前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料的制备方法范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1、高吸水性树脂的吸水机理
1.1高吸水性树脂的吸水结构
高吸水性树脂是一种三维网络结构,它不溶于水而大量吸水膨胀形成高含水凝胶。高吸水性树脂的主要性能是具有吸水性和保水性。要具有这种特性,其分子中必须含有强吸水性基团和一定的网络结构,即具有一定的交联度。实验表明:吸水性基团极性越强,含量越多,吸水率越高,保水性也越好。而交联度需要适中,交联度过低则保水性差,尤其在外界有压力时水很容易脱去;交联度过高,虽然保水性好,但由于吸水空间减少,使吸水率明显降低。
1.2高吸水性树脂吸水量的计算
高吸水性树脂的吸水量可以量化。Flory[4]考虑聚合物中固定离子对吸水能力的贡献,从聚合物凝胶内外离子浓度差产生的渗透压出发,导出了高吸水性树脂溶胀平衡时的最大吸水性公式:
Q3/5=[(i/2VuS﹡1/2)2+(1/2-x1)/V1]/(Ve/Vo)
1.3高吸水性树脂与水的作用方式
当水与高聚物表面接触时,有三种相互作用:一是水分子与高分子中的电负性强的氧原子间的氢键作用;二是水分子与疏水基团间的相互作用;三是水分子与亲水基团间的相互作用。[6]
高吸水性树脂本身具有的亲水基和疏水基与水分子相互作用形成水合状态。树脂的疏水基团部分由于疏水基团作用而易于折向内侧,形成不溶性的粒状结构,疏水基团周围的水分子形成与普通水不同的结构水。[7]
2、高吸水性树脂的制备方法
2.1淀粉型高吸水性树脂的制备
2.1.1淀粉接枝共聚
合成淀粉型高吸水性树脂,所使用的原料为淀粉和单体。此外还利用引发剂(或催化剂)、交联剂、碱、分散剂、表面活性剂、洗涤剂等助剂。
目前以淀粉为原料制备高吸水性树脂的合成方法主要通过自由基引发聚合将乙烯基单体接枝到淀粉上。引发的方法以化学引发为主,也采用辐射引发接枝。聚合方法主要有溶液聚合和反相悬浮聚合。
2.1.2淀粉经羧甲基化可制备高吸水性树脂
该方法制备的高吸水性树脂大多以纤维素为原料,以淀粉为原料不常用。
2.2纤维素型高吸水性树脂的制备
天然纤维及其衍生物是制备高吸水性树脂的重要原料。通过醚化、酯化、交联、接枝共聚等一种或几种方法,人们现已制备出一系列高吸水性树脂。由于纤维素来源广,易于获取且价廉,因此以纤维素为原料制备高吸水性树脂日益受到重视。[11]
2.2.1醚化-交联法
该方法是制备纤维素基高吸水性树脂的一类常用方法。一般有以下三种方法:先交联后醚化、先醚化后交联、醚化与交联同时进行。
2.2.2直接酯化法
利用纤维素或其衍生物分子中羟基易通酸酐或氯酐起反应的特征,可制备纤维素基高吸水性树脂,被开发的材料有两种。
⑴纤维素黄原酸盐吸水材料,该材料耐盐性、耐碱性较好。
⑵羧甲基化纤维素碳酸盐吸水性材料[10]
2.2.3直接交联法
直接交联法虽不是常用方法,但可用于对一些商品纤维素作进一步加工而制备高吸水性树脂。其中日本学者在这方面进行详细的研究,制得的产品吸水能力很高。制备方法如下:[12]
取代度0.55的羧甲基纤维素125g,氢氧化钠36.5g,水1292g混合呈均匀溶液,加入环氧氯丙烷37.5g。在40℃反应20h。用含90%甲醇溶液脱水、脱盐得白色粒状羧甲基纤维素交联的钠盐137g。其吸盐水(0.9%NaCl)达97g/g,吸血液达63g/g。
2.2.4接枝共聚法
是以纤维素为原料制高吸水性树脂的主要途径。其原料可以是天然纤维及其衍生物,人造纤维等。天然纤维接枝共聚是发展的重要方向,因为不需要制成衍生物,利于降低成本。
2.3合成聚合物类
在这一类高吸水性树脂中,聚丙烯酸盐以其吸水率高,吸水速度快,不易霉变成为高吸水性树脂中最重要的品种之一,其制备方法如下:[13]
在反应瓶中计量加入丙烯酸,开动搅拌机,逐渐加入20%氢氧化钠溶液,使其中和度为60%~80%,再加入去离子水稀释至单体浓度为30%~60%,再加入N,N-二甲基双丙烯酰胺。将反应瓶置于恒温水浴中加热并通氮气驱氧,再加入过硫酸钾进行反应。反应物料粘度增大至搅拌困难时停止搅拌,继续通氮气到反应物为粘稠凝胶体。将其取出,压成薄片后进行干燥,再粉碎至10目以上。其吸水盐(0.9%NaCl)150g/g。吸去离子水1400g/g,吸水速率快,保水性较好。
3、高吸水性树脂的应用[14-18]
3.1日常生活中的应用
目前高吸水性树脂主要用于制尿布和妇女卫生巾,其用量约占用量的80%~90%。由于高吸水性能吸收大量的液体,所以每片尿布只需要6~7g,而每片卫生巾只需0.5~1g,其它为纺织材料或塑料。
3.2医疗方面的应用
近年来高吸水性树脂(凝胶)在医疗方面的应用取得了明显进展。研究表明,高吸水性凝胶可抑制血浆蛋白质和血小板粘着,使其难以形成血栓,把尿激酶等活性酶固定在凝胶表面,则能溶解初期形成的血栓,为研究抗血栓药剂提供了新的途径。
3.3工业方面的应用
在包装方面,高吸水性树脂可用于危险品、高中级实验室用化学品、花卉和植物类的包装运输;也可用于食品类的包装,还可用于油类、树脂添加剂、填料和溶剂脱水,以及吸收蓄冷剂、空气过滤、防静电密封等方面。
3.4农林业方面的应用
为使沙漠地区绿化,可用高吸水性树脂吸收水分和植物养分后置于土壤中,在长时间里逐渐提供给植物,以满足其生长需要。此外还可用于维持屋顶花园、阳台花草、草坡、苗圃、花盆的水分平衡。同时还可起到缓和土壤温度变化,提高土壤温度变化,提高土壤通气性的作用
4、结语
