首页 > 文章中心 > 医用高分子材料的优缺点

医用高分子材料的优缺点

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇医用高分子材料的优缺点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

医用高分子材料的优缺点

医用高分子材料的优缺点范文第1篇

【关键词】 智能水凝胶 分类 理论机理 应用

水凝胶是由高分子的三维网络与水组成的多元体系,是自然界中普遍存在的一种物质形态,生物机体的许多部分(如人体的肌肉、血管、眼球等器官) 都是由水凝胶构成的。它是一些高聚物或共聚物吸收大量水分,溶胀交联而成的半固体。水凝胶的性质不仅与聚合单体和交联剂的性质以及聚合工艺条件有关,而且还取决于溶胀时的条件。根据水凝胶对外界刺激的应答情况,可分为两类:一类是传统的水凝胶,这类水凝胶对环境的变化不特别敏感。另一类是环境敏感的水凝胶,这类水凝胶在相当广的程度上对环境所引起的刺激有不同程度的应答,具有智能性。智能水凝胶对外界微小的物理化学刺激,如温度、电场、磁场、光、pH、离子强度、压力等能够感知并在响应过程中有显著的溶胀行为或响应性。由于水凝胶的这种智能性,使其在药物控释载体、组织工程、活性酶的固定、调光材料方面具有良好的应用前景,另外,在化学转换器、记忆元件开关、传感器、人造肌肉、化学存储器、分子分离体系等方面也开始表现出良好的应用前景。近年来对它的研究和开发工作异常活跃,成为当今研究的热点。

1 智能水凝胶的分类

根据对外界刺激的响应情况,智能型水凝胶分为:温度敏感型水凝胶、pH敏感型水凝胶、光敏感型水凝胶、电场敏感型水凝胶、压力敏感型水凝胶、生物分子敏感型水凝胶等。

1.1 温度敏感型水凝胶

温度敏感型水凝胶对环境的温度变化能产生响应,即当周围环境温度发生变化时,凝胶自身的性质也随之改变。目前研究较多的是随温度变化而发生体积相转变的水凝胶,可分为高温收缩和低温收缩型两类。还有一种是无体积变化而具有温致变色的温度敏感水凝胶。

这种热敏特性的机理是凝胶体系中存在着一定的疏水和亲水基团,它们和水在分子内和分子间会产生相互作用。当T < LCST时, 凝胶溶于水, 凝胶与水之间主要是酞胺基团与水分子之间氢键的作用,此时由于氢键及范德华力的作用,大分子链周围的水分子将形成一种由氢键连接的、高度有序化的溶剂壳层。随温度上升,凝胶与水相互作用参数改变,其分子内及大分子间的疏水作用加强,形成疏水层,氢键被破坏,大分子链周围的溶剂壳层被破坏,在某一临界温度(LCST)水分子从凝胶中排出,凝胶产生相变,从而表现出温敏性。此时高分子由疏松的线团结构转变为紧密的胶粒状结构,发生了coil - globule 转变。这种相变是在很窄的温度范围内发生的,发生相变的温度称为最低临界转变温度(LCST),高于这个温度时溶胀的水凝胶发生收缩,而低于这个温度则再度溶胀。

聚N-异丙基丙烯酰胺(PNIPAM)水凝胶的温度敏感性相转变是由于交联网络的亲水性/疏水性平衡受外界条件变化的影响而引起的,是分子链构象变化的表现。然而,PNIPAM水凝胶存在的一些缺陷也极大的影响了其实际应用。存在的缺陷主要有两点:第一,响应速率慢,第二,机械强度差。因此近十几年来,这一领域的研究主要集中在PNIPAM水凝胶响应速率和机械强度的改善上。提高PNIPAM水凝胶的响应速率目前主要有三种方法:1缩小凝胶的体积尺寸,可制成微胶囊,制成纳米微粒网络。2合成具有孔结构的凝胶。3在凝胶基体中引入接枝链。而提高PNIPAM水凝胶机械强度的方法有:1引入机械强度高的物质作支架。2形成互相贯穿聚合网络(IPN)。3与疏水性单体共聚。

