前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇减少二氧化碳排放范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:二氧化碳;减排成本;减排技术;减排对策
一、我国二氧化碳排放基本状况分析
随着经济发展,温室效应不断加剧,已严重影响到了人类的生存与发展。二氧化碳是最主要的温室气体,对温室效应的作用可达66%。大部分的温室气体与人类活动有关,特别是进入工业化后,温室气体的浓度急速上升。
1.我国二氧化碳排放的总体特征
我国能源主要是石油、煤炭等化石燃料,这类能源是二氧化碳的主要能源。而且,由于我国是上升期的发展中国家,经济的快速增长,能源消耗大,导致我国二氧化碳排放量很大。我国在上个世纪80年代以前二氧化碳排放量相对较小,在21世纪之前,二氧化碳的排放量增速缓慢。从2003年开始,随着我国经济的迅猛发展,二氧化碳的排放量迅猛的增长,增长率达到了13%。在2010年,我国成为世界上二氧化碳排放量最大的国家,超过了美国。
欧盟的碳排放量一直居高不下,美国的碳排放量也一直是处于稳定的高水平状态。中国与日本的碳排放量从1980年到2007年都出现增长,日本增量较小,中国增量较大,总体碳排放量超过了美国。发达国家,已度过了工业化初期高耗能的时期,碳排放量趋于稳定并缓慢减少。中国由于经济的发展,碳排放量大增,减排任务极重。而且由于技术的不到位,强制性减排会造成很大的经济代价。
2.我国不同地区及不同行业碳排放量的现状
我国不同省区二氧化碳排放量有很大的差异。2007年,绝对碳排放量最多的省份是山东,最少的省份是海南;碳排放量增长速度最快的是宁夏和内蒙古,最少的黑龙江。从分布区域看,东部地区二氧化碳排
放量占到了全国排放量的一半,而且增长最快,达到9.8%;中部地区占到26.72%,增长率分别为8.85%;西部相对最少,增长率为7.45%;从行业分布来看,工业碳排放量占到全国的70%以上,高耗能行业碳排放量增长了一倍。其中有色金属冶炼及压延加工业碳排放增长最快。电力碳排放系数总体呈下降趋势。
二、温室气体减排成本分析
减排成本是一个关键制约因素,发展中国家短期内无法通过技术进步实现减排目标,只能是通过限制、关闭高排放部门来实现,这就需付出巨大的经济代价。
1.减排成本的基本概述
对二氧化碳减排成本可以从不同视角、层次对二氧化碳的减排成本的定义和估算。总体来说,可以从宏观层面和微观层面进行界定。
从微观角度,二氧化碳减排成本是指一个国家或地区为了实现减排目标而直接投入的技术和资金。从宏观角度,二氧化碳减排成本是指一个国家或地区为了实现减排目标采取措施从而对宏观经济造成的影响,即通过强制性减排造成的国家GDP损失。这种损失主要是因为在短期内无法依靠技术进步而达到减排目标,只能通过限制高耗能企业的发展来减少二氧化碳排放量,这样抑制了经济的发展,付出很大的经济代价。本文主要从宏观角度分析,还涉及到边际减排成本,边际减排成本是指每减少一单位二氧化碳排放量所引起的GDP的减少量。
2.我国二氧化碳减排成本分析
经济发展与减少二氧化碳排放量存在的一种矛盾的关系,如何做出一个适当的权衡非常重要。通过考察中国经济发展和二氧化碳排放量之间的关系,运用投入产出分析及多目标规划理论,建立了中国宏观经济成本估算模型。通过对模型的求解,对其结果的分析,建立了下图。
从表中我们可以看出二氧化碳排放量与潜在GDP之间的关系,从而对中国减排宏观经济成本做出粗略的计算。不同的二氧化碳排放量对应不同的GDP值,当二氧化碳的排放量最大时,GDP值也最大。当GDP值为最大值35.30万亿元时,二氧化碳排放量也达到最大值97.01吨。从另一方面,也可以看出,对二氧化碳的限制将以降低GDP的增长率为代价。通过对上图数据的计算分析得出下表。
