前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数控机床行业前景范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词: 数控机床 发展现状 发展前景 改革措施
数控机床(Numerical Control Machine Tools)是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。
一、数控机床的发展过程
数控机床是在机械制造技术和控制技术的基础上发展起来的,自上世纪50年代以来,世界数控机床主要经历了数控NC(Numerical Control)和计算机数控CNC(Computer Numerical Control)两个阶段六个年代。其过程大致如下:
1.数控NC阶段主要经历了三代。
第1代数控系统,始于50年代初,系统全部采用电子管元件,逻辑运算与控制采用硬件电路完成。
第2代数控系统,始于50年代末,以晶体管元件和印刷电路板广泛应用于数控系统为标志。
第3代数控系统,始于60年代中期,由于小规模集成电路的出现,其体积变小,功耗降低,可靠性提高,推动了数控系统的进一步发展。
2.计算机数控CNC阶段经历了三代。
第4代数控系统,始于70年代,当首个采用小型计算机的CNC装置在芝加哥展览会上露面时,标志着CNC技术的问世。
第5代数控系统,70年代后期,中、大规模集成电路技术取得巨大成就,促使价格低廉、体积更小、集成度更高、工作可靠的微处理器芯片产生,并逐步应用于数控系统。
第6代数控系统,始于90年代初,受通用微机技术飞速发展的影响,数控系统正朝着以个人计算机(PC)为基础,开放化、智能化、网络化等方向进一步发展。
二、数控机械的特点
数控机床是机电一体化的典型产品,数控机床控制技术是集计算机及软件技术、自动控制技术、电子技术、自动检测技术、液压与气动技术和精密机械等技术为一体的多学科交叉的综合技术。
1.对加工对象的适应性强,可加工复杂形状的零件表面。
在同一台数控机床上,通过重新编制程序,可适应不同品种及尺寸工件的自动加工,也可以加工复杂结构的单件、小批量生产及试制新产品,数控机床还能自动加工精密复杂的表面(如螺旋表面)。
2.加工精度高,加工质量稳定。
目前,数控机床控制的刀具和工作台最小移动量达0.0001mm,而且数控系统可自动补偿进给传动链的反向间隙和丝杠螺距误差,使数控机床达到很高的加工精度。此外,数控机床的制造精度高,其自动加工方式避免生产者的人为操作误差,产品合格率高,加工质量稳定。
3.生产效率高。
由于数控机床结构刚性好,允许进行大切削量的强力切削,提高了数控机床的切削效率,节省了机动时间。因为数控机床的移动部件的空行程运动速度快,所以工件的装夹时间、辅助时间比一般机床少。当在加工中心上进行加工时一台机床实现了多道工序的连续加工,生产效率提高明显。
4.自动化程度高,劳动强度低。
数控机床对零件的加工是按事先编好的程序自动完成的,数控机床自动化程度高,劳动人员不需要进行复杂的重复性手工操作,可大大减轻工人的劳动强度和紧张程度,提高加工效率。
三、数控机床控制技术的发展前景
随着科学技术的不断发展,数控机床的发展越来越快,数控机床正朝着高性能、高精度、高速度、高柔性化、模块化和智能化方向发展。
1.高性能。
随着数控系统集成度的增强,数控机床实现多台集中控制,甚至远距离遥控。
2.高精度。
数控机床本身的精度和加工件的精度越来越高,而精度的保持性要好。
3.高速度。
数控机床各轴运行速度将大大加快。
4.高柔性。
数控机床的柔性化将向自动化程度更高的方向发展,将管理、物流及各相应辅机集成柔性制造系统。
5.模块化。
数控机床要缩短周期和降低成本,就必然向模块化方向发展,这既有利于制造商又有利于客户。
四、数控机床发展中存在的问题
我国近几年数控机床虽然发展较快,但与国际先进水平还存在一定的差距,主要表现在以下方面。
1.核心零部件大量依靠进口。
经过近二十多年的技术引进、消化、吸收和创新,中国数控机床行业的发展令人瞩目,国产数控机床功能部件的生产已经具备一定的规模。但是,据中国机床工具工业协会提供的数据来看,近年来我国一直是世界机床第一消费国和第一进口国。但是,机床行业迅速发展的背后,一个不能忽视的事实是,我国关键零部件生产依然受制于人,出现利润不高、产品缺乏核心竞争力的局面。
2.产品水平不高。
首先,精度普遍不够高,对于国产加工中心刀库机械手、数控车床刀架,用户不放心,定位精度,特别是重复定位精度有待提高。只有少数产品达到欧洲标准的定位精度;其次,高精度、静刚度主机结构和整机性能开发有差距;再次,产品在主轴转速、快移速度、换刀速度、加速度等机床性能指标上与国外有较大差距。
五、下一步努力方向
为了缩小与世界先进水平的差距,相关专家建议机床企业应在以下几个方面着力研究。
1.跟踪国际水平,使数控机床向高效、高精方面发展。
2.多品种制造,满足不同层次的用户。
3.模块化设计,缩短开发周期,快速响应市场。
数控机床使用范围越来越大,国内国际市场容量越来越大,但竞争会加剧,只有紧跟先进技术进步的大方向,不断创新,才能赶超世界先进水平。
参考文献:
[1]王立平.关于国产数控机床发展的几点思考,航空制造技术,2010(04).