自1984年有文献报道聚N-异丙酰胺具温敏性以来,聚N-异丙酰胺及其衍生物已广泛用于药物释放研究。聚N-异丙酰胺中加入疏水性的甲基丙烯酸丁酯可增强凝胶机械强度,缩短对温度变化响应的时间。用聚N-异丙酰胺水凝胶包载药物的滴眼剂治疗青光眼,降压时间比普通制剂持久6倍。将包裹5-氟尿嘧啶的聚N-异丙酰胺水凝胶置透析袋中,释药受凝胶和透析膜双重控制,温度升高释药加快。

抗癌药置温敏水凝胶中,用抗体、糖作靶向基团运至靶区,并在外部施加物理刺激,可提高载体稳定性和靶向效果。温敏单体与磁性微球共聚,在外加磁场作用下具快速、简便的磁分离特性,可用于蛋白、多肽控释系统。对注射壳聚糖-β-甘油磷酸水凝胶及加入脂质体后的释药研究,后者在体温下快速胶凝。研究盐酸维拉帕米和硝苯地平在聚丙烯酰胺-瓜尔胶凝胶微球中的释药。泊洛沙姆可作为蛋白释药载体制备植入剂、纳米微球,用物理交联制备嵌段共聚水凝胶包埋大分子,透明质酸-泊洛沙姆凝胶用于人生长激素的控制释放。

近十年来,以PNIPAM为代表的温度敏感型水凝胶在理论和应用上均引起了人们越来越大的兴趣。其在应用领域的研究有待于进一步的开发。随着有关研究的深入,相信人们在不久的将来会在这一领域取得更大的成就。

1.2 pH敏感型水凝胶

具有pH敏感型的水凝胶是通过线形聚合物之间交联或互穿网络而形成体型大分子网络结构,网络中含有可离子化的酸性或碱性基团(羧基、磺酸基或氨基) ,随着介质pH值、离子强度改变,这些基团会发生电离,导致网络内大分子链段间氢键的解离,产生不连续的溶胀体积变化。在一定离子强度下,凝胶内外离子浓度差最大时对应的平衡溶胀度为极大值。这种凝胶溶胀对离子强度的关系,可以解释为在低离子强度下,因抗衡离子难以从溶液进人凝胶,所以可电离基团的电离度较小,随离子强度的提高电离度增大,凝胶溶胀加大,最后凝胶离子化达到最大,这时离子强度增加时,会减少凝胶内与溶液间的离子渗透压,而导致凝胶溶胀减少。根据敏感性基团的不同可分为阴离子、阳离子和两性离子三种类型。

pH敏感水凝胶中含酸、碱性基团,溶胀、收缩、渗透压随pH、离子强度变化,可实现靶向释药。凝胶膨胀度和pH响应性可用中性共聚单体如甲基丙烯酸酯、顺丁烯二酸酐等调节。聚阳离子水凝胶在中性pH膨胀小、释药少,可用于胃部释药及防止味觉差的药物在口腔等中性环境释放。用甲基丙烯酸甲酯和N,N-二甲氨甲基丙烯酸乙酯共聚水凝胶包载咖啡因,在中性环境不释药,pH3-5呈零级释药。一般聚酸类水凝胶在酸性下不解离,膨胀小、释药少,可设计治疗消化性溃疡药按pH调节释药速度。pH敏感水凝胶作为多肽、蛋白载体,保护药物在胃、小肠不被降解,在结肠被微菌群产生的酶如偶氮还原酶、糖酐酶等降解释药。聚丙烯酸分子上大量的羧基具亲水性,聚丙烯酸或聚甲基丙烯酸与偶氮芳香交联的水凝胶在胃内膨胀很小,几乎不释药,在小肠内羧基电离,膨胀度增大,但偶氮键不断裂,结肠内被偶氮还原酶降解释药。降解动力学受凝胶交联度影响,膨胀动力学受聚合物组成影响。

pH敏感的多糖凝胶,如藻酸盐、环糊精、壳聚糖等作为释药载体很有潜力。聚多糖类水凝胶由于良好的生物相容性和降解性,在医学领域的应用倍受关注。壳聚糖-聚氧乙烯凝胶在酸性更具膨胀性,可用于抗生素如阿莫西林、甲硝哒唑等定位释药治疗胃部幽门螺旋菌。Zhang Yongjun 等利用相反电荷聚电解质之间的静电作用,通过层层组装制备壳聚糖水凝胶微囊。以二氧化硅 (SiO2) 微粒为核,先在核上依次包裹PAA 和壳聚糖膜,形成多层的PAA-壳聚糖外壳,再选择性的交联壳聚糖,最后将PAA 和SiO2核逐一除去,得到了壳聚糖水凝胶微囊。形成的壳聚糖微囊具有pH敏感性,壳聚糖的交联提高了壳层的稳定性,微囊壁的交联密度对水凝胶pH敏感程度有重要的影响。