从表中可以看出,当二氧化碳减排的力度越大,减排的宏观经济代价就越大,GDP的年增长率就会越低,二氧化碳的宏观经济成本就越高,而且在不同的减排力度下,成本的上升幅度也不同。在
减排量在4.42亿吨到7.59亿吨的区间内,减排量每增加1%,宏观经济成本就上升0.20%;在7.59到9.84这个区间内,减排量每增加1%,宏观经济成本就上升0.46%。同时也可以看出,碳强度降低的弹性较小。二氧化碳减排对我国经济的影响十分显著,我国2010年二氧化碳减排的宏观经济成本约为3100―4024元/吨二氧化碳。
然而由于温室效应的消极影响越来越大,国际对中国温室气体减排的要求越来越高,中国目前必需节能减排,由于技术的不到位只能强制性减排,造成了很大的经济损失。如表2中所示为二氧化碳浓度稳定在650ppmv,550ppmv,450ppmv情景下对我国经济的影响。
可以看出在450ppmv稳定情景下,发展中国家在2010年减排,会出现经济损失。减排率越大经济损失就越大。所以大规模的二氧化碳减排会对我国经济带来巨大的损失,对二氧化碳浓度要求越低,我国的经济损失就越大。如图中所示在450ppmv情景下,2100年损失可达到4.8%,在650情景下损失就小的多;有长期准备的减排其损失要小于突然快速减排;技术是实现减排的核心。
因此,在设定限排目标时应充分考虑到二氧化碳减排对我国宏观经济的影响程度,根据实际的潜力和承受力确定合理目标。减排要依靠长期的技术进步,短期内碳排放强度下降的空间弹性不塌,因此不宜把目标设的太高。
参考文献:
[1]范英.温室气体减排的成本、路径与政策研究[M].科学出版社,2011(7):112-152
作为世界上最大的发展中国家,我国政府在2009年12月的哥本哈根国际气候会议上对全世界作出郑重承诺:到2020年我国单位国内生产总值的二氧化碳排放量比2005年下降40%~50%.而作为世界上最大的碳排放国家,我国的碳减排目标任重而道远.当前,全球都在积极推行“低碳经济”,各国都在努力实现“绿色生产”,力求减少碳排放量.我国政府在“十二五”规划中提出节能减排的约束性目标,即单位国内生产总值能耗要降低16%,而二氧化碳排放要降低17%,主要污染物的排放总量要求减少8%到10%,同时把该目标进一步分解到全国各地区,要求各地区务必坚持绿色、低碳的新型发展理念,把节能减排作为贯彻落实科学发展观、加快经济发展方式转变的一个重要出发点,发展资源节约型、环境友好型的生产消费模式,进而增强自身的可持续发展能力.一直以来,二氧化碳排放问题作为全球变暖背景下的一个新标识,是国内外众多学者密切关注的重点.由于我国存在严重的区域经济发展不平衡和地区资源禀赋差异,中国各省市地区的碳排放也存在显著差异.要想制定出科学合理且有针对性的节能减排政策,就必须很好地把握中国各省市的碳排放情况,因此有必要对各省市碳排放量进行全面系统的测算.然而,截止目前,我国无论是国家层面的还是省级层面都没有直接公布二氧化碳排放量的官方统计数据,国内外学者的测算研究都是基于对能源消费量的测算.那么,我国各省份二氧化碳排放量到底有多少,哪些因素对二氧化碳的排放产生影响?这些相关影响因素对二氧化碳排放的影响程度又是如何呢?这些问题的解决与否关系到我国节能减排政策制定的科学与否,也关系到低碳战略实施成效的显著与否.节能减排工作的顺利开展,是我国经济社会保持可持续发展的关键.本文参照IPCC(2006)以及国家气候变化对策协调小组办公室[3]和国家发改委能源研究所(2007)[4]的方法,运用相关方法对各省市地区的碳排放量数据进行估算,比较详细估算了我国30个省市(直辖市、自治区)1997—2011年的二氧化碳排放量.
