前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇计算机视觉与应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:计算机;视觉检测技术;原理;应用
中图分类号:TP391.41
受到CIMS的推动和影响,诸多企业的发展趋势逐步趋向于个性化以及自动化,这种大的发展趋势间接的对我国的计算机辅助技术提出了更高的要求,计算机相关技术的发展面临着更加严峻的挑战。就现阶段分析来看,计算机辅助检测技术在现代诸多企业中得到了广泛的应用。随着柔性制造系统的不断进步与发展,驱动图像处理软件、现场总线技术的日趋成熟,检测系统的灵敏性、智能化特点愈发受到人们的关注,在这种大的发展趋势之下,计算机视觉检测技术得到了较快的发展。基于计算机视觉系统现已经广泛应用于现场监控、工况监视等诸多环境之中。
1 关于对视觉技术的相关研究
1.1 基于计算机的视觉检测技术的原理分析和探究
图像技术主要指的就是通过各种途径所实现的对图像的获取以及进一步的深入加工和处理技术。根据视觉检测技术的抽象程度以及对图像处理方式的不同,可以大致将图像的处理和加工技术划分为三个最主要的层次,这三个层次分别是图像的加工处理、图像的分析以及对于图像的理解。将这三个层次进行进一步的结合,便是图像工程。计算机视觉检测技术是一门新兴的计算机检测技术,该技术建立在对计算机视觉研究的基础之上,吸收和借鉴相关的研究成果,借助于传感器来实施三维测量,进而有效获得被测物体的空间具置信息,故而可以很好的满足当代制造业的发展需求。区别于一般的图像处理系统,计算机视觉检测技术所获取的相关数据信息更为精准和迅速,其环境适应性更强。
基于计算机的视觉检测技术注重计算理论的辅导作用,以应用为目标进行视觉技术分析。自上世纪七十年代以来,我国关于对计算机视觉检测技术的研究又取得了显著的进步,并且逐步迈入更为实质性的研究阶段,在该阶段中,逐步开始从通过从多个角度(诸如光学角度、生理学角度以及投影射影角度等等)对其成像问题加以分析。以Marr为代表的专家更是建立了一些一般性的视觉性处理模型来辅助该技术的研究。
1.2 视觉检测技术中传感器的作用
在计算机的控制下配有相关的视觉检测系统,在该视觉检测系统中,主要有三个主要方面的主要作用:第一,对于视觉传感器模型的分析以及确定;第二,进行图像数据分散与整理的相关工作;第三,CAD模型的建立。传感器的主要作用就是对测量棒材的多个截面进行分析,将所收集得到的数据经由图像采集卡采集后,传到相关的图像处理系统中,进而进一步辅助准确的模型的建立。
2 基于计算机的视觉检测技术的应用研究分析
2.1 基于计算机的视觉检测技术的发展状况研究
在研究的初步阶段,相关技术人员借助于数字化的图像处理技术,主要就是为了进一步提高所获得的数字照片的清晰度和质量要求,进而更为精准、科学、规范的对照片所提供的信息加以辨别,为航空卫星图片的读取、识别和分类做准备。在这一系列的视觉工作中,其中最为主要和常见的工作主要是包括分类、识别判读以及三维结构的构建。
基于计算机的视觉检测技术借助于对计算机视觉技术,将所获得的被观察物品的相关信息加以信号转换,并传递给图像处理系统,图像处理系统通过甄别和判断不同照片像素的分布和亮度等讯息,将其进一步转换成为数字化信号,接下来由计算机的图像系统抽出符合目标特征的信号加以运算,对下一步的设备动作加以决定和执行。
就现阶段而言,我国的计算机视觉检测技术系统在诸多领域均有所应用,最为典型的领域诸如医学的辅助诊断、机器人的感应系统、智能化的人机接口等均是建立在该技术的基础之上。借助于计算机视觉技术这一手段,可以有效提高对产品检测的效率,提高精准度,这种新型的视觉检测技术相比较于传统的人眼在流水线上的跟进,其具有显著的优越性,其获取测量结构迅速、检测结果可以直接被观察、可以进行自动识别以及定位准确和实时性的特点,这就很好的避免了由于人的一些主观性因素所导致的误差出现。
二十世纪以来,基于生物特性的计算机视觉检测技术得到了空前的发展,具体表现在人脸识别、生硬识别、指纹识别以及虹膜的识别中,形式日趋灵活和复杂多变。借助于计算机的视觉检测技术,可以有效对用户的身份进行鉴定和识别、判定用户的特殊信息等。除此之外,还可以将基于计算机的视觉识别技术逐步推广到其他领域,如海关的安全检查以及出口、入口的安全控制等领域。
2.2 基于计算机的视觉检测技术的相关应用分析
2.2.1 数码相机中所采用的图像采集技术
视觉检测技术的一个显著特点就是有效提高了生产的柔性和自动化程度,本世纪以来,数码相机凭借其高分辨率,快速成像、显像,功能丰富多变以及性价比较高的特定风靡全球,逐步取代了传统的照相机,传统的照相机主要采用的是CCD 摄像头,其主要的核心及时采集卡,显然这种采集系统已经逐步落后于时展的脚步,现已逐步被淘汰。
2.2.2 微文字识别系统的相关研发和设计
随着科学技术的不断进步与发展,大规模集成电路得到了较快的进步,基于计算机的视觉检测系统的成本得到了极大的降低,基于计算机视觉检测技术的微文字识别系统的研发也被提到了日程中来。微文字识别系统的处理芯片大多是借助于数字信号处理芯片来实现图像的识别,进而借助先进的语音合成技术将朗读变为可能。此外,为了便于使用,该系统的体积被尽可能的缩小,并且可根据美观度和实用性等设计为各种形状。
2.2.3 特殊用纸水印在线检测系统
基于计算机的视觉检测技术可以在某一特定领域代替人的主观判断,诸如水印质量的自动检测方面。区别于普通的工作人员,计算机可以实现长时间工作,对于误差范围的控制可以通过设置等实现,而且在计算机执行任务期间,所受到的客观和主观因素相对较少,这就极大程度上避免了由于人的因素所导致的失误性操作,进而有效提高了工作效率以及检测的精准度。这一优点,在水印质量标准的认定中具有十分重要的意义和作用,通过研发一定的程序和软件,可以制定出一套操作性强、权威性较高的水印清晰度量化标准。
3 基于计算机的视觉检测技术的发展展望
综合分析来看,计算机视觉检测技术现已有大约四十年的历史,作为一种新兴的检测技术,该技术的显著优越性不言而喻,该检测技术以其高精度、反应灵敏迅速、智能化、自动化等特点被广泛应用于诸多领域和行业之中,并取得了显著的成,可以说,该技术具有十分广阔的发展前景。但是,不可否认,基于计算机的视觉检测技术并不是十分的成熟,在其设计和研发过程中仍然存在着诸多不足,而且视觉检测技术是一项设计到心理、生理等多方面知识的复杂性技术,涉及领域众多,更强大功能的实现需要人类知识的不断拓展和延伸,因此,必须意识到该检测技术发展道路上的困难和挑战。
4 结束语
随着科学技术的不断进步与发展,经济的发展对于新技术的研发提出了更高的挑战,再者由于广大人民群众生活质量的不断提高,对于生活水平也有了进一步的认识和了解。基于计算机的视觉检测技术的研发和进步,无疑更好推动了高速发展的经济,不断满足了人民群众日益提高生活需求。由此来看,深入对视觉检测技术的研究和探究无疑具有十分重要的作用,笔者衷心希望,以上关于对我国基于计算机的视觉检测技术的相关探究能够被相关负责人合理的吸收和采纳,进而更好的推动科学技术的创新和进步,推动经济的不断进步与发展。
参考文献:
[1]李旭港.计算机视觉及其发展与应用[J].中国科技纵横,2010(06):42.