1.3 温度和PH双重敏感型水凝胶

由于环境的复杂性,近年来人们对具有多重敏感性水凝胶的研究越来越感兴趣,这方面的研究主要集中在对温度和PH双重敏感的水凝胶上。

将pH敏感单体和温度敏感单体通过接枝、嵌段共聚引入某些酸、碱基团或采用互穿网络技术可合成温度、pH双重敏感水凝胶,各聚合物链有独立的敏感性。利用聚丙烯酸的电离性与聚乙烯醇的弹性可制备双重敏感水凝胶。如将N-异丙酰胺、N-氨基丙基甲基丙烯酰胺分别与N,N’-亚甲基二丙烯酰胺交联合成了双重敏感水凝胶,研究其在不同离子强度、pH中二磺酸奈的释放,发现酸性中氨基与二磺酸奈键合强,释药少,释药加快。所形成的水凝胶在pH值为7.4下,温度为37℃时发生相变,胰岛素在其中的释放发生明显变化。另外,黄月文等合成了兼具温度及值敏感性的聚N-异丙基丙烯酞胺-共-丙烯酸水凝胶,并在此水凝胶中包埋抗结肠癌药物阿司匹林。研究表明,在PH=7.4的介质中,37℃时阿司匹林在水凝胶膜中的释放比25℃时快,而在37℃、PH=7.4的介质中,阿司匹林的释放比PH为1.0的快得多,因此可将阿司匹林大部分定向到肠中释放。

1.4 光敏感型水凝胶

目前,这类水凝胶的合成主要是在温度或pH敏感型水凝胶中引入对光敏感的基团。导致光敏水凝胶的响应机理有三种:一种是特殊感光分子,当有光照射时,这类水凝胶将光能转化成热能,使材料局部温度升高,当凝胶内部温度达到热敏材料的相变温度时,发生体积相转变现象。例如,将吸光产热分子叶绿素与温敏水凝胶PNIPA 以共价键结合,当用紫外线照射时,该凝胶出现相转变现象。另一种是利用光敏分子遇光分解产生的离子来改变凝胶内外的离子浓度差,造成凝胶渗透压突变,促使凝胶发生溶胀,从而实现响应性。第3种响应机理是水凝胶材料中引人了发色基团,由于光照,这些发色团的理化性质(如偶极矩和几何结构)发生变化,导致具有发色团的聚合物链的构型的变化,从而导致聚合物性能发生改变。光异构化反应包括偶氮基团等的反式—顺式异构、无色三苯基甲烷衍生物的解离等。这些发色基团可位于聚合物骨架,又可作为侧基,甚至可作为交联剂。如含对光敏感的无色三苯基甲烷氰基的PNIPA水凝胶,当无紫外线时,水凝胶在30℃出现连续的体积相变,当有紫外线时,由于氰基的光解离,温度升至32. 6 ℃时凝胶的体积突变。

偶氮苯及其衍生物分子是一类典型的光致异构的分子,含偶氮苯光色基团的聚合物可用于光电子器件、记录存储介质和全息照相等领域,可发展成为具有广泛用途的一类新颖的先进功能材料。陈莉等通过自由基共聚合方法,将侧链含偶氮苯基的丙烯酰胺基偶氮苯单体(AAAB)与丙烯酸(AA)共聚合成了一种新型功能高分子P(AA - co - AAAB),使聚合物结构内在具备偶氮生色团的同时也具有亲水性的羧基,这就使得此种高分子具有pH 和光双重响应性能,从而将光响应与pH响应很好地融为一体,拓宽了其可能的应用范围。