2各地区碳排放量的测算
考虑到二氧化碳排放的来源比较广泛,除了化石能源燃烧外,在水泥、石灰、电石、钢铁等工业生产过程中,由于物理和化学反应的发生,也会有二氧化碳的排放,而在所有工业生产过程排放的二氧化碳中,水泥大约占56.8%,石灰大约占33.7%,而电石、钢铁生产所占不足10%.为了进一步增强估算的全面性和准确性,本文不仅估算了化石能源燃烧所产生的二氧化碳排放量,同时也估算了水泥生产过程产生的二氧化碳排放量.另外,为精确起见,本文进一步将化石能源消费细分为煤炭消费、焦炭消费、石油消费、天然气消费,其中石油消费则更进一步细分为汽油、煤油、柴油、燃料油四类.所有化石能源消费数据都来自于历年《中国能源统计年鉴》.水泥生产数据来自于国泰安金融数据库.水泥生产过程产生的二氧化碳排放量具体计算公式如下:CC=Q×EFcement.(2)其中CC表示水泥生产过程中二氧化碳排放总量,Q表示水泥生产总量,而EFcement则是水泥生产的二氧化碳排放系数.本文估算水泥生产的二氧化碳排放量时,仅仅计算了化学反应产生的二氧化碳排放量,而没有包含水泥生产过程中燃烧化石燃料而造成的二氧化碳排放量.表1列出了各类排放源的CO2排放系数.经过一系列准确计算,可以得到我国30个省市地区1997—2011年二氧化碳排放量的估计值.由表2的二氧化碳排放量估算值可以看出我国各省市地区碳排放量基本都呈现上升趋势,地区差异比较明显.为了更好的体现我国二氧化碳排放的地区差异性,将我国30个省(市、区)按照经济发展水平和其地理位置划分为三大区域,包括东部地区、中部地区以及西部地区.具体来讲,东部地区包括北京、河北、天津、辽宁、山东、江苏、上海、浙江、福建、广东和海南这11个省(市);中部地区主要包括黑龙江、吉林、山西、湖北、河南、湖南、安徽和江西这8个省份;西部地区则包括内蒙古、广西、云南、贵州、四川、陕西、重庆、青海、宁夏、新疆、甘肃、(由于缺乏数据较多,未估算其二氧化碳排放量)这12个省(市、区).表3显示我国三大区域的碳排放量.表3的数据反映了我国及东中西部三大区域碳排放量情况.从总体上来看,1997—2011年我国的二氧化碳排放量呈现持续增长的趋势,从1997年的336565.69万吨增长至2011年的1066359.01万吨,增长幅度达到729793.32万吨,短短15年间排放量大约增长了2.17倍.由图1可以明显看出,在1997—2002年我国二氧化碳排放量处于缓慢增长的阶段,这个阶段我国的二氧化碳排放量年均增长为3.48%.这个阶段产生的原因主要是受亚洲金融危机影响,我国出口贸易缩减,这在一定程度上减少了二氧化碳的排放.从2003年起,亚洲各国陆续走出金融危机的泥潭,我国经济发展加速,但由于我国高投入、高消耗、高污染的粗放型经济增长方式,使得我国这一阶段的二氧化碳排放量处于快速增长期,2003—2007年我国二氧化碳排放量增速达到13.70%.之后我国二氧化碳排放量增速有所下降,2008—2011年增速为9.37%.虽然增长率依旧不低,但是相比于2003—2007年还是呈现下降趋势.这说明我国意识到能源环境的重要性,开始探寻低碳经济路径,为实现绿色生产付出努力.特别是在2008年10月29日我国公布的《中国应对气候变化的政策行动》白皮书,郑重声明了我国应对气候变化问题的积极态度和相关行动,更是明晰了我国未来低碳发展路径.从表3东中西部三大区域碳排放量情况可以明显看出,我国的碳排放区域差异性是比较显著的.总体来讲,我国二氧化碳排放量呈现由东到西依次递减的规律,东部地区碳排放量最多,中部地区次之,西部地区碳排放量最少.东部地区的二氧化碳排放在绝对量上大大超过中西两大区域.