[2]刘小敏,王元生.我国数控机床的现状与发展[J].机械研究与应用,2006(8).
[3]杨冰.论我国数控技术当前存在的主要问题、发展趋势及其对策,江苏・建湖,科技经济市场,2006(11).
关键词:数控机床;伺服系统;故障诊断;维修处理
中图分类号:TG659 文献标识码:A
数控机床是装有程序控制系统的自动化机床,作为装备制造领域先进技术的代表,被广泛应用于装备制造行业。数控机床的应用,提升了装备制造业的自动化、信息化和现代化水平,为装备制造行业带来了广阔的发展前景。数控机床伺服系统由于担负着控制信息处理和控制机床执行部件工作的重要系统,其故障的诊断分析和维修处理技术也一直受到装备制造行业的普遍重视。
1 数控机床伺服系统构成
数控机床伺服系统由驱动装置和执行机构两部分构成,数控机床伺服系统能够实现数控机床的进给伺服控制和主轴伺服控制,通过数控机床伺服系统对数控装置指令信息接收、放大、整形处理,能够将控制器的命令转换为机床执行部件的位移运动,从而实现对零件的切削加工。数控机床的伺服驱动装置要求具有良好的快速反应性能,准确而灵敏地跟踪数控装置发出的数字指令信号,执行来自数控装置的指令,提高系统的动态跟随特性和静态跟踪精度。伺服系统包括驱动装置和执行机构两部分,由主轴驱动单元、进给驱动单元和主轴伺服电动机、进给伺服电动机组成。数控机床系统中伺服系统是将控制器的数字命令转换为具体加工的重要环节,因此伺服系统不仅结构原理复杂,对工件的加工和处理更有重要作用。伺服系统的运行稳定性直接影响机床的运行状态、工件的加工质量,为了在保证数控机床机械加工精度、准确度的前提下提升数控机床的生产效率,对伺服系统的故障预防、诊断和分析一直是数控机床应用中的重点问题。
2 进给数控机床伺服系统的常见故障诊断与维修处理
2.1 进给伺服系统故障类型
进给伺服系统由于其涉及的元件较多且功能复杂,因而进给伺服系统的故障类型也较为多样。笔者通过对数控机床进给伺服系统故障的总结和分析,其故障主要有以下几种类型。报警:报警主要是由于进给运动量超过软件设定的限位或限位开关决定的硬限位时发生的超程报警。另外,当系统进给运动的负载过大时,由于正反运动的过于频繁和进给传动链状态不良也会发生报警。当伺服系统发生报警时,预示着伺服系统的工作出现问题,工作人员需要及时进行停机检查,避免数控机床故障处理不及时造成零件质量问题并对数控机床带来物理性损坏。窜动、爬行和振动:窜动、爬行和振动是数控机床伺服系统常见的故障,一旦窜动、爬行和振动现象发生,会直接导致机械加工精度和准确度的下降,给零件质量带来影响。窜动大多是由于测速装置故障导致的测速信号不稳定或者速度控制信号不稳定导致的,除此之外接线端子的接触不良也会导致窜动现象的发生。爬行发生的主要原因是传动链的状态不良,伺服增益过低和外加负载过大等导致。振动现象的发生大多是由于进给速度太快或进给加速度过大导致的。位置误差和漂移:位置误差是由于伺服轴运动超过位置允许误差范围时导致,位置误差包括跟随误差、轮廓误差和定位误差等。漂移是指数控机床的指令值为零时,坐标轴仍然继续移动的现象,位置误差和漂移不仅会影响工件的加工质量,严重时还会发生撞车事故,给数控机床带来物理损伤。回参考点故障:机床回参考点故障一般表现为找不到参考点或者找不准参考点两类,回参考点故障大多是由于参考点减速开关接收信息故障或信号失效导致的。
2.2 进给伺服系统常见故障的维修处理