1.5 电敏感型水凝胶

电敏感型水凝胶一般由聚电解质高分子构成,它在直流电场作用下可发生形变。其响应机理是溶液中自由离子在电场下的定向移动造成凝胶内外离子浓度和凝胶内部pH的不均匀,从而引起渗透压和聚电解质电离状态的变化。绝大多数电场敏感型凝胶是电致收缩型,网络上带正电荷的凝胶水分从阳极放出,否则从阴极放出。研究表明:凝胶的溶胀性能和电响应性能受凝胶的单体配比,溶液的离子强度和所施加的电场强度等因素的影响。这里存在一个临界压力,低于临界压力凝胶膨胀,高于临界压力则凝胶收缩。例如聚丙烯酸/聚乙烯基磺酸共聚物水凝胶(PAAC/PVSA),在电场中,由于电压引发离子运动,水凝胶的体积发生明显的变化,可用于生物传感器。

为了解决以往电敏水凝胶只能在酸性或碱性条件下发挥作用,需要较高的电压和响应时间慢等缺点,Elizabeth A. 等将具有导电性的聚吡咯/碳黑复合材料加入到丙烯酸/丙烯酰胺水凝胶内,其能在低电压 (1V)、中性溶液中快速 (5s) 做出响应。通过改变丙烯酸的含量、导电性、共混材料浓度和电场强度来调节对电刺激的响应。这种新型电敏凝胶材料有望用于生物微电子机械系统。

1.6 压力敏感型水凝胶

水凝胶的压力敏感性最早是由Marchetti 通过理论计算提出来的,其计算结果表明,凝胶在低压下出现塌陷,在高压下出现膨胀。

最近钟兴等人研究了压力对聚N-正丙基丙烯酰胺(PNIPA)、聚N,N-二乙基丙烯酰胺(PNDEA)及PNIPAAM这3种凝胶溶胀性的影响,认为3种凝胶之所以表现出明显的压敏性,首先是因为它们具有温敏性,另外还因为其相转变温度随压力而有所升高。所以,当温度不变时,如果常压下处于收缩状态的凝胶因为压力的增加而使其所处温度低于相转变温度的话,凝胶将发生大幅度的溶胀。

此外,赵春顺等以羟丙基甲基纤维素(HPMC)和羧甲基纤维素铺(CMCNa)为骨架材料,以非诺洛芬(FC)为模型药物,研究了FC亲水凝胶骨架片释药机制的影响因素,发现压力对释药机制影响较大。当处方中含有20%淀粉时,FC骨架片释药受压力影响更为明显,释药速率随压力增加而减小。

1.7 生物分子敏感型水凝胶

生物分子敏感型水凝胶能对特定的生物分子 (如葡萄糖、酶和DNA分子等) 产生响应。

例如甲基丙烯酰胺水凝胶是一种用四肽 (CYKC) 作为交联剂所得到的对α-胰凝乳蛋白酶敏感的含有缩氨酸序列的水凝胶。当其遇到α-胰凝乳蛋白酶时,水凝胶上连接的缩氨酸序列发生分离,引起水凝胶从不溶的三维交联网络结构向可溶的结构转变。这项研究有望作为生物传感器用于蛋白酶-缩氨酸识别系统。

目前此类水凝胶主要用于自动调控胰岛素释放系统,研究较多的是葡萄糖敏感水凝胶。这种水凝胶实质为pH或温度敏感型材料,但可以通过感知由生化反应造成溶液组分的变化,从而产生如体积相变这样的响应。Joseph Kost等用羟乙基甲基丙烯酸酯(HEMA) 、NDMAEM、TEGDMA 和葡萄糖氧化酶在冷冻状态下,辐射交联共聚合形成凝胶,此凝胶浸入葡萄糖溶液后,可将葡萄糖氧化为葡萄糖酸,使pH下降,从而导致叔氨基质子化而使凝胶溶胀,且溶胀体积随葡萄糖溶液浓度的增大而增大。

1.8 其他智能水凝胶

如抗原应答式水凝胶,凝血酶诱导应答式水凝胶,印迹水凝胶等,都具有很好的特异性,具有诱人的医药学前景。

2 智能水凝胶的理论和机理

2.1 基本作用力

早期,学者们提出水凝胶体系的3种基本作用力,它们是橡胶弹力、聚合物间亲和力和氢离子间压力。作用在凝胶上的总压力就是这3种作用力的合力,被称为凝胶的渗透压,它决定着凝胶是趋于吸收液体还是排斥液体。