[2]张江明,张娟.浅谈制造业中计算机视觉检测技术的应用与发展[J].科技创新导报,2011(24):1.
【关键词】 现代商业领域 计算机 web数据挖掘技术 应用实践 略述
现代商业领域经营实践规模的不断增大以及信息技术形态发展事业的蓬勃推进,使得现代商业领域的实务人员,在开展基本化的日常经营实践活动的过程中。难以避免地要时刻面对规模不断加大的数据信息资源对象,这种现实发展条件,使得探索和应用行之有效的大规模数据信息处理技术实现路径具备了极其重要的实践意义。近年来,web数据挖掘技术的应用为现代商业领域的稳定有序发展发挥了不可替代的实践助力作用,有鉴于此,本文将围绕现代商业领域中计算机web数据挖掘技术的应用实践展开简要的分析论述。
一、计算机Web数据挖掘技术的概况分析
所谓的Web数据挖掘技术,就是基于现实存在的Web数据信息资源,实现对所需求的特定知识或者是信息对象的抽取操作。这一技术实现了传统数据信息挖掘基本思想以及实施方式在现代Web技术形态体系中的有效应用,能够将Web活动或文档记载结构存在的有用的、隐藏的、或者是潜在的信息资源对象,完整而有序地提取出来。
将Web数据挖掘技术应用于现代电子商务事业的发展过程中,能够实现对用户群体基本特征的分析和理解,举例而论,可以通过对客户访问电子商务网站过程中的内容、频率,以及行为等记录信息的分析和研判,初步实现对特定用户对象消费行为特征的提取和研判,从而针对特定客户实施有针对性的产品推销行为。
二、Web数据挖掘技术在现代商业领域中的应用
2.1针对对潜在客户群实施查找和分析
想要针对Web访问日志记录里中呈现的数据信息规律,展开科学而系统的研究和解析,应当预先对已经保存的电子商务访问者的基本线上行为信息展开分类,并将分类过程中实际面对的关键属性以及数据关系结构进行有针对性的明确化处理行为。
对于电子商务网站的新访问者,技术人员在实际开展Web访问日志记录信息分类的过程中,必然能够通过对已有信息结构的对照而实现及时地捕捉和发现,并实现对新访问者个体基本网络实践行为属性特征的正确归类。针对可能成为潜在化新客户的新访问者实施有针对性的商品线上推销实务行为。
2.2实现已有客户对象的保留操作
在电子商务模式的发展路径中,销售商与消费者之间的空间距离已经不再明显,在网络销售平台背景之下,所有销售方开展的商品销售对象的呈现和展示行为,在消费者的观察视野之下都具备着明显的平等性,电子商务销售方想要切实提升访问者在自身商品呈现网页中的停留时间,就必须对网页访问者实际具备的网页浏览实践行为习惯实现真切而科学的了解,并在此基础上真切感知潜在客户的消费需求特征以及兴趣指向,并有针对性地改变商品推销的呈现内容与呈现模式,提升商家对客户的保留时间。
2.3实现对客户的聚类操作
针对客户群体中的个体化对象展开聚类操作,是现代电子商务产业发展实务过程中的一个极其重要的实践环节,透过针对具备相似化网页浏览访问实务行为的线上浏览者,进行分组归类操作行为,并针对分组之后各组内部组成成员的消费行为特征的具体分析,商务销售组织的有关人员,将会逐步实现对潜在消费者构成群体的深切了解,从而能够极具针对性地给客户提供更加全面且更具针对性、以及适当性的产品销售和售后保障。
举例论之,网站访问记录日志数据信息分析实务技术人员,如果发现某一类型的网站访问者有意识地将其网络浏览时间用于特定网络信息界面的浏览和分析行为之上,通过将这一类型的网站信息浏览者划分为一个独立小组,并依照科学化的分析方法,获知这一小组内的网页信息访问者实际具备的聚类信息,销售商便可将这一人员小组视作潜在客户群,并在针对这一小组的构成人员,开展实际化的商业交易活动的过程中,施加专门性的区分处理操作,对商品推销网络页面的内容和呈现模式,及时开展有针对性的调整实务行为,实现对消费者实际消费需求的充分满足。
结束语:针对现代商业领域中计算机web数据挖掘技术的应用实践问题,本文选取两个具体角度展开了简要的论述分析,文中涉及了较多的技术性与应用性内容,预期为相关领域的实践人员提供借鉴意义。
参 考 文 献
[1]牛红惠,金显华.Web数据挖掘技术在电子商务中的应用[J].濮阳职业技术学院学报,2006,03:16-17+24.