从图2可以看到,这三大区域二氧化碳排放均呈现逐年增长的趋势,且其增长规律均与全国二氧化碳排放量一样,可以分为三个阶段:从1997—2002年三大区域的二氧化碳排放量有升有降,总体来说处于缓慢增长阶段;从2003—2007年,三大区域的二氧化碳排放量均呈现不同程度的增长,整体处于快速增长阶段;从2008—2011年,三大区域的二氧化碳排放量处于增速下降阶段.图2是我国1997—2011年30个省市地区二氧化碳排放量均值的降序排列图.其中,二氧化碳排放量均值位于全国二氧化碳排放均值的省市地区有:山东、河北、江西、江苏、河南、广东、辽宁、内蒙古、浙江、四川和湖北.排名靠前的前五个省份是山东、河北、江西、江苏和河南,分别占我国二氧化碳排放总量均值的8.71%、8.00%、7.68%、6.21%和5.95%.我国的主要二氧化碳排放大省均为传统工业,能源消费以煤炭为主.二氧化碳排放量排名靠后的五个省份分别是天津、甘肃、宁夏、青海和海南,分别占我国二氧化碳排放总量均值的1.46%、1.44%、0.98%、0.40%和0.30%.图3是我国1997—2011年各省碳排放年均增长率的降序排列图.可以看到,二氧化碳排放年均增长率排名前五的省份是宁夏、内蒙古、海南、福建和山东,其中宁夏二氧化碳排放的年均增长率达到15.36%.宁夏出现较高二氧化碳排放速度的原因与其快速的经济增长密切相关,1997年宁夏的国内生产总值为210.92亿元,2011年为2102.21亿元,增幅达到1891.29,增长了8.97倍.第二产业的产值占国内生产总值的比重由1997年的41.6%增长到了2011年的50.2%,增长了8.6个百分点.快速的经济发展及不合理的产业结构刺激了二氧化碳的高速排放.除了以上二氧化碳排放年均增长率排名靠前的省份外,青海、陕西、广西和新疆的年均增长率也均超过了10%,高于全国8.59%的平均增长水平.排名靠后的五个省份为辽宁、山西、黑龙江、上海和北京,其二氧化碳排放的年均增长率分别为6.47%、6.16%、5.41%、4.32%和1.95%,其中北京二氧化碳排放年均增长率以1.95%位居全国最低.
3我国各省区二氧化碳排放影响因素的实证研究
影响二氧化碳排放的相关因素很多,比如地理因素、经济发展水平、产业结构、产权结构、能源消费结构、对外开放程度、投资水平、制度环境、城市化水平、能源价格等[5-8].考虑到客观条件的限制,在考虑数据可得性基础上,本文构建面板数据模型研究产业结构、出口贸易、能源消费结构、城市化水平、国内生产总值对二氧化碳排放的影响.本文选择的面板数据模型如下:yit=α+Zitβ+ηi+εit.(3)其中,yit是第i个省份第t年人均二氧化碳排放量;α是常数项,β是回归系数;ηi是个体效应,主要用来控制各省份自有的特殊性质,εit是外生解释变量,主要包含国内生产总值(用gdp表示)、能源消费结构、城市化水平、产业结构及出口贸易等因素.其中,能源消费结构以煤炭消费量占能源消费量的比重度量(用energe表示),城市化水平以非农人口占总人口比重度量(用city表示),出口贸易以出口额占GDP的比重度量(用export表示),产业结构以第二产业占GDP的比重度量(用industry表示),同时对所有变量进行了取对数处理.结果显示,该面板回归模型拟合地较好,回归系数具有较高的显著性,其符号方向与现实情况较为符合.产业结构及国内生产总值对二氧化碳排放量的弹性系数较高,说明二氧化碳对产业结构及国内生产总值的变动比较敏感.第二产业占GDP的比重每增加1%,会使二氧化碳排放量增加0.9744%,这说明第二产业与碳排放呈现明显的正相关关系,第二产业是二氧化碳排放的主要驱动因素.经济每增长1%,二氧化碳排放量则会增加0.5812%,这说明经济增长也是碳排放量增多的一个重要因素,二者呈现正相关关系.能源消费结构与出口贸易与碳排放量的弹性系数在1%水平上不显著.