后来经过进一步的深入研究,人们又把诱导水凝胶体系发生相转变的分子间相互作用更准确地归纳为4类:疏水作用、范德华力、氢键、离子间作用力。

2.2 动力学研究

学者kato等对大孔隙水凝胶动力学的研究表明,N-异丙基丙烯酰胺在NaCl溶液中的去膨胀过程由两个因素控制:一个是氯离子间的斥力,另一个是盐析效应。

Hirose等对N-异丙基丙烯酰胺与丙烯酸共聚物水凝胶的体积相转变动力学行为进行了细致的研究,并提出去溶胀过程由3个阶段构成:1均匀收缩阶段,水凝胶的尺寸按指数规律减小。2平台阶段,柱状水凝胶的两端开始收缩而中间部分仍处于膨胀状态。3崩坍阶段,此时水凝胶的中间部分亦随时间而线性收缩。实验表明,对于带有少量电荷的水凝胶能较好的符合上述过程。

2.3 水凝胶的敏感性机理

Tanaka等通过测定聚合物链的持续长度b与有效半径a之比(即代表聚合物链刚性的度量)及敏感性之间的关系,提出了半经验参数s作为有无敏感性的判据:s=(ba)(2f+1),式中f代表单位有效链上可离子化基团的数目。他们认为s>290时水凝胶会发生敏感性相转变,而当s

吴奇等通过研究微凝胶与表面活性剂的相互作用,提出了与疏水作用不同的新的溶胀和收缩机理,并认为近年来观察到的大块凝胶的所谓非连续体积变化并不是源于理论上所预测的非连续体积相转变,而是由于内部不均匀收缩导致的内部应力同剪切模量之间的相互作用引起的。

3 智能水凝胶的应用

水凝胶具有三维网络结构,在水中能够吸收大量的水分溶胀,并在溶胀后继续保持其原有结构而不被溶解。水凝胶类似于生命组织材料,表面粘附蛋白质及细胞能力很弱,在与血液、体液及人体组织相接触时,表现出良好的生物相容性,它既不影响生命体的代谢过程,代谢产物又可以通过水凝胶排出,比其它任何合成生物材料都接近活体组织,在性质上类似于细胞外基质部分,吸水后可减少对周围组织的摩擦和机械作用,显着改善材料的生物学性能。因此,水凝胶在生物医药、组织工程等方面得到了广泛应用,如可作为组织填充剂、药物缓释剂、酶的包埋、蛋白质电泳、接触眼镜、人工血浆、人造皮肤、组织工程支架材料等。

3.1 分子器件

利用智能凝胶在外界刺激下的变形、膨胀、收缩时产生的机械能,可以实现化学能和机械能的直接转换,从而开发以凝胶为主体的化学阀、驱动器、传感器、药物控释系统、分子分离系统等微机械产品。用凝胶制作微机械元件,由于凝胶柔软有弹性,且其弹性模量可通过交联密度调节,可使微机械元件的尺寸进一步减小,并能保持足够的驱动力。同时,由于凝胶尺寸的减小,缩短了控制凝胶收缩与膨胀的扩散距离,大大提高了凝胶的响应速率。近来国外一些科学家正在探讨利用凝胶受环境变化而变化的特性来研制凝胶微机械元件,并已取得了一些重要成果,引起了人们的高度重视,但国内尚未见报道。

3.2 调光材料

利用智能型大分子和大分子水凝胶的环境敏感行为可以设计制作调光材料。它是一种温度敏感材料,当阳光照射到凝胶时,一部分转变为热能。水凝胶系统的调光性赋予了其“开关”温度TS ,在TS以下凝胶网络透明,而当温度升至TS以上则形成散光的微粒。MIT的Suzuki和Tanaka设计了一种对光敏感的PNIPPAM 凝胶。他们在凝胶中引入光敏成分叶绿素。光照时,叶绿素吸收光能使其微环境温度升高,凝胶收缩,反之,凝胶溶胀。测得直径为5Lm 的凝胶响应时间约为5min。

3.3 生物医学

医用高分子材料指的是在医学上使用的高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、医学、输血学等多种边缘学科,是生物材料的重要组成部分。目前,医用高分子材料的应用已遍及整个医学领域,如血液接触的高分子材料、组织工程用高分子材料、药用高分子材料、医药包装用高分子材料、眼科用高分子材料、医用粘合剂和缝合线、医疗器械用高分子材料等等。