在短短的近三十年来,高吸水性树脂已经品种繁多,用途极广,已深入国民生产的各个领域,成为很有价值的重要材料。近年来,我国对高吸水性高分子材料的需求逐年增大,对其质量也日益提高。所以,加快高吸水性高分子材料的研究对我国有着非常重要的意义。
关键词:微胶囊;菌剂;净水;应用
中图分类号:X52文献标识码:A文章编号:16749944(2016)18005302
1引言
近年来,我国81.5%以上的城市内及城市周边水体受到了污染,其中很多还出现了水体变黑、发臭的现象。传统的水体污染治理方法工程量与资金耗费巨大,存在占用土地、使周边环境二次污染等负面影响[2]。因而,微生物被越来越多的应用于水体污染治理中,具有成本低廉、施工简单、见效快等特点。目前,市场上的净水菌剂多是在细菌发酵液中加入吸附剂、赋形剂,然后干燥成固体而成[3]。长期实际使用中发现,现有的净水菌剂存在储存时间短、微生物在水中难以均匀分散并协同作用等缺陷,进而影响了水体净化效率。采用微胶囊技术包裹多种水体净化微生物,从而制成微胶囊复合菌剂,可以将菌体与外界环境隔离开,降低外界环境对菌体的影响,提高菌体保存时间。此外,微胶囊在水中容易分散,有利于菌体均匀分布到水体中。
2微胶囊技术特点
微胶囊技术是指以天然或合成的高分子材料作为囊壁,通过化学法、物理法或物理化学法将固体或液体材料包囊成直径为1~500μm的微小囊状物的技术。微胶囊技术的优势在于:囊心物被壁材包住而与外界环境隔离,从而减少甚至避免外界的空气、光照、辐射、湿度等因素对囊心物的影响;微胶囊壁材通常具有一些特殊的性质,在一定环境中,如压力、pH值、酶、温度或溶剂等可以破坏壁材,从而使囊心物被释放出来。微胶囊技术用途广泛,无论是气体、液体、固体、甚至是具有生命的微生物都可以被制成微胶囊[4]。
3微胶囊制备方法
微胶囊制备方法通常根据其性质、囊壁形成的机制和成囊条件分为化学法、物理法、物理化学法等三类[5]。其中化学法包括界面聚合法、原位聚合法和锐孔法3种;物理法包括喷雾干燥法、空气悬浮法(又称流化床技术)和挤压法三种;物理化学法包括水相分离法和油相分离法2种。
4微胶囊壁材的选择
微胶囊壁材应当具有良好的成膜性,故一般选用高分子材料,在制备微生物微胶囊中,所选壁材还应具有如下性质:①水溶性好,流动性高,在制备微胶囊的过程中易于操作;②稳定性强,不破坏囊心物,遇水易溶解;③乳化性优良;④易于与相溶的溶剂分离,能实现快速干燥;⑤来源充足,价格低廉[6]。壁材的选择对微生物微胶囊的性能和用途至关重要,通常是选择水溶性天然高分子材料,如:黄原胶、阿拉伯树胶、明胶、淀粉、海藻酸钠、壳聚糖等。
5微胶囊菌剂的研究及应用现状
当前,微胶囊菌剂的研究及应用报道多见于食品及水产养殖领域,热点是微胶囊壁材研究和微胶囊化工艺改进。在食品领域,目前国内外采用的乳酸菌微胶囊化技术主要包括相分离法、界面聚合法、挤压法和喷雾干燥法等。海藻酸钠是乳酸菌微胶囊化研究中的重要壁材,由于其处理无毒,成本低而被广泛应用[7]。在水产养殖领域,采用微胶囊技术包裹渔用微生物,可显著提高微生物的保存期限及微生态平衡和生物活性 [8]。
6展望
微胶囊化技术已被证明是提高微生物存活率和稳定性最有效的方法之一,采用微胶囊技术包裹多种水体净化微生物制成的微胶囊复合菌剂与传统净水菌剂相比,具有诸多优势。未来,微胶囊复合净水菌剂主要有两个研究和发展方向:一是净水菌种的改进,应当加大从自然界中筛选净水菌种的力度,通过进一步选育与改良,获得对水定污染物净化效率更高的菌种;二是菌剂微胶囊壁材的改进,要着力寻找对微生物细胞更具相容性的天然高分子材料。
参考文献:
[1]杨清海. 中国富营养化水体修复技术进展[J]. 辽东学院学报(自然科学版), 2011, 15(2):71~75.
[2]毕磊, 邱凌峰. 污染底泥修复治理技术[J]. 中国环保产业, 2011(11): 32~35.
[3]李明治, 喻治平, 陈德全, 等. 国内环保用微生物菌剂的研究应用情况调查[J]. 工业水处理, 2011, 31(6): 18~20.
[4]苏峻峰, 任丽, 王立新. 微胶囊技术及其最新研究进展[J]. 材料导报, 2003, 17(9): 141~144.
[关键词] 纳米粒;载体材料;制备方法
[中图分类号] R460.1 [文献标识码] A [文章编号] 1673-7210(2016)05(b)-0033-04
[Abstract] Nanoparticles is a new technology in the area of pharmaceutics. Its good target and delayed release effect come from it special physico-chemical property, which makes it become the focus in the study area of pharmaceutics. This article reviewed carrier material, the preparation methods and the research progress of nanoparticles, the particles and solid lipid nanoparticles and magnetic lipid nanoparticles. At last the article lookes forward the front review of drug-loading nanoparticles.