4结论与政策建议
城市的双重效应
但是,研究人员一项新的研究表明,城市其实也是吸收二氧化碳的主要场所,这对减少温室气体具有非常重要的作用。
现在,地球上已经有4%的陆地城市化,在2011年7月11日的20届世界人口日之时,联合国预测,2011年10月,全球人口将达到70亿,到2050年世界人口将达到93亿,并于本世纪末超过100亿。如何既满足上百亿人口的需求,又同时维护生命赖以存在的自然环境的良性状态,这是本世纪面临的巨大挑战。这种挑战也包含一个问题,城市中的人口至少占总人口的一半,因此,城市排放的二氧化碳将会越来越多,也会对全球变暖造成更大的影响。
由于有光合作用,森林会吸收大量的二氧化碳。但是,城市地区没有森林这样的植被,因而不可能像森林一样大量吸收二氧化碳。所以,城市是二氧化碳的产出者,而非消化者。但是,英国研究人员的一项研究可能会改变人们的看法,因为城市在大量产生二氧化碳的同时也可以大量吸收二氧化碳。
英国研究人员对英国中部城市莱斯特进行了调查,这个城市有73平方公里,居住着约30万人口。利用卫星观察和地面调查的方法,研究人员对这个城市的公园、家庭花园、废弃的工业用地、高尔夫球场、学校的运动场、道路两旁和河岸的植被等吸收二氧化碳进行了测量。结果发现,这些地方的植被吸收和阻截的碳高达23.1万吨,比预期的多10倍。这个吸收量相当于平均每年15万辆轿车排放的二氧化碳,也相当于该城的每平方米贮存了3.16千克的碳。
英国东南部肯特大学的佐伊・戴维斯(Zoe Davies)是这项研究的参与者。她认为,城市中的植被是一个潜在的碳贮藏库。也就是说,碳可以沉积在城市中。现在,全球每年排放的碳数十亿吨,既然城市是碳的一个巨大的沉积处,就能帮助减少二氧化碳这种温室气体对气候的影响。比较而言,城市中的树比草地更能吸收碳。如果在城市中种植更多的树,将会比种植草坪和灌木吸收更多的二氧化碳。因此,城市规划应当把种植树放在首位。
以莱斯特市为例,许多公共地段和私人土地都有草地,但是,如果现在这些地方有10%种植树木,这个城市的碳贮藏量就会增加12%。而且,如果在城市植树,则让树具有更长的生命周期。除了吸收二氧化碳,树也能为城市居民提供阴凉处和降低城市温度。城市的沥青路面和高大建筑物吸收了更多的热,容易形成热岛效应。但是,如果在城市多植树,就会帮助减少温室效应。
如何增加城市植被?
尽管城市化是未来的趋势,而且城市化也增加了二氧化碳的产生,但是,城市并非只是二氧化碳的产生者,而且是二氧化碳的吸收者。只要在城市中多栽树,就有可能贮藏更多的二氧化碳,减少温室气体对气候的影响。当然,在城市中栽种树木要有所选择,并非只选择乔木,而是可以按吸收二氧化碳多少的原则来植树和种植草坪。
首先,可以选择植物单位叶面积年吸收二氧化碳高于2000克的树,主要有:
落叶乔木:柿树、刺槐、合欢、泡桐、栾树、紫叶李、山桃、西府海棠;
落叶灌木:紫薇、丰花月季、碧桃、紫荆;
藤本植物:凌霄、山荞麦;
草本植物:白三叶。
其次,可以选择植物单位叶面积年吸收二氧化碳在1000~2000克的植物,主要有:
落叶乔木:桑树、臭椿、槐树、火炬树、垂柳、构树、黄栌、白蜡、毛白杨、元宝树、核桃、山楂;
常绿乔木:白皮松;
落叶灌木:木槿、小叶女贞、羽叶丁香、金叶女贞、黄刺玫、金银花、连翘、金银木、迎春、卫矛、榆叶梅、太平花、珍珠梅、石榴、丁香、天目琼花;
常绿灌木:大叶黄杨、小叶黄杨;
藤本植物:蔷薇、金银花、紫藤、五叶地棉;
草本植物:马蔺、萱草、鸢草。
第三,可选单位叶面积年吸收二氧化碳低于1000克的植物,主要有:
1林业是发展低碳经济的有效途径
林业是减排二氧化碳的重要手段。部分研究认为,林业减排是减排二氧化碳的重要手段。首先,通过抑制毁林、森林退化可以减少碳排放;其次,通过林产品替代其他原材料以及化石能源,可以减少生产其他原材料过程中产生的二氧化碳,可以减少燃烧化石能源过程中释放的二氧化碳[2]。