关键词:计算机视觉技术;食品工业;分级;图像处理
中图分类号: TS207 文献标识码:A
随着微型个人计算机应用的越来越广泛,以及计算机在综合学科中应用的深入研究,现如今在工农业、军事国防、医学卫生等众多领域的使用和研究方面计算机视觉技术都起到了至关重要的作用,为了节省人力、降低成本、减少误差,该项技术在食品企业、科研院所、检测机构中的应用更加普遍。如今,在农产品药物残留检测、水果重量分级、等级筛选、质量监管等方面计算机视觉技术有众多应用。
1 计算机视觉技术概述
计算机视觉技术是利用计算机、摄像机、图像卡以及相关处理技术来模拟人的视觉,用以识别、感知和认识我们生活的世界[1]。该技术是模拟识别人工智能、心理物理学、图像处理、计算机科学及神经生物学等多领域的综合学科。计算机视觉技术用摄像机模拟人眼,用计算机模拟大脑,用计算机程序和算法来模拟人对事物的认识和思考,替代人类完成程序为其设定的工作。该技术由多个相关的图像处理系统组成,主要包括光源提供系统、图像提取系统、计算机数据运算系统等。原理是:首先通过摄像机获得所需要的图像信息,然后利用信号转换将获得的图像信息转变为数字图像以便计算机正确识别[2]。随着科学技术的发展,计算机技术在各个领域得到广泛应用,计算机视觉技术不仅在代替人类视觉上取得了重大成就,而且在很多具体工作方便超越了人的视觉功能。计算机视觉计算有如此快速的发展,是因为与人类的视觉相比该技术具有以下显著优势[3]。
1.1 自动化程度高
计算机视觉可以实现对农产品的多个外形和内在品质指标进行同时检测分析,可以进行整体识别、增强对目标识别的准确性。
1.2 实现无损检测
由于计算机视觉技术对农产品的识别是通过扫描、摄像,而不需要直接接触,可以减少对所检测食品的伤害。
1.3 稳定的检测精度
设计的运行程序确定后,计算机视觉技术的识别功能就会具有统一的识别标准,具有稳定的检测精度,避免了人工识别和检测时主观因素所造成的差异。
2 计算机视觉技术在食品检测中的应用
20世纪70年代初,学者开始研究计算机视觉技术在食品工业中的应用,近几十年电子技术得到快速发展,计算机视觉技术也越来越成熟。国内外学者在研究计算机视觉技术在食品工业中的应用方面主要集中在该技术对果蔬的外部形态(如形状、重量、外观损伤、色泽等)的识别、内部无损检测等方面。国内有关计算机视觉技术在食品业中的应用研究起始于90年代,比国外发达国家晚多达20a,但是发展很快。
2.1 计算机视觉技术在果蔬分级中的应用研究
计算机视觉技术在食品检测中的应用研究相当广泛,从外部直径、成熟度的检测到内部腐烂程度的检测都有研究。韩伟等[4]采用分割水果的拍摄图像和新的计算机算法计算水果的半径,进而得出果蔬的最大直径。研究表明,该算法不仅降低了计算量而且提高了计算精度,此方法用于水果分级的误差不超过2mm,高于国际水果分级标准所规定的5mm分类标准差,可在工业生产中很好应用。李庆中[5]也利用图像的缺陷分割算法研究了计算机视觉技术在苹果检测与分级中的应用,结果表明此算法能快速、有效地分割出苹果的表面缺陷。孙洪胜等[6]以苹果色泽特征比率的变化规律为理论基础,结合模糊聚类知识利用计算机视觉技术来检测苹果缺陷域,检测不仅快速而且结果精确。刘禾等[7]通过研究认为苹果的表面缺陷可以利用计算机视觉技术进行检测,计算机视觉技术还可以将苹果按照检测结果进行分级,把检测过的苹果分成裂果、刺伤果、碰伤果和虫伤果等类别。梨的果梗是否存在是梨类分级的重要特征之一,应义斌等[8]通过计算机视觉技术、图像处理技术、傅立叶描述子的方法来描述和识别果形以及有无果柄,其识别率达到90%。杨秀坤等[9]综合运用计算机视觉技术、遗传算法、多层前馈神经网络系统,实现了具有精确度高、灵活性强和速度快等优点的苹果成熟度自动判别。陈育彦等[10]采用半导体激光技术、计算机视觉技术和图像分析技术相结合的方法检测苹果表面的机械损伤和果实内部的腐烂情况,初步验证了计算机视觉技术检测苹果表面的损伤和内部腐烂是可行的。冯斌等[11]通过计算机视觉技术对水果图像的边缘进行检测,然后确定水果的大小用以水果分级。试验表明,该方法比传统的检测方法速度快、准确率高,适用于计算机视觉的实时检测。朱伟[12]在模糊颜色的基础上,分析西红柿损伤部分和完好部分模糊颜色的差别,用分割方法对西红柿的缺陷进行分割,结果显示准确率高达96%。曹乐平等[13]人研究了温州蜜柑的果皮颜色与果实可滴定酸含量以及糖分含量之间的相关性,然而根据相关性,样品检测的正确识别率分别只有约74%和67%。刘刚等[14]从垂直和水平两个方向获取苹果的图像,并通过计算机自动分析图像数据,对苹果的外径、体积、以及圆形度等参数进行处理,与人工检测相比,计算机视觉技术具有检测效率高,检测标准统一性好等优点。Blasco. J [15]通过计算机视觉技术分析柑橘果皮的缺陷,进而对其在线分级,正确率约为95%。赵广华等[16]人综合计算机视觉识别系统、输送转换系统、输送翻转系统、差速匀果系统和分选系统,研制出一款适于实时监测、品质动态的智能分级系统,能够很好地实现苹果分级。王江枫等[17]建立了芒果重量与摄影图像的相互关系,应用计算机视觉技术检测桂香芒果和紫花芒果的重量和果面损伤,按重量分级其准确率均为92%,按果面损伤分级的准确率分别为76%和80%。
2.2 计算机视觉技术在禽蛋检测中的应用研究
禽蛋企业在生产过程中,产品的分级、品质检测主要采用人工方法,不仅需要大量的物力人力,而且存在劳动强度大、人为误差大、工作效率低等缺点,计算机视觉技术可以很好的解决这类产品工业生产中存在的困扰。欧阳静怡等[18]利用计算机视觉技术来检测鸡蛋蛋壳裂纹,利用摄像机获取鸡蛋图像后,采用fisher、同态滤波和BET算法等优化后的图像处理技术,获得裂纹形状并判断,试验结果表明,计算机视觉技术对鸡蛋蛋壳裂纹的检测准确率高达98%。汪俊德等[19]以计算机视觉技术为基础,设计出一套双黄鸡蛋检测系统。该系统获取蛋黄指数、蛋黄特征和蛋形尺寸等特征,和设计的数学模型对比来实现双黄鸡蛋的检测和识别,检测准确率高达95%。郑丽敏等[20]人通过高分辨率的数字摄像头获取鸡蛋图像,根据图像特征建立数学模型来预测鸡蛋的新鲜度和贮藏期,结果表明,计算机视觉技术对鸡蛋的新鲜度、贮藏期进行预测的结果准确率为94%。潘磊庆等[21]通过计算机视觉技术和声学响应信息技术相结合的方法检测裂纹鸡蛋,其检测准确率达到98%。Mertens K等[22]人基于计算机视觉技术研发了鸡蛋的分级检测系统,该系统识别带污渍鸡蛋的正确率高达99%。