[Key words] Nanoparticles; Carrier material; Preparation methods
纳米粒是药物溶解、包裹于高分子材料中形成的粒径在10~100 nm范围内的固体胶体颗粒[1],根据药物在载体材料中存在的形式,可以分为纳米球和纳米囊。药物溶解于骨架材料中,成型后以细小微粒或结晶分散于骨架材料,形成纳米球,而药物与材料不相混溶时,药物被载体材料包裹,形成纳米囊。
纳米粒10~100 nm范围内的粒径,可以隐藏药物的理化特性,药物在体内的过程依赖于载体的理化特性。普通纳米粒在静注之后,大都会被单核吞噬细胞系统(MPS)摄取,故能被动靶向治疗MPS相关疾病,但对其他系统疾病具有一定的局限性。将普通纳米粒修饰成长循环纳米粒,能够有效减小或避免纳米粒在体内对吞噬细胞的趋向性,或者将普通纳米粒连接上糖基、抗体、配体等,制备成主动靶向的纳米粒,是近年来的研究趋势[2]。本文就载药纳米粒的载体材料、制备方法的研究进展进行综述。
1 载体材料
1.1 生物不可降解型聚合物
此类载体在体内不能降解成可代谢产物,主要有聚丙烯酰胺类和聚甲基丙烯酸烷酯类。以聚丙烯酰胺类生物不可降解材料制备的纳米粒或纳米球,更多的应用于污水处理、造纸及石油钻采等领域[3]。王文喜[4]用聚甲基丙烯酸酯纳米粒作为反义寡核苷酸载体,能改变反义寡核苷酸在细胞内的分布,避免反义寡核苷酸被溶酶体内核酸酶的降解,增加其稳定性。但因此类聚合物在体内无法降解成可代谢产物,故较少采用此类载体材料作为体内制剂使用。
1.2 生物降解型聚合物
生物降解型聚合物包括聚氰基丙烯酸烷酯和聚酯类等化合物。前者主要为聚氰基丙烯酸的甲酯、乙酯、丁酯等,其代谢产物为甲醛,对机体有一定的毒性。聚酯类化合物有聚乳酸(PLA)、聚己内酯(PCL)、聚乳酸- 羟基乙酸共聚物(PLGA)等,聚酯类的载体,中间代谢产物为乳酸,在体内代谢最终以CO2、H2O的形式排泄,生物相容性更好,在研究和实际应用中更为常用。PLA、PLGA已获美国FDA 批准用于注射用药。用于治疗前列腺癌的曲普瑞林注射剂(Decapepty)即采用PLGA做骨架,制备而成的微球注射剂,每次注射可以在体内缓释30 d。
1.3 天然高分子材料
亲水性聚合物包括明胶、壳聚糖、海藻酸盐、明胶、蛋白等。天然高分子材料较为常用,性质稳定,生物相容性好。明胶可生物降解,抗原性小,较为常用,如蔡梦军等[5]以明胶为载体材料,制备阿霉素明胶纳米粒,得到粒径为100 nm左右,粒径分布均匀且具有缓释效果的纳米粒。
壳聚糖具有较好的生物黏附性、促吸收效应和酶抑制载体作用等特性,使其在生物黏附给药系统、透膜给药系统、靶向给药系统及缓控释制剂的开发中倍受青睐[6]。壳聚糖的结构中含有游离的氨基,呈弱碱性,能与芳香醛或脂肪醛反应生成西佛碱(Schiff's base),可利用此特点进行交联。壳聚糖的生物相容性和生物降解性能都非常优秀,在研究中,较多应用。制成纳米粒后,其生物学性质有所改变,在体内能完全降解且具有一定的缓释效果[7]。
蛋白类常用的有牛或人的血清白蛋白、玉米蛋白、鸡蛋白等,由于蛋白类交联较为容易,故研究中也常用其作为载体材料。白蛋白为内源性物质,研究发现,将其作为载体,可减少巨噬细胞对其吞噬,起到长循环的效果。由美国生命科学(American Bioscience)公司开发的白蛋白结合紫杉醇纳米粒注射混悬液(paclitaxel,ABRAXANE)2005年已经上市[8],用于治疗转移性乳腺癌联合化疗失败后或辅助化疗6个月内复发的乳腺癌。
1.4 脂质材料
以生物相容性高的高熔点脂质载体材料制备的纳米球称为固体脂质纳米球(solid lipid nanospheres,SLN)。脂质材料包括饱和脂肪酸的甘油酯、硬脂酸、棕榈酸、甾体等。SLN的乳化可用磷脂等来乳化,乳化后,SLN其亲水部分朝向周围的分散介质,疏水部分插入颗粒核心。但SLN对疏水性药物包封效果较好,对水溶性的药物包封效果欠佳[9]。
1.5 磁性材料
目前较为常用的磁性材料是Fe3O4磁粉或磁流体。采用磁性材料制备的纳米粒在外加磁场的作用下发生定向移动,具有较强的靶向性[10]。磁性纳米粒的表面因Fe3O4的存在极易与商品化的硅烷试剂发生反应,使二氧化硅包覆在其表面而成复合纳米粒[11-12]。包覆在表面的二氧化硅层上的硅烷醇基团极易与硅烷试剂发生耦合反应,得到的纳米粒表面含有氨基、醛基等基团可以与多种生物分子发生键合反应。这使得磁性微球可以进一步进行修饰,达到主动靶向的目的。
2 制备方法
2.1 天然高分子载体纳米粒
2.1.1 白蛋白载体
2.1.1.1 超声乳化法 蛋白类载体材料,先将其乳化成大小均匀的乳滴,然后再通过化学或其他方法交联,较易制得微米级的制剂,但纳米级的制剂易受分子大小及纯度的影响,在制备中,1996年Müller等[13]采用超声乳化技术可以得到粒径小于200 nm的白蛋白纳米粒。王恺等[14]采用超声乳化-化学交联法制备丝裂霉素的白蛋白纳米粒,粒径在60~100 nm。此方法主要在于超声的过程可以让乳滴粒径更小,从而交联得到粒径更小的纳米粒。