1.1毁林、森林退化与碳排放近年来,大部分的毁林活动都是由人类直接引发的,大片的林地转变成非林地,主要活动包括大面积商业采伐以及扩建居住区、农用地开垦、发展牧业、砍伐森林开采矿藏、修建水坝、道路、水库等[3]。在毁林过程中,部分木材被加工成了木制品,由于部分木制品是长期使用的,因此,可以长期保持碳贮存,但是,原本的森林中贮存了大量的森林生物量,由于毁林,这些森林生物量中的碳迅速的排放到大气中,另外,森林土壤中含有大量的土壤有机碳,毁林引起的土地利用变化也引起了这部分碳的大量释放。因此,毁林是二氧化碳排放的重要源头。毁林已经成为能源部门之后的第二大来源,根据IPCC的估计,从19世纪中期到20世纪初,全世界由于毁林引起的碳排放一直在增加,19世纪中期,碳排放是年均3亿t,在20世纪50年代初是年均10亿t,本世纪初,则是年均23亿t,大概占全球温室气体源排放总量的17%。因此,IPCC认为,减少毁林是短期内减排二氧化碳的重要手段。
1.2林木产品、林木生物质能源与碳减排①大部分研究认为,应将林产品碳储量纳入国家温室气体清单报告,主要理由是林产品是一个碳库,伐后林产品是其中一个重要构成部分[4]。通过以下手段,可以减缓林产品中贮存的碳向大气中排放:大量使用林产品,提高木材利用率,扩大林产品碳储量,延长木质林产品使用寿命等。另外,也可以采用其他有效的手段来减缓碳的排放,降低林产品的碳排放速率,如合理填埋处置废弃木产品等方式,这样,甚至可以让部分废弃木产品实现长期固碳。在森林生态系统和大气之间的碳平衡方面,林产品的异地储碳发挥了很大的作用。②贾治邦认为,大量使用工业产品产生了大量的碳排放,如果用林业产品代替工业产品,如减少能源密集型材料的使用,大量使用的耐用木质林产品就可以减少碳排放。秦建华等也从碳循环的角度分析了林产品固碳的重要性,林产品减少了因生产钢材等原材料所产生的二氧化碳排放,又延长了本身所固定的二氧化碳[5]。③以林产品替代化石能源,也可以减少因化石能源的燃烧产生的二氧化碳排放。例如,木材可以作为燃料,木材加工和森林采伐过程中也会有很多的木质剩余物,这些都可以收集起来用以替代化石燃料,从而减少碳的排放;另外,林木生物质能源也可以替代化石燃料,减少碳的排放。根据IPCC的预计,2000—2050年,全球用生物质能源代替的化石能源可达20~73GtC[6]。相震认为,虽然通过分解作用,部分林产品中所含的碳最终重新排放到大气中,但因为林业资源可以再生,在再生过程中,可以吸收二氧化碳,而生产工业产品时,由于需要燃烧化石燃料,由此排放大量的二氧化碳,所以,使用林产品最终降低了工业产品在生产过程中,石化燃料燃烧产生的净碳排放[7]。林产品通过以下两个方面降低碳排放量:一是异地碳储燃料,二是碳替代。这两方面可以保持、增加林产品碳贮存并可以长期固定二氧化碳,因此,起到了间接减排二氧化碳的作用。从以上分析可知,林业是碳源,因此在直接减排上将起到重大作用;林业可以起到碳贮存与碳替代的作用,可以间接减排二氧化碳。因此,林业是减排二氧化碳的重要手段。有些研究认为林业在直接减排二氧化碳方面的作用不大。这是基于较长的时间跨度来考察的,认为林业并不是二氧化碳减排的最重要手段,工业减排是发展低碳经济的长久之计;但是从短时间尺度来考察,又由于CDM项目的实施,林业是目前中国碳减排的一个重要的不可或缺的手段。
2森林碳汇在发展低碳经济中发挥的作用巨大
绝大部分的研究认为,林业是增加碳汇的主要手段。谢高地认为,中国的国民经济体系和人类生活水平都是以大量化石能源消耗和大量二氧化碳排放为基础。虽然不同地区、不同行业单位GDP碳排放量有所差别,但都必须依赖碳排放以求发展。这种依赖是长期发展形成的,是不可避免的,我国现有的技术体系还没有突破性的进展,在这之前要突破这种高度依赖性非常困难,实行减排政策势必会影响现有经济体系的正常运行,降低人们的生活水平,也会产生相应的经济发展成本[8]。谢本山也认为,中国还处于城镇化和工业发展的阶段,需要大量的资金和先进的技术才能使这种以化石能源为主要能源的局面有所改变,而且需要很长的周期,目前的条件下,想要实现总体低碳仍然存在较大的困难。与工业减排相比,通过林业固碳,成本低、投资少、综合收益大,在经济上更具有可行性,在现实上也更具备选择性[9]。从碳循环的角度上讲,陶波,葛全胜,李克让,邵雪梅等认为,地球上主要有大气碳库、海洋碳库、陆地生态系统碳库和岩石圈碳库四大碳库,其中,在研究碳循环时,可以将岩石圈碳库当做静止不动的,主要原因是,尽管岩石圈碳库是最大的碳库,但碳在其中周转一次需要百万年以上,周转时间极长。海洋碳库的周转周期也比较长,平均为千年尺度,是除岩石碳库以外最大的碳库,因此二者对于大气碳库的影响都比较小。陆地生态系统碳库主要由植被和土壤两个分碳库组成,内部组成很复杂,是受人类活动影响最大的碳库[10]。从全球不同植被类型的碳蓄积情况来看,森林地区是陆地生态系统的碳蓄积的主要发生地。森林生态系统在碳循环过程中起着十分重要的作用,森林生态系统蓄积了陆地大概80%的碳,森林土地也贮藏了大概40%的碳,由此可见,林业是增加碳汇的主要手段。聂道平等在《全球碳循环与森林关系的研究》中指明,在自然状态下,森林通过光合作用吸收二氧化碳,固定于林木生物量中,同时以根生物量和枯落物碎屑形式补充土壤的碳量[11]。在同化二氧化碳的同时,通过林木呼吸和枯落物分解,又将二氧化碳排放到大气中,同时,由于木质部分也会在一定的时间后腐烂或被烧掉,因此,其中固定的碳最终也会以二氧化碳的形式回到大气中。所以,从很长的时间尺度(约100年)来看,森林对大气二氧化碳浓度变化的作用,其影响是很小的。但是由于单位森林面积中的碳储量很大,林下土壤中的碳储量更大,所以从短时间尺度来看,主要是由人类干扰产生的森林变化就有可能引起大气二氧化碳浓度大的波动。根据国家发改委2007年的估算,从1980—2005年,中国造林活动累计净吸收二氧化碳30.6亿t,森林管理累计净吸收二氧化碳16.2亿t。李育材研究表明,2004年中国森林净吸收二氧化碳约5亿t,相当于当年工业排放的二氧化碳量的8%。还有方精云等专家认为,在1981—2000年间,中国的陆地植被主要以森林为主体,森林碳汇大约抵消了中国同期工业二氧化碳排放量的14.6%~16.1%。由此可见,林业在吸收二氧化碳方面具有举足轻重的作用。
3发展森林碳汇的难点
还记得刚放寒假,我就让妈妈带我去科技馆,看“话说低碳”展。在路上我产生了一个问题:低碳是什么?
到了科技馆,走进二厅映入眼帘的4个大字就是“话说低碳”前言介绍了二氧化碳在人为情况下缓缓添加,使温室效果加强,环境越来越差,全球变热,给人类带来很严峻的环境问题。碳是由6个中子和6个质子组成,常温下为固态物质。由于碳组成的不确定性,所以碳可以组成各种各样的烃类物质,比如汽油、塑料……比较常见的还有金刚石、石墨以及煤、石油、天然气……
大气中二氧化碳为什么会增多呢?这些形式就可以说明:人体平均每年要排放416.1千克二氧化碳,电脑平均每年排放10.5千克二氧化碳,冰箱空调平均每年排放二氧化碳6.3千克?事实上仅工业每年就排放二氧化碳220亿吨。光靠树林吸收二氧化碳是远远不够的。仅海洋浮游生物每年就能吸收100亿吨二氧化碳。
其实我们不能指望什么东西吸收几吨二氧化碳,而是要减少二氧化碳的排放量。据统计近100年来全球温度提高了0.48度。
我终于解开了低碳是什么这个问题。