2.3 计算机视觉技术在检测食品中微生物含量中的应用研究
计算机技术和图像处理技术在综合学科中的应用得到快速发展,在微生物快速检测中的应用也越来越多,主要是针对微生物微菌落的处理。食品工业中计算机视觉技术在微生物检测方面的研究和应用以研究单个细胞为主,并在个体细胞的研究上取得了一定的进展。殷涌光等[23]以颜色特征分辨技术为基础,设计了一套应用计算机视觉技术快速定量检测食品中大肠杆菌的系统,该系统检测结果与传统方法的检测结果具有很好的相关性,但与传统方法相比,可以节省5d时间,检测时间在18h以内,并且能够有效提高产品品质。Lawless等[24]人等时间段测定培养基上的细胞密度,然后通过计算机技术建立时间和细胞密度之间的动态关联,利用该关联可以预测和自动检测微生物的生长情况,如通过计算机控制自动定量采集检测对象,然后分析菌落的边缘形态,根据菌落的边缘形态计算机可以显示被检测菌落的具置,并且根据动态关联计算机视觉系统可以同时处理多个不同的样品。郭培源等[25]人对计算机视觉技术用于猪肉的分级进行了研究,结果显示计算机视觉技术在识别猪肉表面微生物数量上与国标方法检测的结果显著相关,该技术可以有效地计算微生物的数量。Bayraktar. B等[26]人采用计算机视觉技术、光散射技术(BARDOT)和模式识别技术相结合的方法来快速检测李斯特菌,在获取该菌菌落中的形态特征有对图像进行分析处理达到对该菌的分类识别。殷涌光等[27]人综合利用计算机视觉、活体染色、人工神经网络、图像处理等技术,用分辨率为520万像素的数字摄像机拍摄细菌内部的染色效果,并结合新的图像处理算法,对细菌形态学的8个特征参数进行检测,检测结果与传统检测结果显著相关(相关系数R=0.9987),和传统检测方法相比该方法具有操作简单、快速、结果准确、适合现场快速检测等特点。鲁静[28]和刘侃[29]利用显微镜和图像采集仪器,获取乳制品的扫描图像,然后微生物的图像特征,识别出微生物数量,并以此作为衡量乳制品质量是否达标的依据,并对产品进行分级。
2.4计算机视觉技术在其他食品产业中的应用研究
里红杰等[30]通过提取贝类和虾类等海产品的形状、尺寸、纹理、颜色等外形特征,对照数学模型,采用数字图像处理技术、计算机识别技术实现了对贝类和虾类等海产品的无损检测和自动化分类、分级和质量评估,并通过实例详细阐述了该技术的实现方法,证实了此项技术的有效性。计算机视觉技术还可以检验玉米粒形和玉米种子质量、识别玉米品种和玉米田间杂草[31]。晁德起等[32]通过x射线照射获取毛叶枣的透视图像后,运用计算机视觉技术对图像进行分析评估,毛叶枣可食率的评估结果与运用物理方法测得的结果平均误差仅为1.47%,因此得出结论:计算机视觉技术可以应用于毛叶枣的自动分级。Gokmen,V等通用对薯片制作过程中图像像素的变化来研究薯片的褐变率,通过分析特色参数来研究薯片中丙烯酰胺的含量和褐变率也关系,结果显示两项参数相关性为0.989,从而可以应用计算机视觉技术来预测加热食品中丙烯酰胺的含量,该方法可以在加热食品行业中得到广泛应用。韩仲志等人拍摄和扫描11类花生籽粒,每类100颗不同等级的花生籽粒的正反面图像,利用计算机视觉技术对花生内部和外部采集图像,并通过图像对其外在品质和内在品质进行分析,并建立相应的数学模型,该技术在对待检样品进行分级检测时的正确率高达92%。另外,郭培源等人以国家标准为依据,通过数字摄像技术获取猪肉的细菌菌斑面积、脂肪细胞数、颜色特征值以及氨气等品质指标来实现猪肉新鲜程度的分级辨认。
3 展望
新技术的研究与应用必然伴随着坎坷,从70年代初计算机视觉技术在食品工业中进行应用开始,就遇到了很多问题。计算机视觉技术在食品工业中的研究及应用主要存在以下几方面的问题。
3.1 检测指标有限
计算机视觉技术在检测食品单一指标或者以一个指标作为分级标准进行分级时具有理想效果,但以同一食品的多个指标共同作为分级标准进行检测分级,则分级结果误差较大。例如,Davenel等通过计算机视觉对苹果的大小、重量、外观损伤进行分析,但研究结果显示,系统会把花粤和果梗标记为缺陷,还由于苹果表面碰压伤等缺陷情况复杂,造成分级误差很大,分级正确率只有69%。Nozer等以计算机视觉为主要技术手段,获取水果的图像,进而通过分析图像来确定水果的形状、大小、颜色和重量,并进行分级,其正确率仅为85.1%。
3.2 兼容性差
计算机视觉技术针对单一种类的果蔬分级检测效果显著,但是同一套系统和设备很难用于其他种类的果蔬,甚至同一种类不同品种的农产品也很难公用一套计算机视觉设备。Reyerzwiggelaar等利用计算机视觉检查杏和桃的损伤程度,发现其检测桃子的准确率显著高于杏的。Majumdar.S等利用计算机视觉技术区分不同种类的麦粒,小麦、燕麦、大麦的识别正确率有明显差异。
3.3 检测性能受环境制约
现阶段的计算机视觉技术和配套的数学模型适用于简单的环境,在复杂环境下工作时会产生较大的误差。Plebe等利用计算机视觉技术对果树上的水果进行识别定位,但研究发现由于光照条件以及周边环境的影响,水果的识别和定位精度不高,不能满足实际生产的需要。
综上所述,可看出国内外学者对计算机视觉技术在食品工业中的应用进行了大量的研究,有些研究从单一方面入手,有些研究综合了多个学科,在研究和应用的过程中,取得了较大的经济效益,也遇到了很多问题,在新的形势下,计算机视觉技术和数码拍摄、图像处理、人工神经网络,数学模型建设、微生物快速计量等高新技术相融合的综合技术逐渐成为了各个领域学者的研究热点,以计算机视觉为基础的综合技术也将在食品工业中发挥更加重要的作用。
参考文献
[1] 宁纪锋,龙满生,何东健.农业领域中的计算机视觉研究[J].计算机与农业,2001(01):1-3.