2.1.1.2 溶剂-非溶剂化法 向白蛋白溶液中加入脱水剂如丙酮、乙醇等,白蛋白分子表面水化膜在脱水剂的作用下作用下被除去变性析出(去溶剂化),再采用化学交联剂或加热变性的方法固化纳米粒。加热的方法较易控制交联的程度,且毒性物质残留较少。如果采用化学交联剂如戊二醛或其他有机溶剂,则需除去残留戊二醛及有机溶剂以保证纯度。Langer等[15]用乙醇作脱水剂,加入到白蛋白溶液中,在NaCl存在条件下调整pH,得到的纳米粒粒径小于300 nm。此法通过pH和盐浓度的调整,白蛋白在远离其等电点时利用带电粒子之间的斥力,可制备粒径较小的纳米粒,相比较用戊二醛交联,毒性更小
2.1.1.3 pH-凝聚法 通过改变体系的pH值,可以使蛋白发生沉淀生成纳米粒。但仅通过改变体系的pH值制备纳米粒,不方便控制纳米粒的粒径。更多的是与盐浓度的调整结合或者加入其他溶剂来控制粒径,得到粒径均匀及外形圆整的纳米粒。Sanhti等[16]通过改变体系的pH、盐浓度,加入化学交联剂体积制备得到粒径为497.6 nm的纳米粒,外形圆整。
以上为较为常见的白蛋白纳米粒的制备方法,简单易行,溶剂残留少,制备效果佳。此外,还有报道采用快速膨胀超临界溶液法、机械研磨法等方法制备白蛋白纳米粒。
快速膨胀超临界溶液法为近10年来发展起来的一项制备超细粒子的新技术,此方法工艺流程简单,所需有机溶剂少,制备的粒子粒径均匀可调整,但产量小,且所需设备及生产调节要求高,故在药物制剂的实际生产和实验中较少报道,而主要见于化工类产品的生产和研究[17]。
机械研磨法是制备水溶性纳米粒的一种方法,将亲水性的大分子(如蛋白质、抗体、抗原、淀粉、环糊精、亲和素、链酶亲和素、聚乙二醇、聚乙烯醇、环芳烃等)与非极性或弱极性有机溶剂中具有特殊荧光性能或磁性的纳米颗粒直接混合,通过机械研磨的方法使亲水性大分子吸附在纳米粒上,待有机试剂完全挥发后,加入水或缓冲溶液溶解,再经过两次离心分离,便可制成纯的水溶性的纳米颗粒[18]。该方法已获得相关专利。
2.1.2 明胶载体
明胶具有良好的乳化性能,而且可以溶于热水,冷却后形成凝胶,利用此特性,可制备纳米球。采用先乳化,然后冷却胶凝的方法,即可制得纳米球。此方法可适用于热敏感药物。赵阳等[19]用乳化凝聚法制得低分子肝素明胶纳米粒,分散性好、粒径在40~100 nm圆形或椭圆形,包封率达80%以上。此方法简单易行,载体价廉易得,所需实验条件容易操作,所得产品质量较好,故见诸较多报道。
2.1.3 壳聚糖载体
2.1.3.1 化学交联法 壳聚糖是甲壳素脱乙酰基后的产物,结构中含有游离的氨基,能与芳香醛或脂肪醛反应生成Schiff's碱,利用此特点可与交联剂如戊二醛等反应来制备纳米粒。在此方法中被结合的氨基失去了靶向修饰的能力。郭英等[20]于采用化学交联法制备阿司匹林壳聚糖微球,制得的微球最小粒径可达到20 nm。制得的载药微球在16 h内对药物有良好的缓释作用,在25 h之内仍存在缓药效。
2.1.3.2 离子胶凝法 此方法通过壳聚糖带正电氨基与阴离子静电作用而发生物理交联反应形成纳米粒,在此过程中,起到阴离子作用的电解质的量直接影响到粒子的交联度,从而影响到粒径的大小、药物的释放[21]。同样,不同脱乙酰度及不同分子量的壳聚糖对纳米粒的药物释放也有影响。何文等[22]通过离子胶凝法制备了的壳聚糖纳米粒,结果表明,随着壳聚糖脱乙酰度的降低,纳米粒Zeta电位降低,粒径增大,药物包封率下降,且体外释药速度加快。
以上两种方法为最为常用的壳聚糖纳米粒制备方法。此外,去溶剂化法、乳化聚合法、液中干燥法也见诸报道,均能制得质量较好的壳聚糖纳米粒。
去溶剂化法又称沉淀析出法。其基本原理是:在高分子材料的水溶液中加入凝聚剂(为强亲水性物质如电解质硫酸钠、硫酸铵、氯化钠等),因水分子与凝聚剂结合,高分子物质的溶解度随之降低,形成分子间氢键,后从溶液中析出形成纳米粒[23]。
乳化聚合法是目前制备纳米粒的最主要方法之一。即利用表面活性剂作用将两种不相溶的溶剂制备成微乳,在微乳滴中经成核聚结团聚热处理后得到纳米粒。乳化聚合的成核机理主要是齐聚物成核与乳胶粒成核,是一种非连续成核的过程,即在乳胶粒生长阶段, 胶粒数目不变, 粒径不断增大。该法适用于在酸性介质中溶解度较大的药物[24]。
液中干燥法即将药物和高分子材料溶于有机溶剂作为油相,加乳化剂与水相制成O/W型乳状液。加热挥发有机溶剂即制得纳米粒。此法适合制备亲脂性药物纳米粒[25]。
2.2 固体脂质纳米粒的制备
2.2.1 纳米乳法
微乳法制备SLN。将熔融的脂质材料中加入乳化剂、药物及附加剂,通过搅拌,制成O/W型微乳,将微乳分散于冷水(2~3℃)中,便可形成SLN分散体系[26]。
2.2.2 高压乳匀法
也称之为熔融-匀化法,即在纳米乳法的基础上,将初乳在70℃以上高压均化,均化的过程使纳米粒粒径更小,更均匀。如杨时成等[27]采用此法制备喜树碱固体脂质纳米粒,初乳80℃通氮气41.4 MPa压力下在高压乳匀机上乳匀5次,得到平均粒径196.8 nm,均匀的纳米粒。
