的纤维素含量比木材低。所以用树皮经液化制得的木质炭纤维强度不够,但是吸附性、功能性良好,所以可以作为活性碳纤维。

树皮制备活性碳纤维的构想:

树皮由于其相似性与复杂性,液化树皮时能制得功能性更强的碳纤维,因为其富含大量抽提物,碳纤维的性能也与用木材制得的碳纤维不尽相同。

目前采用的主要液化方法依然是在液化剂作用下, 在酸性、碱性或金属盐类催化剂存在时, 将未经任何化学处理的木材进行常压液化。相对而言, 在酸性条件特别是硫酸催化下, 用苯酚液化剂进行木材液化研究的更多[4] 。也有学者在苯酚液化木材时, 采用多种有机磺酸盐作催化剂; 还有人将超临界技术引入到木材的苯酚液化中, 实现了木材的快速液化。对采用多元醇作液化剂的木材液化,特别是采用碳酸乙烯酯和碳酸丙烯酯进行木材快速液化的研究也获得了理想的效果。【5】

制造活性碳纤维的一般工艺是:树皮液化获得液化物,合成纺丝液,纺丝液通过项目依托实验室自制的纺丝机纺为原丝,再将将原料纤维在150~400℃ 氮气氛中碳化, 然后在700~1000℃下以CO2及H2O气中活化, 有时为了制取具有预想结构和性能的活性碳纤维,也使用含氮的磷氧化物如磷酸按等作为催化剂。通常, 不同原料纤维的碳化和活化条件不同, 而且该条件及原料纤维种类均构成对活性碳纤维性能的影响。

活性碳纤维应用领域日益扩大, 但其成本仍居高不下,使很多使用方法都只停留与实验室阶段,不能工业化生产。尽管活性碳纤维存在许多优点, 如比表面积大, 吸附速率快、效率高、吸附容量大、热稳定性和化学稳定性好等, 但其在某些领域中的应用仍受到价格的限制。所以选择廉价的原料和简便的制取方法是当务之急。

我国是农业大国,有丰富的农业资源,木材副产品来源广泛,但用处不大,通过液化方式将固体木材大分子降解成具有反应活性的液态小分子,转化成新的高分子材料,尤其是具有生物降解性能的高分子材料,是近年来木材综合利用技术新开辟的研究领域之一。同时树皮约占森林采伐剩余物生物质总量的10%,资源总量非常可观。【6】利用树皮制活性炭纤维,不仅能废物利用,还能减少木材的浪费,减少不必要的资源浪费。

参考文献

[1]张建辉.竹材液化物碳纤维的制备、结构与性能表征. 学位论文.2010年9月.

[2] 邓彦波, 韩飞. 碳纤维的制备研究和市场前景,甘肃化工,2001年2月

[3] 马晓军. 木材苯酚液化物碳素纤维化材料的制备及结构性能表征. 学位论文 .2007年6月

[4] Ot tavio E D. U S, Pat ent 3532518( 1970) [ P]