[2] 李峥.基于计算机视觉的蔬菜颜色检测系统研究[D].吉林:吉林大学,2004.
[3] 曾爱群.基于计算机视觉与神经网络的芒果等级分类研究[D].桂林:桂林工学院,2008.
[4] 韩伟,曾庆山.基于计算机视觉的水果直径检测方法的研究[J].中国农机化,2011(05):25-29.
[5] 李庆中.苹果自动分级中计算机视觉信息快速获取与处理技术的研究[D].北京:中国农业大学,2000.
[6] 孙洪胜,李宇鹏,王成,等.基于计算机视觉的苹果在线高效检测与分级系统[J].仪表技术与传感器,2011(06):62-65.
[7] 刘禾,汀慰华.水果果形判别人工神经网络专家系统的研究[J].农业工程学报,1996,12(0l):171-176.
[8] 应义斌,景寒松,马俊福.用计算机视觉进行黄花梨果梗识别的新方法[J].农业工程学报,1998,14(02):221-225.
[9] 杨秀坤,陈晓光,马成林,等.用遗传神经网络方法进行苹果颜色白动检测的研究[J].农业工程学报,1997,13(02):193-176.
[10] 陈育彦,屠康,柴丽月,等.基于激光图像分析的苹果表面损伤和内部腐烂检测[J].农业机械学报,2009,40(07):133-137.
[11] 冯斌,汪憋华.基于计算机视觉的水果大小检测方法[J].农业机械学报,2003,34(01):73-75.
[12] 朱伟,曹其新.基于模糊彩色聚类方法的西红柿缺陷分割[J].农业工程学报,2003,19(03):133-136.
[13] 曹乐平,温芝元,沈陆明.基于色调分形维数的柑橘糖度和有效酸度检测[J].农业机械学报,2009,41(03):143-148.
[14] 刘刚,王立香,柳兆君.基于计算机视觉的苹果质量检测[J].安徽农业科学,2012,40(08):5014-5016.
[15] Blasco J,Aleixos N,Molto puter vision detection of peel defects in citrus by means of a region oriented segmentation algorithm[J].Journal of Food Engineering,2007,81(03):535-543.
[16] 赵广华,飞,陆奎荣,等.智能化苹果品质实时分选系统[J].中国科技信息.
[17] 王江枫,罗锡文,洪添胜,等.计算机视觉技术在芒果重量及果面坏损检测中的应用[J].农业工程学报,1998(12):186-189.
[18] 欧阳静怡,刘木华.基于计算机视觉的鸡蛋裂纹检测方法研究[J].农机化研究,2012(03):91-93.
[19] 汪俊德,郑丽敏,徐桂云,等.基于计算机视觉技术的双黄鸡蛋检测系统研究[J].农机化研究,2012(09):195-199.
[20] 郑丽敏,杨旭,徐桂云,等.基于计算机视觉的鸡蛋新鲜度无损检测[J].农业工程学报,2009,25(03):335-339.
[21] 潘磊庆,屠康,詹歌,等.基于计算机视觉和声学响应信息融合的鸡蛋裂纹检测[J].农业工程学报,2010,26(11):332-337.
[22] Mertens K,De Ketelaere B,Kamers B,et al.Dirt detection on brown eggs by means of colorcomputer vision[J]. Poultry Science,2005,84(10):1653-1659.
[23] 殷涌光,丁筠.基于计算机视觉的食品中大肠杆菌快速定量检测[J].吉林大学学报(工学版),2009,39(02):344-348.
[24] Lawless C,Wilkinson DJ,Young A,et al.Colonyzer: automated quantification of micro-organism growth characteristics on solid agar[J].BMC Bioinformatics,2010(08):38-44.
[25] 郭培源,毕松,袁芳.猪肉新鲜度智能检测分级系统研究[J].食品科学,2010,31(15):68-72.
[26] Bayraktar B,Banada PP,Hirleman ED,et al.Feature extraction from light-scatter patterns of Listeria colonies for identification and classification [J].Journal of Biomedical Optics,2006,11(03):34- 36.
[27] 殷涌光,丁筠.基于计算机视觉的蔬菜中活菌总数的快速检测[J].农业工程学报,2009,25(07):249-254.
[28] 鲁静.乳品微生物自动检测系统的设计[J].湖北第二师范学院学报,2010,27(08):115-117.
[29] 刘侃.鲜奶含菌量快速检测系统[D].华中科技大学,2008.
[30] 里红杰,陶学恒,于晓强.计算机视觉技术在海产品质量评估中的应用[J].食品与机械,2012,28(04):154-156.
