首页 > 文章中心 > 冶炼技术

冶炼技术

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇冶炼技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

冶炼技术

冶炼技术范文第1篇

[关键词] 石油冶炼;催化裂化;重要作用

催化裂化的工艺原理是:反应物(蜡油、脱沥青油、渣油)在500℃左右、0.2―0.4MPa及与催化剂接触的作用下发生裂化、异构化、环化、芳化、脱氢化等诸多化学反应,反应物为汽油、轻柴油、重柴油,副产物为干气、焦炭、油浆等。催化剂理论上在反应过程中不损耗,而是引导裂化反应生成更多所需的高辛烷值烃产品。催化裂化过陈友相当的灵活性,允许制造车用和航空汽油以及粗柴油产量的变化来满足燃油市场的主要部分被转化成汽油和低沸点产品,通常这是一个单程操作。在裂化反应中,所生产的焦炭被沉积在催化剂上,它明显地减少了催化剂的活性,所以除去沉积物是非常必要的,通常是通过燃烧方式是催化剂再生来重新恢复其活性。

一、我国催化裂化所面临的问题

(1)我国FCC单套平均能力小;(2)装置耗能高;(3)FCC催化剂发展水平不高;(4)我国FCC装置开工周期短,这也是我国个国外催化裂化技术的主要差距。催化裂化(FCC)是炼油企业获取经济效益的重要手段,尽管催化裂化技术以相对成熟,但仍是改制重瓦斯油和渣油的核心技术,尤其近几年来在炼油效益低迷和环保法规日益严格的双重压力下,仍需不断开发与催化裂化相配套的新技术以迎接新的挑战。基于我国原油资源有资源特点和二次加工能力中FCC占绝大比重的现状,应提高FCC综合技术水平,缩小同先进水平的差距,与国外大公司竞争。

二、我国催催化裂化技术的发展方向

(1)为了有力降低汽油的烃含量,在定量动力学研究基础上,深入研究不同操作条件的影响,促使向异构化、芳构化和氢转移反应有利于降低汽油的烯烃的方向进行,开发降烯烃催化剂和助剂,使催化裂化汽油的烯烃含量大幅度降低。(2)为了满足我国的车用汽油的组成状况,为了充分利用现有的催化能力,尽量减少投入,降低汽油,柴油质量升级所付出的代价,开发了应技术,降低了催化裂化汽油的烃含量和硫含量。(3)充分利用原料,并向化工领域延伸,用常压渣油等种植原料生产乙烯,丙烯等。

三、我国石油冶炼催化裂化技术的研究现状

从目前世界范围来看,石油的冶炼催化裂化技术都在不断的提高和更新,我国的此项技术也在不断的提高。石油的冶炼主要分离出轻质的柴油和汽油,而柴油和汽油中硫含量和烯经的含量一直是困扰冶炼油纯度提高的关键所在。国外的炼油技术比较的先进,原油的加工和冶炼的程序不一样,其炼制过程中同样体积的轻质原油中烯经的含量不超过15%,而我国由于冶炼技术的落后,烯经的含量远比国外的高。以催化裂化技术生产的90号汽油的含量通常会超过40%。因此,提高此项技术是在必行。

四、石油催化裂化在我国石油冶炼企业中的应用

随着市场消费的需求量逐年的增加,轻质原油的需求越来越大。那么在我国的石油冶炼中如何有效的降低催化裂化过程中烯经的含量,使轻质原油中的丙烯增加,以提高我国冶炼石油产物汽油和柴油质量和数量。随着科学技术的发展,我国的催化裂化技术也在进一步的提高,并且在原油的深细加工中发挥巨大的作用,提高了产量,也提高了我国石油企业的经济效益。由于我国经济的快速发展,使得对汽油和柴油的需求量每年都以极快的速度增长,并且油的价格也在逐年上涨,因此在石油的冶炼过称中应该把柴油和汽油的产量提升,那么使用MGD技术就是提高产量的最为有效的途径。我国的大庆油田曾经想通过传统的技术进行深的钻研来提高冶炼过程中柴油和汽油产量的提高,但效果都很不明显,但是在采用了MGD技术后,使得汽油和柴油的产量提高了月5%,而油中含有的烯经含量从原来制定的40%下降到了31%。于是很对企业效仿,中原石油公司宁夏分公司推广了此项技术,给原来的50多套催化裂化设备装上了MGD技术,已经取得了非常良好的经济和社会效益。

五、我国在重油催化裂化沉降器结焦的发展

在重油催化裂化中,由于渣油具有较大的结焦倾向,我国多数炼油厂的重油催化裂化装置(RFCCU)都发生过严重的结焦结交部分包括提升管、沉降器顶部、沉降器内旋风分离器、大油气管线、分流塔底和油浆系统等,其中沉降器的结焦危害尤为严重。沉降器的严重结焦可导致催化裂化装置分正常停工,直接影响到催化裂化装置的长周期安全运行和厂子的经济效益。目前常用的防止结焦的措施主要有:①增加防焦蒸汽采用二级孔喷嘴,使喷嘴指向沉淀器油气泄流空间,避免出现死角;②采用新型快速分离装置,减少油气在沉淀器内停留时间,如采用粗旋、三叶形密闭直联快速分离器等,使油气停留时间由20~30s减少到4~9s;③采用提升管反应终止剂技术,减少因果裂化反应生成的不饱和二烯烃;④优化沉降器结构设计,消除汽油平动死区;⑤平稳操而增大,而后又逐渐减小。

六、多产烯烃的工艺技术主要特点

(1)设立第二提升管有二次裂化;(2)使用高ZMS-5含量的助剂;(3)采用密闭式旋风分离器。(4)优化工艺与催化剂的选择性组分裂化;(5)乙烯和丁烯移位反应生成丙烯;在中试结果表明丙烯的产率高。轻烃预提升技术UOP公司在干气预提升技术是目前应用效果较好的轻预提升技术。其特点是在提升管底部用稀释剂对再生催化剂进行预加速,使催化剂密度降低,这样从精料喷嘴喷出的油滴就能穿透催化剂覆盖整个提升管截面达到良好的剂油结合效果,使油滴得到良好的汽化。从而获得良好的产品分布。催化剂循环增强技术CCET是Shell石油公司开发的自己的技术。该技术的核心是显著提高立管的稳定性,在理灌入口附近优化催化剂条件以增加蓄压,使滑阀维持高压差来提高催化剂循环量,而不必对催化剂输送管线和滑阀进行昂贵的改动。采用CCET技术后,滑阀压差增大,催化剂循环量提高了50%。

七、催化裂化的作用和意义

石油炼制工业是国民经济的重要支柱产业,其产品被广泛用于工业、农业、及交通运输和国防建设等领域。催化裂化FCC作为石油炼制企业的主要生产装置,在石油加工中占有相当重要的地位,是实现原油深度加工、提高轻质油收率、品质和经济效益的有效途径催化裂化使原油二次加工中重要的加工过程,是液化石油气、汽油、煤油和采油、柴油的主要生产手段,在炼油厂中站有举足轻重的地位。

总之,对我国来说,催化裂化发展仍是应结合我国炼油企业面临的实际情况,努力提高催化裂化技术水平,尽快形成具有我国特色的催化裂化工艺水平。目前我国原油不足,劣质油增加很快,再加上我国对油品的需求不断增加,特别是轻质油品的需求增长之快,因此,从整体上考虑,我国催化裂化发展方向仍是继续加快渣油FCC新技术开发和建设,以提高炼油厂整体经济效益。

参 考 文 献

冶炼技术范文第2篇

【关键词】K-OBM转炉;冶炼;不锈钢;工艺;技术

1、冶炼过程加料制度

不锈钢冶炼过程需要加入的合金主要有高碳铬铁、镍及高碳锰铁。大批量[%C]不同的合金及造渣料的加入,加入批次和加入时间的不同,对熔池温度、熔池[%C],以及脱碳速度的影响绝对是有很大不同的。故冶炼加料的几个主要原则是:

1)脱碳初期少加料,促进熔池快速升温;

2)熔池温度升高到1630℃以上后,开始分批次加入合金及造渣料,每批量不能过大,比较理想的是保持熔池温度从1600℃平稳上升到1670℃;

3)合金加入的顺序是,先加高碳合金,后加低碳合金(如NiFe),锰铁的加入靠后为好,最后加纯Ni合金;

4)造渣料的加入以后期逐步加入为好,脱碳期保持较小的渣量对脱碳反应的进行更为有利;

5)脱碳过程熔渣碱度控制在较低的水平更有利于脱碳。

2、转炉冶炼供气制度

(1)氧气的供气制度

K-OBM转炉冶炼不锈钢的操作中,氧气的供应分为顶吹和底吹两种方式。供氧制度是使氧气流股合理地供给熔池,创造良好的物理、化学反应条件,通过改变供氧制度,可以控制熔池元素的氧化速度,控制炉渣的氧化性,所以对造渣、吹炼时间、喷溅量、枪龄等均有直接影响。

1)顶枪供氧

在冶炼操作中,在氧化期前期与底部一同供氧,进入终脱碳期和还原期停止供氧。一般转炉所需氧气的70%以上要通过顶枪供给转炉。

2)底部供氧

在冶炼不锈钢的操作中,约有25%以上的氧气通过底吹供给转炉,供氧流量为12~90m3/min,在转炉的冶炼前期即升温和脱碳氧化期与顶枪一同供氧,并在氧气中混入一部份氮气,进入还原期后停止供氧。

(2)氮气、氩气的供气制度

在顶底复吹转炉的操作中,氩气是底部供气的理想气体,但是由于氩气比较昂贵,气源紧张,因而在吹炼前期及转炉等待兑铁期间,多用氮气来替代。由于氮气不参与氧化、气源充足、经济等特点,成为在底部供气的主要气体,但对一些含氮量有一定要求的钢种,在吹炼后期及还原期主要供氩气,通过后期的搅拌及炉后的真空工艺脱除部分氮气,从而保证钢中氮含量符合要求,其供气工艺要求详见表1。

3、转炉冶炼造渣制度

在转炉冶炼过程中,熔池中[C]含量由4.0%逐渐降到0.3%,而[Cr]含量由0逐渐升高到17.0%,而Cr在压力为1atm条件下,在1560℃以下Cr与O的亲和力更强,故在向熔池中吹氧脱碳的同时不可避免地伴随着Cr、Fe的大量氧化,炉渣分析证明在氧化渣中Cr2O3的含量可达15-20%。根据转炉不锈钢冶炼的特点和脱碳反应的机理,脱碳期保持较小的渣量对脱碳反应的进行更为有利。表2为不同造渣工艺主要指标比较。

图1、图2为转炉2级系统采集冶炼中不同造渣工艺冶炼过程温度及渣中Cr2O3含量比较。

根据图、表及实际指标对比中可以看出,造渣工艺二在保证冶炼过程温度的平稳上升,降低Cr的氧化方面较工艺一更为合理。

4、结论

K-OBM转炉冶炼不锈钢关键是对加料制度、供气制度、造渣制度的调控,应尽可能使冶炼过程熔池温度变化能够更有利于脱碳反应进行,抑制Cr、Fe的氧化,减少还原硅铁消耗,降低生产成本,提高冶炼质量。

参考文献

[1]郝培荣,赵红梅,马青.顶底复合吹炼转炉冶炼不锈钢[D].太原:冶金工业学校,2000.

冶炼技术范文第3篇

关键词:加压湿法冶金技术;锌冶炼;金属冶炼;氧压直接酸浸;加压浸出技术 文献标识码:A

中图分类号:TF802 文章编号:1009-2374(2017)10-0231-02 DOI:10.13535/ki.11-4406/n.2017.10.116

锌作为仅次于铁、铝和铜的金属元素,在现代工业中有着非常重要的作用,我国的锌资源储量丰富,位于世界第一。同时作为世界最大的锌生产国,我国的锌产量连续多年位居世界第一。近年来,我国的锌冶金技术得到了飞速发展,已经逐渐达到了国际先进水平,将加压湿法冶金技术应用于锌冶炼中,能够取得良好的效果。

1 加压湿法冶金的发展简述

所谓加压湿法冶金,主要是在加压的条件下开展湿法冶金的过程。通过加压,溶液的温度沸点更高,可以对冶金过程进行强化,改变反应热力学的条件,使得部分化学反应能够更好地进行,也可以提升冶金的效率。加压湿法冶金产生于1887年,由拜耳提出,当时主要是通过在加压釜内通过加压的方式,利用氢氧化钠浸出铝土矿,得到铝酸钠溶液,然后分离得到氧化铝。到20世纪40年代,加压湿法冶金技术在有色金属冶炼方面取得了巨大的进步,相关研究表明,在氧化环境下,含有铜和镍的硫化矿不需要经由预先的氧化焙烧就能够直接浸出,结合加压酸浸和加压氨浸的方式,可以保证良好的生产效果。

20世纪70年代,加压酸浸技术在锌精矿的处理方面取得了突破性进展,结合加压酸浸-电积工艺可以将精矿中存在的硫转化为元素硫,实现了硫酸生产与锌生产的相互分离。到80年代,以加压预氧化处理来代替焙烧处理,为氰化浸出提供了便利,也使得加压浸出技术得到了更进一步的发展。

从国内的发展情况分析,我国在加压湿法冶金技术的研究方面同样做出了卓越的贡献,自20世纪80年代开始,我国一直都在进行锌精矿加压浸出的相关研究,不过研究仅停留在普通研究所的层面,因此相关成果并没有能够实现工业应用。虽然有关企业与国外发达国家的研究院所进行了协商,希望可以引进先进技术,但是考虑到费用过高,并没有能够达成协议。在此之后,云南冶金集团通过不断的研究,于20世纪末在锌精矿氧压浸出技术的研究方面取得了进展,并且在2004年建成了一座万吨级一段法加压酸浸示范性工厂。2008年,处理高铁锌精矿的2万吨二段法氧压酸浸正式投产,使得加压湿法冶金技术的应用范围不断扩大。

作为一门比较新颖的技术,加压湿法冶金的出现时间并不长,但是由于加压浸出的特点,对冶金过程进行了强化,精简了工艺流程,金属的回收率更高,回收速度更快,而且成本较小,不会出现污染问题,因此具有良好的发展前景。不过也应该认识到,加压湿法冶金受本身发展时间的制约,也存在着许多不完善的地方,需要技术人员的持续研究和改进。

2 锌精矿直接氧压酸浸方案

2.1 锌冶炼技术的发展

从产生至今,锌冶炼工艺大致可以分为火法和湿法两种,前者常见于20世纪前,而后者产生于1916年,由于明显的优势,逐渐取代了火法冶炼,成为锌冶炼的主要方法,产量占据了世界总产量的80%以上;基本上,新建和扩建的锌冶炼企业采用的都是湿法冶炼工艺。传统的湿法炼锌正式应用在工业生产中是在20世纪初,而在不断的发展过程中,工艺技术的进步非常明显。60年代,高温高酸浸出技术以及全新的除铁方法的出现,对浸出残渣进行了有效处理,在提升锌回收率的同时,减少了对于环境的污染,也推动了工艺技g的成熟。在科学技术飞速发展的带动下,传统的湿法炼锌技术正在朝着操作机械化、生产连续化、设备大型化以及管理自动化的方向发展。但是不可否认,传统湿法炼锌工艺也存在着一定的缺陷,即必须保证锌的生产与硫酸的生产同时进行,在这种情况下,不仅对于原料的成分有着非常严格的要求,而且存在着能耗巨大、工艺流程繁琐以及成本投入大等问题,不易推广和普及。在这种情况下,在传统湿法炼锌工艺的基础上进行创新,也就成为了相关研究人员重点关注的问题。

20世纪70年代,加拿大舍利特・高尔登公司根据相应的研究实验提出,在氧化气氛下,结合加压酸浸的方式,可以在不需要焙烧的情况下直接实现锌精矿的浸出,经整理后形成了加压浸出-净化-除杂-电积工艺,相比较传统湿法炼锌工艺,成本更加低廉。1981年,全球首座加压浸出工厂投运,经过数十年的发展,使得锌加压冶金技术得到了持续完善。

最近十数年,芬兰奥托昆普公司开发出了一种新的锌精矿常压富氧浸出技术,可以在0.1MPa压力、90℃~100℃的条件下,结合充足的氧气供给,利用废电解液来实现锌精矿的连续浸出,从理论上分析,这种方法与氧压浸出没有不同,利用铁离子对氧的传递来加速硫化锌精矿的浸出反应,使得硫化物中的硫被还原为元素硫,在实现硫酸生产与锌生产相互分离的同时,也可以使得锌的浸出率达到98%以上。事实上,无论是氧压浸出还是常压富氧浸出,都能够直接对硫化锌精矿进行处理,而不需要经过焙烧脱硫,不会产生相应的环境污染。相比较而言,氧压浸出的温度在压力更大,反应速度也更快,常压富氧浸出的反应时间较长,不过由于能够在常压下工作,温度相对较低,控制的难度更小,安全性也更高。从目前的发展情况分析,常压富氧浸出工艺已经在世界范围内实现了工业化生产,在锌冶炼中发挥着非常重要的作用。

2.2 氧压直接酸浸

传统湿法炼锌实际上是在火法冶炼的基础上发展起来的,将火法和湿法冶炼工艺融合在一起,分为焙烧、浸出、净化、电解以及制酸五个基本流程,主要原理是利用稀硫酸可以溶解氧化锌和硫酸锌中的锌元素,不过在处理过程中,为了减少大气污染问题,需要预先做好焙烧脱硫工作,而且必须配备相应的制酸系统、烟气处理系统等,生产工艺繁琐而且成本较高。

20世纪70年代以后,加压湿法冶金技术在锌精矿的处理中取得了比较显著的进展,与传统的湿法炼锌工艺相比,经济效益更好。加压湿法冶金的主要优势,是将矿物原料中的硫转化为了单质硫,实现了锌生产与硫酸生产的分离。在加压浸出的条件下,相应的化学反应式为:

不过,在氧离子无法有效传递的情况下,上述反应非常缓慢,为了提高效率,可以在其中加入铁离子:

在结合加压浸出的方式进行锌精矿的冶炼时,磁黄铁矿和铁闪锌矿中的铁会被溶解,作为氧离子传递的介质。

氧压浸出工艺包括一段和二段,一段氧压浸出主要是利用废弃的电解液来浸出锌精矿,初始酸浓度为150g/L,锌的浸出率能够达到98%以上,在反应结束后,残余溶液的酸浓度仍然能够达到40g/L,需要做好中和处理。一般情况下,可以利用残酸浸出氧化锌,在中和的同时提升锌的产量,常见于传统湿法炼锌企业的扩建。二段氧压浸出中的第一段采用的是低酸浸出,酸的浓度为70~80g/L,残酸为5~10g/L,锌的浸出率能够达到70%~75%。反应得到的浸出残渣会进入到二段氧压浸出中,将酸的浓度提高到了150g/L。粗硫在经过相应的处理后,可以形成单质硫,浸出液在经过酸度调整后,又可以作为第一段的浸出剂,在这个环节,锌的浸出率能够达到98%以上。

2.3 加压浸出技术的发展

2.3.1 高硅氧化锌加压浸出技术的研究和发展。高硅氧化锌采用常规的选矿方法难以可靠分离,火法炼锌技术虽然可用,但是存在着能耗大污染重的问题,湿法工艺也因此受到了广泛的关注。针对碱性浸出和常压酸浸工艺中存在的缺陷,在长期的研究中,提出了一种加压浸出高硅氧化锌技术,在最优工艺条件下,锌的浸出率可以达到98.5%。2007年,在该技术的基础上进一步开发出了连续加压酸浸处理高硅氧化锌工艺,并且实现了工业化生产。经检验,该工艺的流程简单、反应迅速、过程易控,而且能够实现锌硅的完全分离,浸出液含硅低,不需要额外进行处理,具有良好的推广前景。

2.3.2 硫化铅锌混合矿综合回收工艺的研究。对于一些较为复杂的硫化铅锌矿,由于选矿流程长,回收率低等因素的影响,只能产出铅锌混合矿。直到20世纪中期,英国相关研究人员提出了ISP法,可以在对硫化铅锌混合矿进行处理的同时,实现铅锌的生产。不过这种工艺需要用到大量的焦炭,能耗巨大且污染严重,并没有得到大幅度推广。在不断的发展中,氧压浸出工艺得到了应用,可以从铅锌混合矿中直接浸出锌,通过浮选法回收硫,铅银富集到一种渣中,进入火法炼铅系统进行冶炼回收,有着良好的应用效果。

3 结语

总而言之,锌作为一种重要的工业原料,在我国国民经济发展中发挥着不容忽视的作用,锌的生a是基础性工业的一部分,应该得到足够的重视,通过持续的技术改进和创新,在保障锌产量的同时,实现节能减排、科学发展。

参考文献

[1] 李广,李涛,吴家江.加压湿法冶金技术应用现状及发展趋势[J].化工设计通讯,2016,42(10).

[2] 吴远桂,丁伟中,郭曙强,等.针铁矿法除铁及其在湿法冶金中的应用[J].湿法冶金,2014,(2).

[3] 张春生,刘刚.硫化锌加压浸出工艺在湿法冶金中的设计应用[J].有色金属设计,2009,36(4).

[4] 王吉坤.加压湿法冶金金属在锌冶炼上的应用和发展[A].全国有色金属工业低碳经济及冶炼废气减排学术研讨会论文集[C].2010.

[5] 谢锵,王海北,张邦胜.辉钼精矿加压湿法冶金技术研究进展[J].金属矿山,2014,(1).

[6] 孙鹏.用加压氧化法从钼精矿中浸出钼的试验研究

[J].湿法冶金,2013,32(1).

[7] 曾伟民,朱海珍,叶子婕,等.生物湿法冶金技术回收废气线路板中有价金属的研究进展[J].有色金属科学与工程,2013,(1).

冶炼技术范文第4篇

[关键词]整流器控制系统改造、通风系统改造、直流母线夹板改造

中图分类号:TF 文献标识码:A 文章编号:1009-914X(2017)12-0035-01

一、前言

资源综合利用有限公司动力厂变电站(以下简称变电站)是资源综合利用有限公司的供配电中心,全站有220KV GIS开关室一个,10KV总配电室1个,下级有10KV锌配电站、10KV铅配电站、10KV硫酸配电站、10KV锌合金配电站、10KV锗配电站等五个分站;220KV GIS开关站共10个间隔,分别为两回220KV进线、母联、两台动力变压器、三台调压整流变压器、两个PT(互感器)间隔;变电站共三套整流机组,每台整流器额定直流电流45KA,额定直流电压700V,运行方式采用两开一备用。

变电站共三套整流机组,每套整流机组分为四个组成部分,分别为:整流变压器、整流器、滤波器组、纯水冷却装置。

二、整流机组运行现状

变电站三套整流机组2005年投产以来,运行过程中发现了以下几个问题:

1)整流器控制系统不完善,无法实现触摸屏给定,只能使用电位器给定方式;无法实现整流器控制系统远程控制及监视功能;

2)整流变压器倒闸过程中频繁发生干扰,造成整流器故障跳闸;

3)整流机组直流母线夹板涡流过大,造成直流母线发热严重,致使整流器控制系统所需直流大电流传感器反馈失真,经常造成整流器控制系统故障停机;

4)直流母线与一层楼层过近,导致直流母线室和整流器室环境温度过高,夏季经常造成整流器元件温度过高,水冷系统冷却效果降低。

三、整流机组技术改造

为提高变电站整流机组的运行稳定性和可靠性,资源综合利用有限公司动力厂对整流机组运行过程中的缺陷进行了技术改进。

3.1 整流器控制系统改造

整流器控制系统改造主要内容是对平板式晶闸管触发电源进行改进,采用陕西高科电力电子有限责任公司自主开发的KCZ6F-2型数字式晶闸管闭环控制板,实现对整流器晶闸管进行数字触发。同时,利用西门子S7-200 PLC与P177B触摸屏实现现场监视和控制功能,使用一台DEEL电脑在变电站主控室进行远程监视控制,上位计算机软件采用WINCC 6.0平台开发。

1)数字式触发控制板的实现

数字式触发控制板的实现主要通过数字化PID调节器完成,即外部输入的模拟给定信号和模拟电流反馈信号,先经模数(A/D)转换后,提供给相应的信号处理单元。在反馈信号处理与给定信号处理单元中经数字滤波,将是否越限判别提供给比较单元。在比较单元中,给定与反馈比较后的差值送给数字调节环节(图1)。

2)实现现场监控

现场整流器控制柜采用就地西门子S7-200 PLC 和P117B 触摸屏组合,实现对整流器直流电流的升降、电流趋势、电压趋势等,实现所有故障的报警和显示,包括:过流、过压、元件损坏、桥臂过热、水压异常、水温异常、缺相、纯水装置故障等。控制柜配有显示整流器直流输出的直流电流表、直流电压表,还配有本地复位、急停按钮、直流刀开关分合指示灯、高压合闸指示灯等。

3.2 直流母线夹板改造

通过分析论证,资源综合利用有限公司动力厂技术人员对整流机组分支直流母线夹板进行了改造。拆除原有的普通钢板夹板,替换为具有防磁性能的不锈钢板夹板。拆除原有的普通不锈钢螺栓,使用与直流母线材质相同的紫铜螺栓。使用具有防磁性能的不锈钢夹板替换普通钢板材质的夹板,使用与直流母线材质相同的紫铜螺栓替换原有的普通不锈钢螺栓后,分支直流母线夹板温度降低了25℃,直流母线室环境温度35℃下属于正常范围。

3.3 通风系统改造

由于变电站直流母线室楼层设计不合理,投运以来一直存在整流机组分支直流母线发热严重,一层通风散热条件较差,造成环境温度过高。改造措施具体如下:

1)在整流器安装六台柜式空调,每台整流器旁边安装两台,增强整流器元器件散热效果,降低整流器环境温度; 拆除整流器柜门,增加了整流器元器件的散热面积。

2)在直流母线室安装一套机械通风系统。机械排风机设置在母线进线侧即靠南墙外墙,采用北侧外窗自然进风。风机设置在二层屋面,风管通过二层顶现有通风孔(φ1000)和一层顶东南角空洞进入一层直流母线室。通风管道进风口采用百叶窗,分别在分支直流母线发热最严重的直流刀开关位置设置百叶窗通风口,百叶窗通风口可手动开启或关闭。

四、小结

通过对整流器控制系统改造完成后,实现了整流器控制系统模拟触发电路到数字触发的转变,实现了整流器控制系统现场及远程计算机监视和控制,整流器输出直流电流可达到42KA,完全可以满足锌电解生产需求。 通过对整流机组分支直流母线夹板改造完成后,直流母线夹板温度减少15~20℃,整流器控制系统没有再因为直流大电流传感器故障引起故障停机,现了预期的目标。通过在整流器室和直流母线室加装通风系统后,整流器环境温度下降10℃~15℃,整流器元器件温升下降10℃~20℃,直流母线室环境温度下降了10~15℃,分支直流母线温升20℃~30℃,达到了预期的效果。

参考文献

[1] 电力电子应用技术,莫正康 编著,北京:机械工业出版社.2004年.

[2] 工厂供电,余建明、同向前、苏文成主编,北京:机械工业出版社.2004年.

[3] 高压电工实用技术,郭仲礼主编,北京:机械工业出版社.2000年.

冶炼技术范文第5篇

关键词:除尘系统; 集气罩; 设计原则; 计算

DH公司作为国家高薪技术企业,具备强有力的设计研发、工程建设与设备制造能力,特别是对金属冶炼技术尤为擅长。在冶金制造过程中也在不断的完善已有技术与生产工艺,为确保冶金生产过程中产生空气污染,对金属冶炼车间除尘系统中的集气罩设计做出了精心的研究。

1.金属冶炼车间除尘系统集气罩及设计目的

我国目前的很多生产制造车间都存在一定的粉尘污染,我国的大气污染排放标准明确规定了砂轮磨尘的最高允许排放量为每平方米60mg,对于铝合金以及金属铝的粉尘颗粒排放量规定在每平方米4mg。在金属冶炼过程中,常常需要对金属工件进行必要的打磨、切割、抛光等工艺加工,在加工的过程中会产生大量的金属废屑以及金属粉尘颗粒[1]。这些粉尘如果不加以治理,将在金属冶炼车间内随着空气的流动而造成车间的二次污染,甚至会随气流流入外界空气中,造成大气环境污染。因此,为提高工艺水准,改善金属冶炼车间工作环境,根据国家与相关行业对粉尘污染的标准规定,又根据我公司车间的环境与生产工艺状况,设计了金属冶炼车间除尘系统集气罩。

除尘系统集气罩是一种可以回收粉尘,防止其扩散到空气中,通过净化过滤系统将粉尘类污染物得到回收的烟气净化装置[2]。集气罩根据污染源与生产安装环境的不同可以分为吹气式和吸入式两种形式[3]。前者是利用了吹吸气流回收污染源的方式进行设计,同理,后者则是根据吸气气流收集污染源。吸入式除尘集气罩根据污染源产生环境又分为排气柜、接受式、密闭式和外部集气罩。由于我公司的金属冶炼车间不能对粉尘等污染源物质进行封闭,所以我们选择了设计外部集气罩。在设计前考虑要在车间粉尘污染源设备的上方,决定应用伞形上部集气罩。除尘系统中集气罩设计的质量直接影响着最终粉尘的排放标准是否合格,对于生产环境与大气环境的保护具有非常重要的作用。

2.金属冶炼车间除尘系统集气罩的设计原则与设计理论

金属冶炼车间除尘系统集气罩的设计主要是根据我公司金属冶炼车间的具体生产车间环境与粉尘污染源的位置应用机械力学理论和CAD制图软件的配合设计而成的。主要的设计原则与设计理论如下:

2.1.金属冶炼车间除尘系统集气罩的设计原则

除尘系统中的集气罩要尽量用最小的吸风量去集中控制粉尘污染源,设计过程中还要本着节约能源与成本的大原则。由于车间环境影响不能采用密闭罩,而是采用了上部伞形集气罩,设计中一定注意要尽量控制伞形集气罩的吸力范围减少到最小,罩体的位置要尽可能的贴近或者包围住粉尘污染源,以有利于回收粉尘。在设计中还要减少风力对流等干扰气流的出现,粉尘流动气流与吸气气流要最大程度保持同一方向。在设计前也要充分考虑除尘系统操作人员的操作岗位位置,对于已经被集气罩收集的污染粉尘一定注意不要让人误吸。此外,集气罩在设计中还要考虑车间房屋结构,安装后要方便以后维修人员进行维护。集气罩设计工艺上也要坚持不能够阻碍或者影响原有金属冶炼车间正常生产的原则。

2.2.金属冶炼车间除尘系统集气罩的设计理论

任何设计都要以相应的正确理论作为设计基础,金属冶炼车间除尘系统集气罩的设计主要是应用了流体力学理论对车间内大量的粉尘污染物进行最有效力的汇集。针对我公司的吸气式伞形集气罩的设计,主要是应用了大量的吸入气流理论。该理论认定在集气罩进行粉尘吸入时会在吸气口产生一定的负压,利用这种压力就可以将包围在罩体下的粉尘污染物吸收。在设计中要考虑吸气口的流速与压力,要注意无边的吸气口的流速要高于有边吸风口的流速[4]。其中,外部集气罩口的气流分布都遵循等速面的气流分散规律,即如果以吸气口为球心,罩口气流分布将是以该吸气口为球心的等速球面[5]。

3.金属冶炼车间除尘系统集气罩的设计方法

金属冶炼车间除尘系统集气罩的设计方法主要根据设计原则与设计理论而形成的。

首先,我们要测量金属冶炼车间的建筑结构,包括车间的高度、长、宽、面积等基础数据,这些基础数据可以帮助我们合理的将伞形集气罩安装在便于操作而工作效率又高的位置;其次,设计人员要计算出材料消耗、压力损失与排气流量。材料消耗主要是根据伞形集气罩的外形尺寸进行确定,计算中也不能忽视各个零部件材料的损耗。

其次,要注意集气罩口的面积一定要大于罩口粉尘污染物的扩散断面面积。金属冶炼车间除尘系统集气罩设计难点就在于确定排气量,集气罩的排气量可以用公式Q=VⅹS来进行计算,即排气量是集气罩的罩口面积与吸入粉尘的平均的吸收速度的乘积。排气量也可以利用集气罩内管道的横截面积与通过管道内的平均流速的乘积来确定;

最后,设计者要注意允许的罩内负压要小于等于25Pa,另外,一定不要忘记计算除尘系统集气罩的压力损失,这需要用系统连接管内的动压与压力损失常数相乘来得到压力损失数据。

根据以上设计理论与设计方法设计出来的金属冶炼车间除尘系统集气罩经过在我公司的运行实践可以看出:集气罩结构合理、安装位置便于操作和维护,运行期间运行状况良好,能够让除尘效果达到国家规定标准,系统能源消耗低,成本消耗低,值得使用。

4.结语:由以上分析可得知,在金属冶炼车间除尘非常必要,要保障正常生产与环境安全就必须加强除尘系统中集气罩的设计,设计中要掌握恰当的原则与方法。

参考文献:

[1]张殿印.工业除尘设备设计手册[M].化学工业出版社.2012:88

[2]胡传鼎.通风除尘设备设计手册[M].化学工业出版社.2011:100-101

[3]唐敬麟,张禄虎.除尘装置系统及设备设计选用手册[M].2009:55-59

[4]王鹏,张校先.浅析除尘系统的设计原则[M].2009(03):20-22