进给伺服系统故障,一般可通过参考操作说明排除,如果遇到参考操作说明无法排除的故障则需要具体问题具体分析解决。当振动故障发生时可以对机械安装进行检查和调整,并保证伺服电机速度和位置检测的准确性,由于数控伺服系统中电子元件较多,因此还需要检查有无外部干扰影响,并且对驱动单元的参数进行排查,通过检查确定故障类型,如果是机械故障则对机械故障予以及时解决,如果是电气故障则需要具体确认发生问题的位置,通过维修或者元器件更换等手段对伺服系统故障进行维修处理。如果发生无法回参考点的现象,首先可以检查回参考点减速开关信号是否准确有效,并根据回参考点减速开关信号的问题采用原理分析法或追踪法分析等方法判断位置并及时的维修和处理。
3 主轴伺服系统故障分析及处理
3.1 主轴伺服系统的故障类型
直流主轴伺服系统的故障主要表现为停转、速度异常、电机振动和主电路过电流报警等。交流主轴伺服系统容易发生的故障主要表现为电机过势、熔丝熔断等,引发该类故障的主要原因时由于电机超载、接触不良或者冷却装置损坏导致的部分元件阻抗过高或者数控机床的浪涌吸收器发生故障。
3.2 主轴伺服系统常见故障的维修处理
主轴伺服系统出现故障时首先要确定主轴系统出现故障的类型及位置。当主轴电机不运转时首先需要确定数控系统是否有信号输出,再对I/O状态进行观察,并确定是否满足主轴的启动条件。如果伺服电机带有电磁制动,还需要确定是否释放了电磁制动。如果主轴出现转速异常,首先要对机械传动机构进行检查,确保机床的动作无异常。如果机械传动机构无异常则需要对主轴驱动器的电缆连接、主轴驱动器的状态指示灯等进行检查,并分析是否主轴驱动器出现问题。如果以上原因均被排除,则很有可能是控制板出现故障。当主轴高速转动振动过大时,多数是由于主轴驱动系统的电气部分故障导致,针对这种问题我们要根据电气原理图对主轴驱动与各处电气连接进行全面检查,确定故障部位并予以维修和处理。
结语
综上所述,数控机床伺服系统作为数控机床系统中最为复杂的系统,对数控机床的平稳运行和机械零件加工精度具有重要影响。当数控机床伺服系统出现问题时,首先要根据故障现象判断故障类型,再通过一定的技术手段对故障位置进行排查,当确定故障原因和位置后,针对故障的类型进行合理的维修处理,提升数控机床运行的稳定性,保证数控机床所生产的工件质量,并提高数控机床的生产效率。
参考文献
机床是先进制造技术的载体和装备工业的基本生产手段,机械制造的工作母机,是装备制造业的基础设备,主要应用领域是船舶、工程机械、军工、农机、电力设备、铁路机车、汽车等行业。在船舶、工程机械等行业的产能扩张压力的推动之下,机床工业正迎来快速发展阶段。
就最近几年的发展情况看,在机床工业的下游产业中,船舶、工程机械、重型机械、军工是发展最快的行业,这些行业的企业在从产能闲置发展到满产超产的过程中,对机床设备的更新换代和小规模添置需求带动了机床工业稳定中速增长;当前各大造船公司、工程机械公司的产能利用率基本都在100%以上,尤其是造船行业,手持订单远超当前产能。生产任务已经排到了2011年,扩大产能已成为必然,扩产必须的生产设备尤其是机床设备的需求量将迎来加速增长,其他如汽车、电力设备的需求也将维持稳定增长。
二、各机械子行业交替推动机床工业发展。大型重型机床速度远快于中小型机床
机床是制造机器的机器,为汽车、船舶、军工、工程机械等各个装备制造产业提供装备,因此与宏观经济、特别是制造领域的固定资产投资密切相关。同时机床行业的直接下游是机械制造,因此机床行业与机械制造业的关系更为密切。机床工业给其下游多个机械制造子行业提品,因此不同时期,各装备制造子行业有繁荣,有衰退,而机床工业发展比其下游行业要相对稳健。在各个不同的经济发展阶段,各个子行业交替成为推动机床行业发展的主动力,机床行业将跟随发展最快的子行业增长。
在当前的经济发展阶段,船舶、工程机械,重型机械、石化生产设备等重型设备是发展最快和增长前景最为明确的下游行业,汽车工业虽然整体盈利水平增长跟不上产量增长,但产销量的增长还是比较明朗的,因此汽车工业对机床的需求仍将稳定增长。