【关键词】计算机;视觉系统;框架构思
在现代计算机技术的支持下,对人类视觉功能进行模拟的计算机系统被称为计算机视觉系统,因为视觉系统本身兼具科学性和应用性,所以计算机视觉系统本身既具有科学学科的特性又具有工程学科的特性。对其的研究不仅能够进一步了解人类本身,而且能够在工业生产领域发挥更大的作用。
1 计算机视觉系统现有理论框架
1.1 计算机世界理论框架
20世纪80年代,麻省理工学院教授Marr在视觉理论研究领域获得突破,提出了利用计算机实现视觉能力的理论框架――计算机视觉理论,这一理论主要特点是以现代信息处理的方式对人类视觉能力作用机制进行了分析,并以人类的视觉能力为基础在计算机技术的支持下形成了三个不同的计算机层次。分别是计算机理论层次、表示层次和算法层次。这三个层次分别对应着人类对视觉信息进行处理的三个环节,通过各个环节的仿生设置,计算机视觉系统就能够将初步的视觉处理能力赋予计算机。这一理论中的核心是计算机理论层次,Marr认为人类的视觉能力主要是从图像中建立物体形状和位置的描述,所以在这一层次中设计者设计的主要环节是从初步获取的二维图像中提取和细化物体的三维结构和位置,并将这些信息在一个二维平面上反映出来,即三维重建。
1.2 基于知识的视觉理论框架
基于知识的视觉理论框架最早产生于20世纪90年代,最早的提出者是Lowe。认为在人类的视觉能力发挥过程中,对三维物体的实际测算是不必要的,人类的视觉能力与三维测算能力没有直接的关系,虽然使用三维测算技术也能够实现计算机视觉系统的功能,但并不是对人类视觉功能的模仿。Lowe认为在人类的视觉活动中,会将三维物体看成二维物体,也会将二维物体看成三维物体。这种现象本身并不是偶然性的,而是一种视觉作用机制的必然。既然人类肉眼能够借助一定的作用机制和处理能力实现二维的三维化,在计算机视觉系统中就完全有可能设计出这种对人类肉眼直接模拟的机制。以感知系统感知物体的二维特性,并在其基础上直接生成三维图像,而不需要借助复杂的测量过程。
1.3 主动视觉理论框架
主动视觉理论是在现有计算机理论的基础上形成的新型理论框架,是根据人类视觉功能实现的主动性提出的。在人类实现视觉功能的过程中,人类的视觉系统并不是被动的,而是会根据视觉系统的要求调动身体的其他部位进行配合的、具有主动性的,所以在人类视觉功能的发挥过程中,视觉系统是具有主动性的,人类视觉系统的视角、关注点都会是动态变化的。
基于这一理论,主动视觉理论框架认为人类的视觉活动是一种“感知――动作”过程。根据这一原则,主动视觉理论框架认为计算机视觉系统并不需要精准的三维测算系统。而应该以计算机视觉获取系统为核心,设置主动的视觉系统。这一理念在实际的应用中主要通过对图像获取系统技术参数的调整和控制来实现,例如摄像机的位置、取向、焦距、光圈等,通过对这些参数的调整图像信息获取系统就能够从不同的视角对物体进行观察,进而获取物体的三维图像信息。
2 计算机视觉理论框架中存在的问题
计算机视觉理论框架的产生极大的支持了计算机视觉系统的研发工作,但是在计算机视觉系统的实际研发工作中,也逐渐暴露出了计算机理论框架的缺陷。当前主流的计算机视觉系统框架中,计算机视觉理论是最早产生的也是唯一一种被动的计算机视觉技术。在其理论系统中更多的强调人类视觉系统的测算能力,而没有意识到人类的视觉系统是一种主观性很强的、目的性很强的信息获取系统,完全建立在测算基础上的计算机视觉理论框架是不必要的。
基于知识的理论框架,认为人类视觉系统的功能实现主要环节是反馈,强调了人类视觉活动中主观意识的指导作用。但是它过于强调系统的目的性和主观性,完全否定了计算机视觉理论,认为人类视觉系统是个完全脱离计算机的认识过程,这种认识显然是错误的,在判断物体尺寸大小、距离远近时,测算无疑是极为必然的。
主动视觉理论并不完全排除三维重建,认为计算机视觉系统的三维重建应该建立在图像获取系统的主动性上。通过改变图像获取摄像机的角度、参数对时间、空间和分辨率等进行有选择的感知,解决了计算机视觉系统认知过程中的不稳定问题,降低了计算机视觉系统实现的难度。但是在其理论框架内部缺乏主观、高层的指导,从整体上看并不完善。
3 计算机视觉系统框架的新构思
在计算机视觉系统的研究领域,三种理论构建各有优劣。但是无疑反应了当前计算机视觉系统研发的主流思想,因此计算机视觉系统框架的新构思应该在其基础上进行,致力于克服各个理论的缺点。综合比较三种理论框架,笔者认为计算机视觉理论虽然存在某些问题,但是从整体上看这一理论框架是最具实践性和操作性的,其存在的问题完全可以借助其他理论框架加以解决,因此笔者以计算机视觉理论为主体,结合基于知识的视觉理论和主动视觉理论,提出一个更加完善和通用的计算机视觉系统构架。
计算机视觉系统视觉功能实现的主体结构还是建立在计算理论结构的基础上的,将计算理论框架中的早期视觉处理环节分为图像预处理、图像分割和二维模式识别两个部分,因为图像的预处理是在平面图像基础上的简单处理,不需要主观主导意识和目的性的参与,同时图像分割和二维模式识别能够最大限度的提升后继图像处理的效果。
在早期处理完成以后,后继的中后期处理还是分别情调了二维模式识别和三维模式识别,虽然这两种模式本身的识别原理是一样的,但是其面对的对象不同,物体的模型也不同。一般来讲,在我们的世界中二维信息具有很强的重要性,图形、文字、指纹等关键二维信息在通常情况下作用更大、应用范围更广,所以计算机视觉系统矿建的新思路中,要对二维信息进行进一步的处理。