3.3.1 药物传输控制系统

智能水凝胶具有传递药物分子的孔道,对生理环境敏感,特别适合作为不溶于水的药物和易被胃肠酶分解的蛋白类药物的载体。作为这些药物载体的水凝胶需有良好的生物相容性和生物降解性,在体内酶或胃内低PH环境中能够保护药物不被降解。研究较多的是温敏水凝胶和PH敏感水凝胶。

3.3.1.1 黏膜给药

黏膜给药包括眼部黏膜、鼻黏膜、阴道黏膜等部位给药。黏膜途径给药的pH敏感型原位凝胶研究得较多、也较为深入。

用流变学方法研究壳聚糖硫醇在体外的原位胶凝性质。pH5.5条件下,壳聚糖硫醇中巯基数量明显减少,表明已形成二硫键。所形成凝胶弹性的增强程度与聚合物中巯基的总量显著相关,巯基数量越多,弹性系数G越大。壳聚糖硫醇化衍生物在5-6.8的PH范围内原位凝胶,可以用于眼部、鼻腔和阴道的黏膜给药系统。

3.3.1.2 口服给药

胃肠道PH呈递增趋势,胃液PH为1-3,十二指肠PH为4-5,其余肠段PH为6-8。对于在胃内不稳定的药物,利用胃肠道PH的变化来开发肠道释放的剂型尤为重要。

用二缩三乙二醇双甲基丙烯酸酯 (TEGDMA) 交联制得pH 敏感的聚甲基丙烯酸 (PMAA) 水凝胶作为膨胀层,聚羟乙基丙烯酸甲酯 (PHEMA) 作为非膨胀层,将这两种骨架层交联得到一种具有双层结构并可自折叠的水凝胶微型装置。再将具有生物粘附性的药物粘附到非膨胀层的一面用于药物传输。当这种微型装置进入体内,pH敏感的PMAA层接触到体液后迅速膨胀,而PHEMA层无反应。由于膨胀层和非膨胀层的区别,这个自折叠的装置发生弯曲,从而延长了在靶部位的停留时间,增强了生物粘附性。另外,非膨胀的PHEMA层可以作为扩散屏障,给药物提供了更好的保护和减少药物在肠道中的损失。

聚乙烯醇与丙烯酸或甲基丙烯酸可形成共聚物,其凝胶具有PH敏感性溶胀行为。载有胰岛素的凝胶在人工肠液(PH6.8)中释放药物,而在人工胃液(PH1.2)中不释放药物。到达小肠之前,载药凝胶在胃酸环境中对药物胰岛素具有保护作用。凝胶在大鼠体内的释药行为表明胰岛素口服给药对控制葡萄糖水平有效。

3.3.1.3注射给药

将某些pH敏感型凝胶注射于机体组织后,在PH约7.4的体液环境中胶凝,形成药物贮库,缓慢持久释放药物。

在生物相容性共溶剂系统中制备聚甲基丙烯酸(PMA)和聚乙二醇(PEG)的水不溶性共聚物(IPC)的溶液,IPC溶液在生理PH条件下可转变为凝胶。共溶剂N-甲基吡咯烷酮/乙醇/水的最佳比例为1:1:2,IPC的浓度宜在30%-60%(W/V)。研究表明,该体系可承载、保护大分子药物如蛋白质和低聚核苷酸,并控制其缓慢释放。

3.3.1.4 葡萄糖响应的胰岛素释药系统

根据智能水凝胶对葡萄糖响应设计胰岛素自调式释药系统一直是研究热点。正常人体胰岛素的释放受机体反馈机制调节,维持血糖水平正常范围,糖尿病患者注射胰岛素有时会引起低血糖危急生命,目前研究较多的胰岛素智能给药系统主要包括:(1)载有葡萄糖氧化酶的智能水凝胶。(2)载有葡萄糖氧化酶的接枝多孔膜。(3)竞争结合型胰岛素释药系统。设计这一释药系统的最大挑战在于载体对葡萄糖有高度敏感性和自动开关能力,在特定时间定量释药。目前采用的水凝胶仍有不足,如响应较慢,或是响应后很难较快回到初始状态,重现性有待改进。

3.3.2 组织工程支架材料

水凝胶应用于组织工程支架要求具有生物相容性、生物降解性、高含水量和细胞膜粘附性等。高度膨胀的三维环境含有大量的水,类似于生物组织环境,可以促进细胞增殖和细胞活动。