重型工业发展是此轮中国经济繁荣的主要增长点,成为拉动我国经济的重要力量,中国目前正处于重型机械、重化工业发展阶段的中段,这一阶段还将持续很长时间,重型机械行业发展应该快于轻型、中型机械产品的发展,相对应地其所推动的大型、重型机床行业的发展速度将远快于中小型机床,因此我们更看好大型、重型机床行业的发展前景。
三、高精密机床壁垒很高
机床行业作为精密机械制造业,发展特点是循序渐进,逐步累积,产品性能很难在短时间内取得爆发式进展。如同其它制造业一样,基于亚洲国家的成本优势,近年来机床工业有向亚洲新兴国家转移的趋势,但这种趋势发展的速度比较缓慢,远远落后于其它类机械设备制造业,这主要也是因为机床工业技术和工艺提高的难度很高。当然我们认为这种转移的趋势不可逆转。
高精机床是先发优势明显的行业,技术与工艺非常严苛,每提高一步都需要很丰富的技术、工艺上的沉淀和艰苦的努力。对于后发的国家和企业来说很难弥补,这也是我国机床工业长期落后,贸易逆差居高不下的重要原因。这与我国其他行业特别是其他机械子行业发展突飞猛进,产品开始大规模出口的形势形成了鲜明对比。相对于其他机械行业来说,我国管理部门对机床行业的重视和扶持力度是相当大的,但是机床行业的逆差水平是所有机械类子行业中最高的,这充分说明了高精机床提高的难度。
正因为高精机床行业提高难度大,所以机床行业先进国家对本国机床企业保护的力度也比其他行业要大,西方国家对我国机床业不仅在技术上严格限制转让,而且基于政治原因在高精机床产品上也对我国实施限制和禁运。高精机床是当前为数不多的西方国家对我国采取限制和禁运措施的产品。
当然机床行业这种高壁垒特点确实给国内机床企业发展制造了障碍,但这也成为国内高精机床行业龙头企业的保护墙和后发企业的进入壁垒,龙头机床企业相对国内后发企业的技术优势会维持很长一段时期。
四、中国机床工业取得很大进步
机床是装备工业的基础,生产装备的装备,机床工业是关系国民经济、国防建设的基础工业和战略性产业,在发达国家无一不重视机床工业。我国机床工业经过多年艰苦努力,建立起较大的规模和较完整的体系,奠定了有利的技术基础,具备相当的竞争实力。整体上说,我国机床工业已跨入世界行列的第一方阵。2000年以来,世界机床工业由欧洲向亚洲新兴国家转移趋势,虽然缓慢但难以逆转。
“十五”以来,我国机床消费连创纪录,大陆市场机床消费总额(国内产品销售产值十进口额一出口额)和进口额已连续5年居世界第一,成为令全球瞩目的机床消费大国。2006年中国大陆市场机床消费额达131.1亿美元,同比增长约20%;机床进口72.4亿美元,同比增长11.55%,增幅比上年同期提高1.7个百分点。中国机床消费额占全球机床销售总额的比重已达到20%以上,为机床产业发展提供了难得的市场机遇。世界机床消费位列二、三、四名的日本约占15%,美国约占11.6%,德国约占10.6%。
作为一个世界上发挥重要作用的大国,我国必须从各个方面确保国家的独立自主地位。我国机床行业产品种类齐全,可生产品种已经超过3600种,基本已经无空白领域,大部分满足了我国装备制造业对机床的需求。
近年来,我国机床市场需求非常旺盛,2003年至2006年之间,销售收入增长率分别为21%、21%、17%,27%,而数控机床更是以50%以上的速度增长。机床工具行业整体销售收入连年以20%以上的复合增长率增长,从目前的情况来看,国内机床行业需求旺盛趋势还将延续。在技术含量较高的金属切削机床方面,机床产量连年上升,年复合增长率22%以上,数控金属切削机床产量上升幅度更快,数控金切机床比例稳步增长,2001年中国数控金切机床比例只有9%,到2007年上半年已经达到了20%。由于我国目前正处于工业化初期,很多金属加工产品要求的精度并不要求很高,加上我国劳动力成本低廉,因此低端普通机床仍然有一定的市场销路。