模型库提供具体物体模型的表示。知识库不但要对物体进行抽象表示而且还要对抽象知识进行推理。人类经验的积累和知识的获取是通过学习而得到的,所以加人模型库、知识库管理,并让其从输出结果中进行学习。这将使模型库和知识库更加丰富和完善。
视觉活动本身是带有目的性的,所以在有些时候视觉系统的应用确实需要视物体的实际情况来决定,有时只需识别场景中存在的是什么物体或某物是否存在,而不要求定量恢复场景中的物体。因此,在计算机视觉系统中引人视觉目的来判断输出是否满足要求。同时,用视觉目的对图象分割和二维模式识别、中期视觉处理、后期视觉处理和三维模式识别加以控制。如果需要三维重建则由主动视觉控制成象来获得景物更完整的信息。
计算机视觉系统框架是支持计算机视觉系统实现的重要基础,所以在计算机视觉系统的研发、设计工作中,对理论框架的研究具有鲜明的现实意义,本文简单介绍了现有框架思想,并分析了其各自的优缺点,最后再这些理论框架的基础上形成了计算机视觉系统框架的新构思。认为计算机视觉系统构架应该以计算机理论为基础,以视觉活动的主观性和目的性为指导,以具体的视觉实现形式为方法。
【参考文献】
关键词:计算机视觉技术 铁路检测 应用
中图分类号:TP391 文献标识码:A 文章编号:1007-3973(2012)002-075-03
1 前言
自1825年世界第一条铁路在英国出现以来,铁路已经成为人们不可或缺的交通工具,越来越多的人在使用铁路出行,由于近年来铁路事故频频发生,促使了计算机视觉技术在铁路检测上的广泛使用并大力发展。
传统的铁路检测一直是靠人工和静态检测,这种检测缺乏实时性和准确性,并且效率低下,根本无法满足铁路的发展。这就要求研究一种新的检测方法来适应环境的发展,人们就试图将计算机视觉技术应用于铁路检测上,并取得了很好的效果。将计算机视觉技术应用在铁路检测上显著提高了铁路检测的实时性、准确性,有效的减轻了人工检测中工作条件恶劣,工作量大等缺点。它能在列车行驶的过程中就能对铁路和列车状况进行检测,并及时的做出预警,防止安全事故的发生。目前有关铁路检测主要集中在铁路信号检测、轨道检测、接触网检测、电力机车检测及站台环境监测等五个方面。
2 计算机视觉技术
计算机视觉,也称机器视觉。它是利用一个代替人眼的图像传感器获取物体的图像,将图像转换成数字图像,并利用计算机模拟人的判别准则去理解和识别图像,达到分析图像和作出结论的目的。
计算机视觉是多学科的交叉和结合,涉及到数学、光学、人工智能、神经生物学、心理物理学、计算机科学、图像处理、图像理解、模式识别等多个领域。计算机视觉已有多年的发展历程。随着计算机、控制理论、模式识别、人工智能和生物技术的发展,计算机视觉在机器人、工业检测、物体识别的应用越来越广,研究方向也从二维到三维,从串行到并行,从直接依赖于输入信号的低层处理到依赖于特征、结构、关系和知识的高层处理。
一般的计算机视觉系统是有CCD(电荷耦合器件)摄像机、装备有图像采集板的计算机、光照系统以及专用图像处理软件等组成。CCD摄像机将所要研究的对象和背景以图像的形式记录下来,这其实是一个光电传感器,将光学信号转成电信号,图像采集板把采集的电信号转为数字信号,即数字化,一般情况下在摄取图像时都需要一个照明系统提供光照,然后再用专用的图像处理软件对图像进行处理,输出分析结果。
3 计算机视觉技术在铁路信号中的应用
铁路信号灯和现在的交通公路上的红绿灯是一个功能,但铁路和公路不同,铁路有限定的道路,列车必须在限定的股道上行驶,所以一旦与其他车辆相遇的话根本没有办法避让,如果发生车祸将会对国家和人民的生命和财产造成严重的损失,因此列车必须严格按照信号灯的指示行驶。
铁路信号灯识别主要是利用了信号灯在不同情况下会发出特定色彩光的特点。文献[1]在HSV空间中对S分量图像边缘检测和膨胀等,结合各种信号灯色调H分量的取值范围得到信号灯区域,然后多次腐蚀直到消除孤立点得到信号灯的边缘,最后填充信号灯区域,从而实现了信号灯的识别。在文献[2]也与此类似。文献[3]将彩色图像由RGB模式转化为HSI模式,用彩色特征聚类分析法来对图像进行分割,文中提出了基于颜色和形状相结合的复杂环境中目标检测与识别方法,用Hough变化来提取目标边界,从而提取出特定目标,而后得到指示灯区域所有像素的H,S统计值确定信号灯的颜色。在文献[4]提出一种基于改进的Hough变化的吊车信号灯识别算法。Roberto将摄取的图片转换到HIS颜色空间,用基于形状特征和模板匹配的方法探测到相关的铁路标志而放弃无关的基础设施。
为了部分消除因为光照条件、背景和拍摄角度对目标识别的影响,文献[5]提出使用一种利用sift特征的方法,它首先建立已知样本模型的特征集,然后将视频流每帧灰度图像的sift特征与之比较,从而实现对目标的检测或跟踪。实验表明该方法不仅能避免目标的错误识别,而且也明显优于基于边缘检测的算法,在识别准确率上达到了90%。
4 计算机视觉技术在轨道检测中的应用
随着世界铁路运营速度的不断提高,列车在行驶时对轨道的撞击、摩擦加剧,这就会造成轨道的变形、零件松动、磨损乃至缺失等,这些都会对列车的安全性造成严重影响,极有可能会造成铁路安全事故的发生。因此轨道设备具备良好的状态是铁路运输安全的重要保证。
随着电子技术和检测技术的发展,轨道检测技术也经历了翻天覆地的变化,其中也有不少研究机构将计算机视觉技术应用于轨道检测上,且取得了若干有效的检测方法。