医用聚丙烯酰胺水凝胶作为组织充填材料已广泛用于人体各部位,它是一类具有亲水基团,能被水溶胀但不溶于水的聚合物。水凝胶中的水可使溶于其中的低分子量物质从其间渗透扩散,具有膜的特性,类似于含大量水分的人体组织,具有较好的生物相溶性。而且聚丙烯酰胺水凝胶为大分子物质,不吸收、不脱落、不碎裂,在弥散的环境下能很好保持水分,有较好的粘度、弹性和柔软度,适合人体组织结构。

3.3.3 人工玻璃体

PVP 水凝胶是第一个用作病变的玻璃体替代物的合成高聚物。作为一种优异的病变玻璃体替代物,PVP水凝胶具有良好的生物相溶性和生物物理光学特性,其网状支架对眼球内的新陈代谢成分具有良好的通透性。另外,PVP水凝胶具有粘弹性,表现出良好的内填充作用,可以封闭裂孔,展平视网膜。

3.3.4 人工软骨

PVA 水凝胶的高含水性及其特殊的表面结构与天然软骨组织非常相似,具有良好的生物相容性和摩擦学特性,同时该水凝胶具有类似于天然软骨的多微孔组织,内含大量的水,是一种可渗透材料,其弹性模量和人关节软骨相近,有望成为理想的人工软骨材料。

3.3.5 医用敷料

敷料的主要类型有两种:干型,如纱布;湿型,如水凝胶。水凝胶的优点是可吸收渗液形成凝胶,且吸收渗液后的凝胶不会沾粘伤口;可加速上皮细胞生长,加速新微血管增生;隔绝细菌侵犯,抑制细菌繁殖。目前用水凝胶作创面敷料在美国、日本及欧洲一些国家已经商品化,但在国内尚属空白。

用藻酸钙纤维制成的水凝胶,与伤口渗液接触后形成光滑的凝胶体,可有效清创且使伤口表面的细胞残屑、细菌、微生物等被包裹、锁定在凝胶体中,而且在藻酸钙与伤口渗液中的钠离子结合形成凝胶的同时将钙离子释放,伤口表面钙离子的大量集结可加速创面止血,促进创面愈合。

当羧甲基纤维素钠微粒与创面渗出物作用时,剧烈膨胀形成一种不与创面粘连的凝胶,该凝胶具有较强的渗液吸收能力和良好的蒸发性能,并能快速溶解焦痂,清除腐败组织。

3.3.6 角膜接触镜材料

角膜接触镜俗称隐形眼镜,是一种兼具视力矫正、美容、眼睛防护和医疗作用的产品。使用α-甲基丙烯酸β-羟乙酯聚合物( PHEMA) 作为制造角膜接触镜的材料。用这种PHEMA 材料制造的水凝胶角膜接触镜配戴舒适度比较高,但含水量不高,氧气通过性能不好,不能长时间配戴。采用亲水性能更高的PVP共聚物水凝胶,作为制造角膜接触镜的材料,可解决上述问题。

3.3.7 组织培养

利用PNIPAM水凝胶的温敏性可将它接枝于固体表面,通过调节温度改变固体表面的亲水性。在培养皿内壁接枝PNIPAM,用此培养皿接枝培养细胞,成活率较传统的酶洗脱法高得多。

3.3.8 在分析和医学诊断方面的应用

根据水凝胶的环境敏感性,可将它与生物传感器物理元件相连,然后将生物分子固定在水凝胶表面或内部,便可得到生物传感器,用于诊断疾病及做日常监测。例如,利用水凝胶固定抗原,可用于免疫检测。

3.3.9 血红蛋白氧气载体

血红蛋白 (Hb) 作为血液代用品,具有高效载氧功能,但天然无基质Hb溶液不能直接作为红细胞代用品。目前血红蛋白氧气载体 (HBOC) 主要分为化学修饰Hb、基因重组Hb和包囊Hb。用脂质体包封Hb,易导致Hb变性,Hb微胶囊存在快速释放的缺陷,另外,这些微胶囊没有红细胞那样柔软的外壁,也不能在网状内皮组织系统中快速流动。用纳米水凝胶微粒包封Hb,具有机械性能稳定,装填能力高,膨胀收缩可控,质地柔软和在网状内皮组织系统中流动快等优点。