五、国产机床数控化率逐年提高
数控机床的工作原理就是将加工过程所需的各种操作(如主轴变速、工件的松开与夹紧、进刀与退刀、开车与停车、自动关停冷却液)和步骤以及工件的形状尺寸用数字化的代码表示,通过控制介质将数字信息送入数控装置,数控装置对输入的信息进行处理与运算,发出各种控制信号,控制机床的伺服系统或其他驱动元件,使机床自动加工出所需要的工件。所以,数控加工的关键是加工数据和工艺参数的获取,即数控编程。
数控机床与普通机床相比有很多无可比拟优点:1、适合于复杂异形零件的加工;2、加工精度高;3、加工稳定可靠;4、高柔性,加工对象改变时,一般只需要更改数控程序,体现出很好的适应性,5、高生产率;6、劳动条件好,机床自动化程度高,操作人员劳动强度大大降低,工作环境较好。
缺点是:1、投资大,使用费用高;2、生产准备工作复杂;3、维修困难,数控机床是典型的机电一体化产品,技术含量高,对维修人员的技术要求很高。欧洲、美国、日本的机床业都很重视数控化,目前欧美日的金属切削机床的产值数控化率均在80%以上,数量数控化率也在60%以上。
我国数控机床开发晚,起点低,前期发展缓慢。数控系统装置是数控机床的神经中枢,是长期阻碍中国数控领域发展的关键环节。“九五”以后国家有关部门明确发展以PC为平台的数控系统,通过“九五”的攻关,现在框架上已初步完成。解决了多坐标联动的技术难题。从过去的三坐标联动达到了最多可达入坐标联动,打破了国外对我国的技术“限制”。同时,我国国产数控系统已具备批量生产能力,市场品牌也在逐步树立,正在改变国际强手在中国市场上奇货可居的垄断局面。
经过多年的发展的我国数控机床已经取得了很大进步,远高于普通机床的发展速度,2002年国产数控金属切削机床24803台,06年达到了82024台,数量数控化率从9%提高到了20%,产值数控化率为44%。
但是总体来说我国数控金切机床还是相对比较落后,国内市场占有率低,基本依赖进口,这是导致我国金属加工、金属切削机床的贸易逆差连年上升的重要原因。我国数控金切机床消费对进口产品的依存度长期维持在70%以上,如何发展我国数控金切机床,是我国机床业界的重要任务,同时也是我国机床扩张和增长的重大机会。
六、对进口机床依存度仍然很高
长期以来我国机床工业取得了很大发展,但是相对于发达国家的机床工业我们仍然落后,主要在加工精度、稳定性、无故障时间上与国外产品有较大差距,而且数控化率偏低,虽然我国大陆机床主机的销售收入增长很快,但进口增长也很快,进出口逆差有逐年扩大趋势,只是在07年上半年,进出口逆差有稍稍缩小的迹象,总体而言,我国对进口机床的依存度较高,一直维持在50%以上。这其中,数控金切机床对国外产品的依存度很高是重要原因。我国数控金切机床对进口存度达到了70%,可以说基本依赖进口。
造成这种局面的主要原因是我国机床产品,尤其是高精机床和数控机床的性能、质量、稳定性落后,而且提高速度缓慢;另一个原因是国内对机床行业的保护力度还不到位。前些年为了吸引外资,对外商直接投资企业购买外国设备免税。近年来,政府已经对这些政策进行了修改,外商投资企业进口机床的免税条款已经废除,而且国内企业的固定资产投资购买国产设备可以抵税。这些措施有力地支持了国产机床业的发展。
当然我国机床行业对进口度高,也从侧面说明了机床行业提高的速度较慢,很难取得爆发性的飞跃,行业壁垒非常高,因此国内机床行业内的领先企业,在技术和产品性能上优势将保持很长一段时间,其他后来者很难在短时间内超越。同时对外依存度高也给予了我国机床行业较大的发展空间。
【关键词】 机床;数控化;改造
普通机床是目前使用最广泛的机床之一,其技术参数范围广,加工范围较广,但结构复杂且自动化程度低,生产效率低,不适用于精密、形状复杂零件的加工。我国从20世纪50年代末至现在已陆续制造了一批数控机床,70~80年代中期,又陆续引进了一批外国数控机床,随着产品的变化和发展,普通机床的功能已不能满足要求。
一、普通机床数控化改造的必要性
就目前的现况而言旧机床主要表现在设备老化陈旧、自动化水平低、技术水平落后、劳动生产率低,严重影响了生产力的发展。数控机床则具有普通机床所不具备的优点,如:加工精度高,产品的稳定强;加工零件范围广,能适应单件、形状复杂、精度要求较高的零件生产;能有效地减轻工人的劳动强度,缩短生产准备时间。对我国企业而言采用,面对激烈的市场竞争,采用先进的工艺设备,已经成为我国制造技术发展的总趋势,也是企业走出困境、提升水平,实现跨越式发展的必由之路。
二、数控机床以及再生改造的内容和关键技术
数控机床以及再生改造的内容包括:首先是恢复原功能,对原机床存在的故障部分进行诊断并恢复;其次是翻新,为提高精度、效率和自动化程度,对机械、电气部分进行翻新,对机械部分重新装配加工,恢复原精度;对其不满足生产要求的CNC系统以最新CNC进行更新;最后是技术更新或技术创新,为提高性能或档次,或为了使用新工艺、新技术,在原有基础上进行较大规模的技术更新或技术创新,较大幅度地提高水平和档次的更新改造。改造中的关键技术主要是指:正确估计现有机床的剩余价值组成数控机床的各个部分的使用寿命相差很大。一些主要机械大件(如床身、立柱和主轴箱等)使用寿命可达10年以上;一些频繁运动的驱动机械部件(如滚珠丝杠副)可保持运动精度的寿命约5年;一套数控系统的使用寿命可达10年,而易损电器元件(如行程开关)却只有两年。由于数控技术的迅速发展,一个标准型的数控系统在制造厂的生产,寿命为五六年。在数控机床的使用后期要寻找已损坏元器件的外购件将是很困难,甚至为此不得不放弃整个系统。在对旧数控机床进行改造时,必须仔细分析这台机床哪些部分还可利用,哪些必须更新,甚至可以进行折价比较。一般要求可利用的剩余价值不应低于总价值的三分之一,改造后的机床综合性能终究比一台新机床差些。上述原则还可以确定机床改造后要求达到的技术指标和改造后的规模水平。一般来说,旧数控机床中剩余价值较大的还在机械部分及配套附件,数控系统往往都需要更新。
三、我国机床数控化推进工程应采取的对策
1.政府应加大扶持宣传力度。进行大规模的数控改造,首先需要政府大力宣传,形成一个声势浩大的气氛;其次也需要政府在政策和资金上大力的支持。德国政府在这方面就做了大量努力,如德国政府在1991年东、西德统一后,从1994年到1997年共投资500万马克,对原东德普遍落后的设备进行改造,迅速改变了东部地区生产水平落后的面貌。我国机床数控化推进工程的主要道路还是靠对普通机床进行数控化改造,在数控化改造中政府的支持可以多种形式,如政府直接投资,对一些重点企业、骨干企业的普通机床进行数控改造;又如政策支持,给予企业低息贷款、减税、免税等;再者就是政府出面组织、牵头。这些形式都会给企业的数控化改造提供有力的支持。
2.注重数控技术人员的培训。数控操作人员、特别是维护人员匮乏是制约我国机床数控化进程的一大障碍,各企业在进行数控改造的同时,应注重数控技术人员的培训。应从整体上提高数控操作人员的素质,让数控操作人员既能进行数控编程,又能操作机床,还能进行机床的简单维护,把他们培养成熟练的数控技术工人。各企业既要舍得花钱进行硬件的改造,又要舍得花钱进行诸如人员培训等软件的建设。
3.开发高速、高精度、高效率加工中心等关键技术。在对普通机床进行数控改造的同时,应顺应国际数控机床发展的潮流,大力发展我国的数控机床。各企业应加强与高校和科研单位的合作,开发具有高速、高精度、高效率加工中心等先进数控设备以及一些特殊专用数控设备,可以促进本国机床工业的发展。
从以上分析可知,发展数控机床和进行数控改造在我国有着广泛的市场和前景,每台机床的改造都要根据用户单位自身经济能力确定投入的财力进行分析,确定最佳的改造方案。加大普通机床数控化改造力度,不仅能提升我国工业装备水平,也提高了我国机床制造水平,加强了我国参与国际竞争的能力。
参考文献
关键词:数控机床 高速切削技术 加工工艺研究
中图分类号:TG66 文献标识码:A 文章编号:1672-3791(2013)04(c)-0112-02
近年来,随着科技、经济的高速发展机械制造业也出现了前所未有的发展态势,数控机床的加工工艺也从传统加工工艺发展到了引进高速切削加工的模式,高速切削加工不仅降低了加工表面的粗糙程度,保证了加工质量,而且大大提高了加工的效率。数控机床的高速切削加工是现代加工工艺提升的代表,如何能让这种加工工艺在数控机床的操作中更加高效地发挥作用,需要在未来的工作中进行深入探讨与研究。影响数控机床高速切削技术的关键因素包括高速主轴、快速进给系统、高速切削刀具技术、高速切削工艺、高速机床的床身、立柱和工作台,这些因素在加工过程中是需要特别关注的,把握好所有操作细节便会提高加工质量,节省技术成本。本文对数控机床加工工艺进行了研究,高速切削技术的操作机理及加工工艺是本文探讨的主题,笔者还对影响高速切削技术的各种因素进行了分析,并展望了高速切削技术的应用前景。
1 数控机场具有高速加工的技术优势
高速加工突破了传统意义上对切削原理的认识。有资料表明,如果在切削速度超过600 m/min的速度以后继续增加切削速度,切削速度不升反降,工件会将切削过程中产生并进入将切削的热量带走,这个观点已经被国外高速加工实验证实。测试证明在大多数实验条件的应用情况下,工件在进行切削时温度不会升高3 ℃以上。如此相对应,金属切除率已定的情况下,实际切削实力在切削速度达到一定速度后基本保持不变。工件在进过高度切削的理想加工后,切屑变形及其收缩加工的实现与应用对航空制造业有着重要的意义。各种相关要素之间要相互协调才能构成高速加工系统,它综合了多项先进技术,机床厂商因此大力进行开发并推出各种关于高速加工的新技术设备。
高速切削技术可以加工较为薄壁的零件,对一些脆性材料也可以进行加工,原因与切削速度快有直接的关系。高速切削深度及厚度都相对小很多,切削量也非常少,切削力大大减弱,因此在加工薄壁零件、脆性材料等非常适合,并且速度的提升使同一时间内加工的量增加,带来了加工效率的提高。同时加工精度也受其高速加工的影响,在减少切削热、内应力和热变形等因素后,加工的精度自然有所很大程度上的提高。加工工件表面的粗糙程度也较传统工艺有很大降低,这与高转速减少加工过程中的振动有关,振动减少后加工表面不再像以前一样粗糙,增加了工件的美观程度。
1.1 数控高速加工机床的关键技术
想要高速切削加工得到良好实现,高速机床是前提和关键。而高速机床的关键有以下两点:(1)高转速主轴要具有高精度;(2)使用的轴向进给系统的主轴要拥有高控制精度可以提供进给速度和进给加速度。分述如下。
(1)高速主轴。高速切削的最关键零件之一就是高速主轴。现在使用10000~20000 r/轴转速的加工中心得到广泛普及,并且开始进行主轴转速高达100000r/min、200000r/min、250000 r/min实用高速主轴的研发。主轴零件在主轴高转速的情况下,受离心力作用发生震动和变形,所以要严格控制因为主轴高速运转摩擦和大功率内装电机产生的热量所引发的高温和变形。因此高速主轴的性能要满足以下要求:①高转速及其范围;②刚性要强且回转精度够高;③热稳定性比较良好;④功率够大;⑤和冷却系统要足够先进;⑥株洲检测系统要够可靠。
(2)快速进给系统。高速切削时,为了保持刀具每齿进给量基本不变,随着主轴转速的提高,进给速度也必须大幅度地提高。目前高速切削进给速度已高达50~120 m/min,要实现并准确控制这样的进给速度对机床导轨、滚珠丝杠、伺服系统、工作台结构等提出了新的要求。而且,由于机床上直线运动行程一般较短,高速加工机床必须实现较高的进给加减速才有意义。为了适应进给运动高速化的要求,在高速加工机床上主要采用如下措施:①采用新型直线滚动导轨,直线滚动导轨中球轴承与钢导轨之间接触面积很小,其摩擦系数仅为槽式导轨的1/20左右,而且使用直线滚动导轨后,“爬行”现象可大大减少;②高速进给机构采用小螺距大尺寸高质量滚珠丝杠或粗螺距多头滚珠丝杠,其目的是在不降低精度的前提下获得较高的进给速度和进给加减速度;③高速进给伺服系统已发展为数字化、智能化和软件化,高速切削机床己开始采用全数字交流伺服电机和控制技术;④为了尽量减少工作台重量但又不损失刚度,高速进给机构通常采用碳纤维增强复合材料;⑤为提高进给速度,更先进、更高速的直线电机己经发展起来。直线电机消除了机械传动系统的间隙、弹性变形等问题,减少了传动摩擦力,几乎没有反向间隙。直线电机具有高加、减速特性,加速度可达2 g,为传统驱动装置的10~20倍,进给速度为传统的4~5倍,采用直线电机驱动,具有单位面积推力大、易产生高速运动、机械结构不需要维护等明显优点。
(3)高速切削刀具技术。①刀具材料。刀具在数控机床高速切削技术中使用,将要满足下列要求,例如:良好的机械性能、较高的热稳定性、较强的抵御冲击能力、耐磨损等,并且要具有较小和加工材料的亲和力。②刀具结构。为了确保加工人员及数控机床的安全性,高速切削刀具的机构要有严格的要求,必须同时满足静平衡和动平衡两种要求。动平衡对大直径或盘类的刀具要求相对于小直径的刀具要严格很多,刀具外伸较长必须动平衡。要求进行平衡的元件为刀具、主轴和夹头,刀具和夹头组合、刀具与主轴也要进行平衡。虽然目前对刀具结构进行平衡的要求比较严格,但是统一的平衡标准并不明确,这需要在以后的高速切削技术加以制定及明确。③刀具的几何参数。高速切削刀的加工质量、刀具的耐用度等因素都与刀具的几何参数有直接的关系。④刀柄系统。刀柄系统影响刀具和主轴的连接刚性,必须随高速切削技术的发展而不断提高质量。
(4)高速切削工艺。数控机床高速切削技术和传统的工艺有着较为明显的不同之处,传统加工技术已经不再适应社会的发展需求,高速加工是新切削方式的代表,为提高加工精细度、提高加工效率、降低加工成本等做出了巨大的贡献。需要在以后的数控机床加工中不断完善加工细节,改进相关技术。
2 数控机床高速加工的发展前景
目前数控机床高速加工技术受到先进数控生产线的引领,在机械制造业发展状况良好,相关机械制造行业很多都引进了高速加工技术。但是引进的比例相对较小,国家和企业对该技术的认识程度相对较浅,投入的关注、资金以及政策等较少,未能对该技术与本企业的工艺技术有机结合起来,高速加工技术运用程度还是不够普遍。在未来,随着高速加工技术的不断完善与发展,必然会对机械制造相关行业产生更为广泛的影响,国家、企业对高速加工技术的关注会更加密切,引进该项技术更为普遍,利用高速加工技术为本企业创造更多的价值。
3 结语
综上所述,数控机床高速切削加工工艺有着其独特地技术优势,切削原理是现代切削技术发展的基础,提高了加工质量,确保了加工精度,节约了加工成本。高速切削加工的关键技术科学及实操性非常强,为数控机床高速加工工艺的操作提供了有利支持。在未来高速加工技术将会不断得到完善,更多的应用到机械制造行业当中去,为国家带来巨大的经济效益和社会效益。
参考文献
[1] 李彦.数控机床高速电主轴技术及应用[J].精密制造与自动化,2011,3.