2.2.3 溶剂乳化蒸发法
溶剂乳化蒸发法是将药物和类脂混合物溶于合适的有机溶剂中, 加到含有乳化剂的水相中乳化,然后蒸去有机溶剂,便可形成SLN的稳定分散体系[28]。此方法可以避免药物遇热稳定性发生改变的问题。Zhang等[29]采用此法制得了丙酸倍氯米松-SLN,具有良好的缓释效果。
2.3 磁性纳米粒的制备
2.3.1 乳化聚合法
即在普通的聚合物、天然高分子材料等制备纳米粒的过程中,加入磁性物质,采用乳化聚合法使药物和磁性物质均匀分散在聚合物网状结构中。乳化聚合法根据载体材料的不同,具体的制备方法有所不同,如白蛋白微球通常用乳化-交联固化法或乳化-加热固化法制备;明胶微球可用乳化-交联固化法。通过调整搅拌速度可以控制所得微粒的粒径,得到微球或纳米粒。吴远等[30]采用化学沉淀法制备 Fe3O4超微磁粉,以聚 (5,5-二甲-三亚甲基碳酸酯-共-三亚甲基碳酸酯)为膜材,包裹纳米级Fe3O4磁粉,制备出丝裂霉素-聚碳酸酯磁性微球。该磁性微球具有良好的磁响应性能,体外对肝癌细胞Bel-7402有较强的细胞毒作用,裸鼠人肝癌模型靶向治疗实验显示良好的抑制肿瘤作用。对于肝靶向治疗,显示了很好的研究基础。
2.3.2 二步法
二步法即先制备磁性高分子聚合物微粒,再通过吸附或共价键与药物结合。也可以先制备载药微粒,然后再与磁性物质反应生成磁性纳米粒。石可瑜等[31]采用共沉淀法制备葡聚糖磁性毫微粒,再羧甲基化修饰得羧甲基葡聚糖磁性纳米粒,用高碘酸钠氧化,再与多柔比星药物分子通过Schiff反应偶联制得载药磁性纳米粒。制备的纳米粒直径56 nm,磁导向性能好,能有效定位于靶区,可以起到对肿瘤的定向治疗作用。
3 展望
纳米粒作为一种新型药物载体,其独特的物理化学性质,使之在抗肿瘤制剂的研究中,具有明显的优势。纳米级的粒径,使之能够透过肿瘤组织的血管壁间隙,使载药纳米粒能沉积在肿瘤组织部位,发挥抗肿瘤作用。此外,作为抗生素、抗病毒药物的载体,可以提高药物治疗细胞内细菌感染的作用;作为口服制剂的载体,可以防止药物在胃肠道的失活,提高其稳定性,提高生物利用度;作为黏膜给药的载体,可以延长其在作用部位的时间,提高疗效。在纳米粒上进行糖基、抗体、配体等修饰,又可让其具有主动靶向的作用。其制剂优势非常明显,制备方法研究也很多,但目前实验室研究报道较多,见诸报道的上市产品较少,其原因可能与辅料的安全性、制剂技术的稳定性有关。随着制剂技术和药用辅料的不断发展,纳米粒的研究和应用会有更广阔的空间。
[参考文献]
[1] 崔福德.药剂学[M].北京:北京卫生出版社,2011:395.
[2] 高凌燕,屠锡德,周建平.纳米粒给药系统制备的研究进展[J].药学与临床研究,2007,15(3):179-183.
[3] 屈沅治,孙金声,苏义脑.聚丙烯酰胺类纳米材料的研究进展[J].油田化学,2006,23(3):273-277.
[4] 王文喜.聚甲基丙烯酸酯纳米粒作为反义寡核苷酸载体的研究[D].杭州:浙江大学,2002.
[5] 蔡梦军,朱以华,杨晓玲.载药明胶纳米粒子的制备及体外释药特性研究[J].华东理工大学学报:自然科学版,2005,31(5):612-615.
[6] 吴立明,习温瑜,管正红.壳聚糖纳米粒制备的研究进展[J].齐鲁药事,2008,127(10):682-685.
[7] 徐连敏,陈改清.壳聚糖纳米粒的研究进展[J].国外医学:药学分册,2002,29(6):329-332.
[8] 季秀峰,石莉,邓意辉.白蛋白纳米粒药物传递系统的研究进展[J].沈阳药科大学学报,2010(12):968-978.
[9] 魏丽,郝存江,饶卫兵.固体脂质纳米粒新型给药系统的制备及展望[J].实验室科学,2009(5):84-86.
[10] 朱瀛,陆伟根.磁性微球和磁性纳米粒的研究进展[J].中国医药工业杂志,2005,36(9):581-584.
[11] Liu Y,Deng X. Influences of preparation conditions on particle size and DNA loading efficiency for poly(DL-lactic acid-polyethylene glycol)microspheres entrapping free DNA [J]. Journal of Controlled Release Official Journal of the Controlled Release Society,2002,83(1):147-155.
[12] Deng X,Zhou S,Li X,et al. In vitro Degradation and release profile for poly-dl-lactide-poly(ethylene glycol)microspheres containing human serum albumin [J]. Journal of Controlled Release,2001,71(2):165-173.
[13] Müller BG,Leuenberger H,Kissel T. Albumin nanospheres as carriers for passive drug targeting:an optimized manufacturing technique [J]. Pharmaceutical Research,1996,13(1):32-37.
[14] 王恺,马光辉.白蛋白纳米球药物载体的制备及表征[J].过程工程学报,2004,4(2):155.
[15] Langer K,Balthasar S,Vogel V,et al.Optimization of the preparation process for human serum albumin(HSA) nanoparticles [J]. Int J Pharm,2003,257(1-2):169.
[16] Santhi K,Dhanaraj SA,Rajendran SD,et al. Nonhposomal approach a study of preparation of egg albumin nanopherescontaining amphotencin-B [J]. Drug Dev Ind Pharm,1999,25(4):547.
[17] Maziani MJ,Sun YP. Protien-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution [J]. J Am Chem Soc,2003,26(12):8015.
[18] 何治柯,梁建功,谢海燕,等.水溶性纳米粒子的制备方法:中国,CN 1431070A [P]. 2003-07-23.
[19] 赵阳,孙勇,李茂利.低分子肝素明胶纳米微球的制备及条件比较[J].中国生化药物杂志,2008,29(2):124-126.
[20] 郭英,李酽,谢静.阿司匹林壳聚糖纳米缓释微球的制备及体外释放性能的研究[J].化学世界,2007,48(1):38-41.
[21] 林爱华,刘奕明,平其能.壳聚糖纳米粒表面游离氨基与纳米粒特性研究[J].药学学报,2007,42(3):323-328
[22] 何文,匡长春,张洪,等.壳聚糖的分子参数对载药壳聚糖纳米粒体外性质的影响研究[J].中国药学杂志,2005, 40(6):438-453.
[23] 姚倩,侯世祥,何伟玲,等.表面氨基游离的白藜芦醇壳聚糖纳米粒制备方法研究[J].中国中药杂志,2006,31(3):205-208.
[24] 朱秀清,孙敏,祝凡平,等.姜黄素聚氰基丙烯酸丁酯纳米粒的制备及理化性质研究[J].中药材,2010,33(5):797-801.
[25] 黎洪珊,赵京玲,魏树礼.环孢菌素A聚乳酸纳米粒胶体的制备和大鼠的口服吸收[J].中国药学杂志,1999, 34(8):532-536.
[26] 毛世瑞,王燕芝,纪宏宇.微乳化技术制备固体脂质纳米粒[J].药学学报,2003,38(8):624.
[27] 杨时成,朱家壁,梁秉文,等.喜树碱固体脂质纳米粒的研究[J].药学学报,1999,34(2):146.
[28] 聂庆,孙晓宇,汪世龙,等.固体脂质纳米粒的研究进展[J].华西药学杂志,2005,20(4)328-331.
[29] Zhang HH,Hu FQ,Yuan H,et al. Preparation of solid lipidnanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemi cal characterization [J]. Int J Pharm, 2002,239(1-2):121.
[30] 吴远,叶,王家龙,等.丝裂霉素-聚碳酸酯磁性微球的制备及靶向治疗原发性肝癌的实验研究[J].华夏医学,2001,14(1):1-3.
【关键字】固定化微生物技术;载体材料;制备方法
固化微生物技术是20世纪70年代末发展起来的一项现代生物、环境等领域中的新兴技术。该技术是运用物理或者化学等方法,将游离的细胞或酶与固态的非溶性载体相结合,将其限制于有限的空间区域内,使其不溶于水但保持活性,并可反复和连续的使用。它主要包括固定化酶技术和固定化微生物技术。
固定化微生物技术与传统的活性污泥法相比,存在着明显的优势,主要体现在:(1)生产工艺连续化和自动化;(2)污泥产量少,减轻了后期处理污泥的负担,降低工程投资成本和造价;(3)生物密度高,有利于降解有毒有害物质;(4)耐受能力强且易于回收再利用,大多数载体材料市场价格低廉;(5)固液分离效果好,可纯化和保持高效菌种;(6)不会造成环境二次污染;(7)微生物被固定后,细胞内相当于一个反应器,酶系保存完整。
1 固定化载体材料
1.1 固定化材料的性能要求
固定化小球载体材料的选择是固定化微生物技术中的关键步骤之一。其要求成本低廉、易于制成各种形状、抗冲击能力强、性质稳定、对固定的微生物无毒、在常温下固化快、传质性能好、寿命长、小球的基质具有通透性,单位体积的载体固定的微生物的数量多等。
1.2 固定化材料的种类
固定化材质分为三大类:(1)有机高分子载体,分为天然高分子载体材料和合成有机高分子载体材料。其中天然高分子载体材料包括琼脂、角又莱胶、海藻酸钠、无烟煤、卡拉胶、海藻酸钙、葡萄糖、纤维素、明胶、胶原蛋白等,合成有机高分子载体材料包括离子交换树脂、塑料、聚丙烯酰铵、聚乙烯醇、光硬化树脂、聚丙烯酸凝胶等。天然高分子材料具有无毒性、传质性好、固定化微生物密度高等特点,但是其强度低、抗微生物分解能力较差。可以通过交联剂对其进行稳定化处理。而有机高分子材料抗微生物分解性能好、强度高、性质稳定、对微生物无毒且价格低廉,因而具有很高的利用价值。但其载体聚合物网络的形成条件比较剧烈,对微生物活性有较大影响。(2)无机载体材料,包括多孔陶珠、红砖碎粒、砂粒、活性炭、玻璃、硅藻土等,无机载体材料具有对微生物无毒,耐酸耐碱,寿命长,机械强度大等优点。(3)复合载体材料,是将无机载体与有机载体材料相结合,以改进材料的性能。例如Lin等[1]利用海藻酸钙凝胶联合包埋固定黄孢原毛平革菌和粉沫活性炭,用于降解五氯酚(PCP)。实验表明:复合固定化体系比单独固定化体系更加有效地降解PCP,突出了出复合载体材料的优越性。
1.3 比较固定材料性能的实验
熊振胡等人[2]采用包埋法分别以海藻酸钠和PVA作为固定化蛋白核小藻菌微生物的载体,将制成的小球用于城市污水的脱氮除磷试验中,实验表明PVA作为城市污水脱氮除磷的固定化载体更为适合。
杨雪梅,张兰英等[3]选用硅胶、活性炭、大孔树脂三种载体,采用物理吸附法固定蛋白酶,三种固定小球分别对含高浓度蛋白质的淀粉黄浆废水进行水解实验。结果表明,活性炭对蛋白酶的固定率可达到61 .95 %,大孔树脂37 .85 % ,硅胶20 .31 %。所以活性炭对蛋白酶的固定效果最好。
2 固定化有机载体的制备方法
2.1 吸附法
吸附法是应用物理吸附或离子吸附将细胞固定在载体表面或内部,制成非水溶性小球。此方法操作简单,对细胞的活性影响较小,但该法固定的微生物量一定,重复性和稳定性较差,同时载体与微生物的结合强度也不够牢固,容易脱落。往往需要引入亲水和疏水配位体制成载体衍生物。
2.2 包埋法
包埋法是通过沉淀作用、离子网络作用、聚合作用或者改变温度、PH、溶剂使细胞截留在不溶于水的多聚体化合物网络空间中。同时也可保证底物的渗入和产物的渗出。包埋法可分为沉淀包埋法、离子网络包埋法、高分子合成包埋法。该方法操作简单,固定的微生物活性高,制成的小球强度高。此法已在多种废水中做过实验研究[4-5]。
2.3 交联法
交联法是使用双功能或多功能的基团与细胞进行分子间进行交联,连接成网状结构。此法细胞间的结合强度高,物理和化学稳定性强,但是在交联过程中酶的中心构造可能受到影响,且交联剂的价格昂贵,故不常用。
2.4 共价结合法
共价结合法是利用固相支持物表面的反应基团与细胞表面功能团形成共价化学键,形成固定化微生物[6]。
2.5 聚集-交联法
聚凝剂直接与细胞表面的反应基团发生反应形成聚集体,再加入一定量的交联剂进行交联,使彼此联成立体网状结构。此方法微生物浓度高,处理效果较好[6]。
2.6 无载体固定法
在形成微生物适宜的生存环境的过程中,絮凝颗粒形成,有利于微生物之间信息的的传递[7],从而利用微生物之间的代谢协调作用来实现固定。该方法是一种新概念,与其他固定化方法比较,具有操作简单,扩散阻力小,传质效果好,固定过程中对细胞颗粒的整体活性影响较小等优势。将在污水处理中得到广泛的应用[8]。
以上各种制备固定化微生物的方法都有其各自的优点,目前根据实际的情况包埋与吸附法应用的最为广泛,研究的也最多。固定化有机载体的制备主要采用包埋法。交联法由于自身的原因没有推广,有待开发廉价的交联剂。聚合-交联法较其他单一固定化方法有巨大的潜力与优势,必将在今后的环境保护中得到进一步的应用。无载体固定法因方法简单在污水领域有一定的应用。
3 对固定化微生物技术的展望
近年来,固定化微生物技术以其显著的优势引起了人们普遍的关注。但将其从实验室走向实际的废水处理中还存在一定的难度,还有许多问题需要解决,主要有以下5个方面:(1)固定化微生物技术筛选的为单一的优势菌种,具有专一性,但生活中的废水是一个复杂的体系,单一的固定化微生物小球可能无法解决实际问题;(2)目前载体的成本较高、使用寿命短;(3)固定化载体内微生物的浓度无法精确测定,缺乏最佳控制的动力学处理法及运行管理方式;(4)对无机材料与复合材料研究不够,主要集中在有机方面;(5)反应器的设计不合理导致的运行管理费用高。但是随着专家学者对此项技术的不断深入的研究,此上的各类问题将一一解决,固定化微生物技术必将在废水、废气、矿物、土壤中发挥越来越重要的作用。
参考文献:
[1]LIN J E,WANG HY,HICKEY R F. Use of coimmobilized biological systems to degrade toxic organic compounds[J].biotechnol and bioengin,1991,38:273-279.
[2]熊振湖,孔翠珍,刘青春 不同载体固定化藻菌共生系统的脱氮除磷.天津城市建设学院.2005.
[3]杨雪梅,张兰英,张蕾,于宏兵,张玉玲.固定化酶在高浓度有机废水处理中的应用.吉林大学学报.2005.
[4]周定,侯文华,固定化微生物在含酚废水中的应用[J] 环境科学,1990,11(1);2-5.
[5]葛文准,荣文辉.固定化微生物处理氨氮废水[J].上海环境科学.1995,14(4);10-13.
[6]陶慧敏,杨绍宾,张广积.固定化细胞技术在矿业领域中的应用[J].2010.
关键词:耐磨薄膜 杂化材料 有机-无机复合薄膜
一、透明耐磨薄膜材料的性能介绍
透明塑料具有很多优良的性能,如加工性能、耐候性、电绝缘性好,光学性能优异,且质轻性韧,广泛应用各个领域。不足之处就是使用温度低、耐热性差、吸水率高、耐磨及耐有机溶剂性差。人类为扩大透明塑料的应用范围,对透明塑料进行改性处理,使薄膜即就有以上优点,又能克服上述不足之处。
二、透明耐磨薄膜的种类和制备方法
能作为透明耐磨薄膜改善透明塑料耐磨性的材料很多,根据组成和结构,透明耐磨薄膜分成三类:无机薄膜、有机薄膜和有机-无机复合薄膜。
第一类薄膜主要有无机氧化物和非氧化物两大类材料。这两大类材料以晶态和非晶态形式存在,主要通过PVD和CVD技术沉积在塑料基板上。目前虽然在塑料基板上有多种无机薄膜在应用,但还是存在一些不足之处:设备所能生产的材料的尺寸和形状有限制,沉积塑料板温度过高引起塑料变形或软化,无机薄膜和塑料板之间易剥落。
第二类是有机薄膜,与透明塑料结合性能良好,不会对塑料基板产生不良影响,但抗划伤、耐磨性能较差,其中聚甲醛(POM)、全芳族聚酯(PET,PBT)、(PA)、聚四氟乙烯(FTFE)耐磨性较好,同时具有低摩擦系数,自等摩擦学性能,在涂料中应用较为常见。
第三类是有机-无机复合薄膜。目前大多数抗划伤透明有机-无机薄膜材料都是基于聚合有机硅或别的无机多聚体等具有网状结构的物质作为骨架 ,同时掺入有机组成以提高与有机基板的附着力,它综合拥有上述两类薄膜的优点,同时又抗划伤、耐磨性强,是目前研究的重点。
三、当前研究的重点和发展方向
随着技术的进步,研究的深入,复合材料的性能越来越强。下面就成膜材料、耐磨增强材料和添加剂、溶剂、薄膜制备与固化工艺等方面进行介绍
1.成膜材料
为获得具有所需性能的薄膜材料,科研人员对薄膜中相互贯穿的有机-无机网状结构方面作了深入研究。目前能形成无机高分子的长链的元素很多,主要有全硅主链、磷和氮主链、硅氧及硅碳主链、全镓和全锡主链,硫磷氮和硫碳主链、含硼主链、以及含过渡金属主链的无机高分子。硅树脂出现对耐磨薄膜材料的发展起了巨大的作用。由于硅是地球上储量最丰富的元素,又因为聚硅烷既可用作结构材料又可用作功能材料。其中主链全部是硅原子且具有有机侧链的聚硅烷仍是透明耐磨薄膜的一个研究重点,研究主要集中在通过改变侧链组成达到改性的目的,包括薄膜涂层的耐磨性能、结合性能和固化性能 。侧链的选用跟薄膜材料的体系和基板有关,常用的侧链有r-氨丙基 、乙烯基、r-甲基丙烯酰氧基等。为进一步改善无机多聚体的脆性,常引入MMA 、羟基丙烯酸酯 、双酚A 等多种官能团可聚合单体,实现分子水平的杂化,提高薄膜材料的柔韧性及与基板的结合性能。目前透明塑料用薄膜材料的研究取得了一些成果,主要研究工作集中在对有机硅水解形成的无机骨架的控制,有机-无机的杂化研究的深化,侧链各种功能性基团的引入等方面。
2.耐磨增强材料和添加剂
改进有机材料耐磨性最有效的办法是在机材料中引入无机微粒子,常用的有SiO2, ZrO2,TiO2 等。其中SiO2价格便宜,工业上应用较为广泛:二氧化硅的引入分为二类,一类是通过采用硅溶胶的方法引入,另一类是通过烷氧硅烷水解、缩聚形成二氧化硅微粒子的方法引入。而ZrO2,TiO2等在薄膜中的应用都是通过金属有机醇盐和无机盐的水解缩聚形成无机微粒子的方法引入。由于薄膜的耐磨性与无机粒子的含量有关,因此无机增强体颗粒含量和尺寸匹配及无机增强体颗粒的引入方法仍是当前的研究重点。随着生活水平和技术的提高,人们对薄膜提出了抗紫外线、自洁和抗静电等多功能化的要求,而多能化主要通过掺入各种功能添加剂实现,因此多功能添加剂的研究也是一个重点方向。
3. 溶剂
人们往往不重视溶剂在薄膜制备中的作用,认为它是挥发组份,最后总是挥发掉而不留在薄膜中,对薄膜质量不会有很大影响。其实,各种溶剂的溶解力及挥发率等因素对于薄膜制备、与基板结合力、表面状态、透明性等多方面件能都有极大影响。溶剂一般为混合溶剂,由真溶剂、助溶剂和稀释剂三大部分组成。溶剂的选用一般是根据相似相溶原则,溶剂的组成配方应根据涂料粘度、溶剂挥发率及挥发平衡原则来考虑。随着多种不同性能的成膜材料和增强材料的变换,溶剂也要相应地加以变化以达到生产良好耐磨透明涂层的目的。
4.薄膜制备与固化工艺
薄膜制备中基板的表面处理是一个重要的过程,原因在于高分子聚合材料具有较低的表面能,表面呈现惰性和疏水性,为达到牢固结合的闷的,一些涂层需要对基板进行预处理。常用的薄膜制备方法有三种:浸涂、旋涂和喷涂,三种方法各有其优缺点。喷涂一般用于工业化大面积透明薄膜的制作过程中。在透明塑料表面涂层上涂一层薄膜并不意味着耐磨涂层制备完毕,还有一个固化过程,由于采用溶胶-凝胶和化学共缩聚技术,涂层中含有大量的溶剂、水和羟基,另外基板由于是透明塑料,一般承受能力低于180~C,因此在干燥的过程中需采取特别的措施才能制备出致密的耐磨透明薄膜。研究发现,薄膜在氦气中固化能有效提高薄膜与基板的附着力及耐磨性,样品很容易地通过附着力和耐磨性测试,并发现薄膜厚度有20%的减少。人们为降低薄膜涂层固化温度和缩短固化时间,在薄膜组成中添加二甲基胺乙酸盐、乙醇胺乙酸盐、苯甲酸四乙基铵等催化剂,可使薄膜涂层在75~150°C短时间按内固化。在制备有机-无机杂化材料过程中,光辐射固化和微波加热固化也是常用的办法。
四、结束语
透明耐磨薄膜改变了人们的生活,给人类带来很大的便利。但是基础工艺数据、原料品种、生产成本等距大规模工业性应用还有相当距离,耐磨透明薄膜多功能化的发展还有很长的路要走。
参考文献
[1]王晶,高宏 材料科学与工程 2010年.