Jaqunda N. Patton 等报道了通过光引发聚合得到温敏性PNIPAAM水凝胶纳米粒包封牛血红蛋白 (BHb) 作为氧气载体,生理温度变化可引起PNIPAAM水凝胶纳米粒膨胀和收缩,对zeta电位、氧气亲和力和协同性都有影响。当温度从40℃降至29℃时,纳米粒水凝胶膨胀,减少了氧气传输时的阻力。AndreF. Palmer 等将BHb与pH敏感的PAAM交联合成HBOC。这种pH敏感的HBOC可以靶向的将高效载氧的血红蛋白运输到由于生理pH值下降而引发低氧状态的组织。

3.3.10 水凝胶微透镜

智能水凝胶微透镜是一种新型的蛋白质检验方法。聚-异丙基丙烯酰胺-co-丙烯酸(PNIPAM-co-AAC)微凝胶与生物素偶联制成动态可调式生物素化凝胶微透镜。这种可调式凝胶微透镜是通过静电作用吸附在氨丙基三甲氧基硅烷化的玻璃基片上制得。研究者将生物素化的凝胶微透镜与未生物素化的凝胶微透镜相对比,发现特定的蛋白质溶液能引起生物素化的凝胶微透镜平衡膨胀体积变化和折射率的改变,而未生物素化的凝胶微透镜则对其不敏感。另外,这些凝胶微透镜在受到外界刺激时 (如温度、pH和光子流量),其光学性质会发生相应的变化。

3.3.11 用于活性酶的固定

酶的固定化技术的发展给酶制剂的应用创造了有利条件。与自由酶相比,固定化酶的最显著的优点是在保证酶一定活力的前提下,具有贮存稳定性高、分离回收容易、可多次重复使用、操作连续及可控、工艺简便等一系列优点。温度敏感性水凝胶由于其在临界温度附近溶胀度显著变化的特点,使其已成为固定化酶的一种理想包埋载体。

4 展望

智能型水凝胶在许多应用方面具有很大的潜能,如pH敏感和温度敏感水凝胶可用于靶向药物的控制释放,对特定分子(如葡萄糖、抗原等)响应的水凝胶,既可用于生物传感器也可用于药物释放体系,光敏感型、压力敏感型及电敏感型水凝胶也有用于药物释放和生物分离的潜力。

虽然从理论上来说实现这些应用是可行的,但实际应用还要求对水凝胶的性能进行很大的改进。所有这些刺激响应型水凝胶的最显著的缺点是它们的响应速度太慢,因此制备快速响应性水凝胶是智能型水凝胶研究领域的一个重要课题。实现这一目标的最简单的方法是制备较薄和较小的水凝胶,但这种水凝胶往往没有足够的机械强度以满足实际应用。另外用于药物载体的智能型水凝胶还要求有生物相容性和体内降解性等,选用更理想的材料设计体积小、响应快、能依据人体生理环境调节的水凝胶仍是目前面临的一大挑战。凝胶在体内的代谢过程比较复杂,新材料的释药性、安全性需全面考察,凝胶与细胞黏连、蛋白吸附、生物排异等诸多问题亟待解决。

总之,研究开发具有优异性能的智能型水凝胶是一个富有挑战性的任务,如果能及时总结已有的成果并将其应用于未来的研究中,将低毒性、良好的生物相容性和生物降解性、优良的机械性能和环境敏感性这几点完美结合起来,制备出新型、绿色的智能水凝胶是我们努力的研究方向。

参 考 文 献

[1]王守玉,赵替,曹绪芝.智能型凝胶及其应用[J].石家庄职业技术学院学报.2003.15(6):18-20.

[2]王立君,等.智能水凝胶的发展现状[J].合成技术及应用,2007.22(3):43-48.

[3]范会强等.刺激响应性水凝胶的研究现状及发展趋势[J].上海化工,2003(06):31-33.

[4]查刘生,刘紫微.生物分子识别响应性水凝胶及其智能给药系统[J].智能系统学报,2007.2(6):38-47.

[5]郭锦棠等.水凝胶及其在药物控释体系上的应用[J].化学通报,2004(3):198-204.

[6]徐文进等.温度敏感型水凝胶[J].现代食品与药品杂志,2007.17(6):60-62.

[7]刘永等.药物控释用智能水凝胶研究进展[J].化工进展,2008.27(10):1593-1596.

[8]赵玉强等.智能水凝胶的应用[J].现代化工,2007.27(3):66-69.