轨道表面缺陷对列车行驶的质量和铁路系统的安全性会造成严重的影响,文献[7]提出了一种轨道表面缺陷检测的实时视觉检测系统。利用跟踪提取算法分割出轨道的灰度图像,然后用局部归一化法增强轨道图像的对比度,最后用基于投影轮廓的缺陷定位法检测缺陷。该算法对噪声有较强的鲁棒性和计算速度快,在一定程度上克服了光照不均和轨道表面反射性质不同对图像的影响,但对局部归一化过程中参数的选择有待进一步研究,以使该系统有更强的鲁棒性。该系统在216km/h速度下能进行实时检测,但随着检测速度的提高检测的准确度会明显下降且缺乏实时性。
文献[8]利用一排结构光视觉传感器,将钢轨轮廓的大圆周和小圆周的中心作为检查点。首先结构光视觉传感器拍摄铁轨侧面并且将其标记 在参考坐标帧中,最后通过比较测量的钢轨轮廓与参考轮廓的比较计算出铁轨磨损程度。该方法简单快速精确且不需要特殊的图像处理设备,在列车较高速度时仍然能达到良好效果。
5 计算机视觉技术在接触网检测中的应用
接触网是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路。其由接触悬挂、支持装置、定位装置、支柱与基础几部分组成。它是轨道交通的主要组成部分,主要为机车提供动力,接触网的连接件由于受外界因素的影响容易产生过热现象,严重时会导致供电中断,引发列车停运事故。
我国的计算机视觉技术的接触网检测系统是基于德国相关技术而建立起来的,目前基于计算机视觉技术的接触网磨耗检测主要有两种方案:(1)基于镜面反射,激光照射接触线,线性CCD照相机捕获反射图像;(2)基于漫反射原理和CMOS(互补金属氧化物半导体)照相机。由于长期的频繁摩擦,接触网与受电弓接触部分很少被空气氧化,所以用光进行照射时该部分光反射率明显高于其他部分,因此这也为计算机视觉技术用于接触网检测提供了可能。
基于机器视觉的接触网检测系统主要是建立在图像识别和图像处理等视觉技术基础之上的,检测的内容涵盖接触网的所有基本几何参数。随着铁路的发展,原有的检测系统已经暴露出了一些问题,已无法满足需求,所以研究人员在系统硬件设备不变的情况下提出了许多改进的算法,如文献[9]针对现行的接触网定位器倾斜度检测方法效率低下、精确度不高的缺点,提出了一种基于计算机视觉的接触网定位器倾斜度自动测量装置,应用图像分割、剔除干扰线、图像细化等算法,对采集的图像进行处理,然后利用改进的霍夫(Hough)变换检测细化后的图像,对相邻的特征像素点进行聚类并感知编组,最后用随机Hough变换使感知编组后的每条线段更接近直线,进而计算装置中定位器的倾斜度,实验证明该算法精度高、速度快。
6 计算机视觉技术在电力机车检测中的应用
在列车的行进过程中,机车车轮与钢轨接触面不断发生摩擦,也就是轮缘与踏面的摩擦。从而会造成踏面的擦伤或剥离,而剥离会严重影响列车运行的安全性和平稳性以及轨道设施的使用寿命,因此需要对轮缘进行定期的检测和维修。
传统的检测方法需要人工逐项检测,存在费时费力、工作量大、工作环境差、效率低等缺点,所以人们就提出了一种基于计算机视觉技术的检测技术,该技术是一种非接触式检测方法,它能检测出所有关于火车轮缘轮廓的几何参数,从而计算出火车轮缘的磨损情况。这种检测方法检测速度快、准确率高且大大减轻了劳动强度,在实验中取得了满意的效果,并且在实际检测中也得到了广泛的应用。
文献[10]中研发设计了一种利用CCD成像测量技术、图像处理理论和计算机控制等相关技术,提出了一种非接触式的在线测量系统。采用二元多项式方法对由于硬件装置引起的误差的图像进行几何校正,用统计均值法对图像进行分割,从而求出车轮踏面的各项参数,通过在实验室对标准物进行测试实验而得到的测量数据结果进行分析而得出。此系统能够完成对火车轮对几何参数的测量,并且可得到相对准确的测量结果。
为了解决检测轮缘高度和宽度存在精度难以保证及稳定性不高的问题,文献[11]提出了一种基于三角法测量的在线监测系统,该系统由CCD高速摄像机和结构光发射器完成数据的采集,然后利用三角测量原理导出测量模型和计算模型,根据轮缘高度和宽度的定义完成对高度和宽度的测量,最终对轮缘磨损程度进行量化,实验表明该算法测量精度高,结果稳定可靠。
7 计算机视觉技术在站台环境监测中的应用
近年来铁路交通事业发展迅速,铁路客流量也不断增大,如中国每年的春运期间都有上亿人次通过火车返乡,各种危害乘客安全的事故也时有发生,因此世界各国特别是中国站台监控就显得越来越重要,目前的站台监控主要是依靠安装在各个角落的闭路电视或专业技术人员,这不仅需要专业技术知识还需要大量的人力物力。随着计算机、图像处理等技术的快速发展,对站台的自动监控也逐渐成为发展趋势。
近年来人们做了许多关于站台人群检测的研究,这些研究大都使用铁路站台中的闭路电视(CCTV)系统,在现代的CCTV系统中基本上使用的是数字化图像,在人群监测过程中大量使用了数字图像处理技术,如边缘检测、细化、像素计算等,通过图像的处理可以轻易的得到想要的结果。
文献[12]仍采用原有的CCTV监控系统拍摄的灰度图像作为处理对象,利用基于视觉的经过最小二乘法和全局搜索的混合算法训练的工业的额神经网络来估算站台的拥挤程度,该系统在实际的运行中获得了较高的精确度,虽然不能计算人数但却能实时的预测人群的密度。
文献[13]所设计的系统就较为复杂,它利用多台摄像头对站台进行检测。首先判断站台上列车的四种状态,如:没有列车、有列车、列车正在出站、列车正在入站等,然后对物体或行人检测及跟踪,最后对所检测的结果综合分析,做出合理的预警或警告。
8 计算机视觉技术在铁路检测上的发展趋势
随着计算机视觉技术的铁路检测中的应用越来越广泛和深入,并且随着计算机视觉技术等关键技术的不断发展,计算机视觉技术在铁路检测上应用发挥更大的作用,它就目前而言在铁路检测的应用上仍然存在技术难题需要研究: