首页 > 文章中心 > 计算机视觉技术与应用

计算机视觉技术与应用

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇计算机视觉技术与应用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

计算机视觉技术与应用

计算机视觉技术与应用范文第1篇

关键词:计算机自动化 视觉检测 制造业

中图分类号:TP274.4 文献标识码:A 文章编号:1007-9416(2014)05-0014-01

在精密测试技术领域,自动化视觉技术具有最大的发展潜力,它将电子学、图像处理、光学探测和计算机自动化技术综合起来进行运用,在工业检测中引入机器视觉,能够快速测量物品平面或三维位置尺寸,其主要特点有:柔性好、速度快和非接触性,在现代制造业中有着非常广阔的应用前景。

目前,国内视觉检测领域所需要的视觉检测设备大多是进口的,国内生产的设备缺乏较高的检验精度和较强的实时性;但是进口设备大大增加了检测成本,不少中小企业无力承担。面对国内检测需求日益增加的情况,积极进行成本较低,精度较高的检测设备的开发,成为一个亟需解决的问题,需要引起重视。

1 检测系统的工作原理

自动化视觉检测系统工作流程分为三个部分,分别是图像信息获取、图像信息处理以及机电系统执行检测结果。如果系统有需求,能够借助人机界面对参数进行实时的设置与调整。当被检测对象移动到特定的位置时,位置传感器就会发现它,会将探测到被检测物体的电脉冲信号发送给PLC控制器,经过计算,PLC控制器将物体移动到CCD相机采集位置的时间的出来,然后将触发信号准确的发送给图像采集卡,采集卡检测到此信号后,会要求CCD相机立即进行图像采集。被采集到的物体图像会以BMP文件的形式发送到工控机,运用专门的分析工具软件分析处理图像,分析检测对象是否与设计要求相符合,执行机会依据合格或者不合格的信号对被检测物体进行相应处理。经过这样的反复的工作,系统对被检测物体进行队列连续处理。如(图1)。

2 自动化视觉检测系统的组成

在工业检测领域,计算机自动化检测系统可以在尺寸测量、工件定位、特征检测、图形图像以及字符识别等方面进行运用。自动化视觉检测系统按照功能模块可以划分为,图像信息获取模块、图像信息处理模块、人机交互模块、机电执行模块以及系统控制模块五部分。其中处于核心位置的是系统控制模块,系统控制不论是在被检测物置信息的触发,还是机电执行模块所需检测结果信息的获取等等各个方面,都必须参与其中,否则无法完成;而人际交互模块更是与核心模块有着之间联系,通过与其直接通信,以便实时更新检测系统参数以及执行指令等。

3 自动化视觉检测技术在制造业上的应用

3.1 应用于汽车车身检测的视觉检测技术

现代汽车制造业的生产周期日益缩短,生产日益集团化,原材料和零部件供应呈现大宗化,而这正是给运用自动化视觉检测技术提供了客观环境。该系统包括三维视觉传感器系统、电器控制与接口系统、机械及定位系统、标定系统以及计算机自动化等部分,其测量步骤如下:首先在电气控制系统下初步定位运送车身;然后借助专门的控制系统准确定位待测位置;借着用计算机自动化进行检查点图像的采集与处理;最后,将被监测点的坐标参数计算出来。检测系统应该能够实时控制单光条、多光条、双目立体视觉以及十字叉丝等传感器的动作;按照要求顺序,全部视觉传感器进行测量,然后转换测量结果,将其放置于测量坐标中;经过自动识别,能够地装配结果进行判断。这一视觉检测方法具有非得用地、效率高、自动化、精度好的特点,能够很好的满足汽车工作的需求。

3.2 为智能焊接的实现解决核心难题

在焊接领域,对智能焊接机器人的研究已经成为关注的重点,智能焊接机器人要求能够识别环境目标,对焊接参数进行调整,并实时精确跟踪轨迹。比如在潜艇、大型轮船的制造中,焊接是十分重要的环节,焊接质量直接关系到后续的制造环节以及潜艇、轮船的强度和安全性。智能焊接机器人在红外摄像仪、高速摄像机以及CCD摄像机等高精度图像传感设备的辅助下,采用智能化图像处理方法能够进行图像焊接,检测焊接空间位置,规划焊炬姿态,对焊接熔池特征参数进行实时提取,对焊接组织、机构和性能进行预测等,能够在很多人类难以进行作业的场合完成焊接工作,在焊接过程中,通过数个光电接收阵列对检测组建进行多维视觉传感,并综合处理所获取的信息。目前国外KUKA,Motoman,GMF,Adept等厂家已经开发出智能焊接机器人,其装配了自动化视觉检测功能,并且已经广泛应用于潜艇与航天器的生产中。

3.3 提高手机生产检测速度

随着手机设计精密程度的日益提高,人工检验已经难以适应大规模生产,这是因为其需要的测量投影仪较多,检测速度慢。而采用自动化视觉检测系统能够自动检测电路板组建中的连接器以及内部零件等,检测速度快、测量结果准确,具有较强的扩展性和较高的性价比。检测系统主要就是测量计算机自动化接口电路板组件中各个连接器特定位置的几何尺寸,这里面包括连接器内部零件的尺寸、间距以及连机器与PCB底板的相对位置;另外还要对连接器与标准是否相符以及内部零件被损坏与否。系统可以将质量检验的效率大大提升,而且也能够使产品质量得到保障,实现降低检验成本的目的。

4 结语

作为一种新兴的检测技术,自动化视觉检测技术对我国自动化视觉检测产品的发展起到了很大的推动作用,使其不断向更高层次迈进,同时也为我国制造业的发展做出了贡献,具有广阔的发展前景。

参考文献

[1]伍健.基于PDE和全变分滤波方法的研究及在多种噪声中的应用[D].天津大学,2012.

计算机视觉技术与应用范文第2篇

以下为报告详细内容:

2017年计算机视觉技术在更多的领域有所落地应用,自动驾驶领域、高考、政务等领域更多的场景开始应用计算机视觉技术。艾媒咨询分析师认为,计算机视觉行业技术是核心基础,随着技术成熟度提高,未来将有更多的场景能够应用计算机视觉技术,计算机视觉企业应在强化技术打造的前提下,发掘更多新的应用领域,提高商业落地应用。

2017年人脸识别技术在智能手机终端应用开始普及。9月苹果新品会上,iPhone X宣布引入Face ID高精度人脸识别技术,引来人们高度关注。而除了iPhone X,华为、小米、OPPO、vivo等手机厂商都推出了带人脸识别功能的智能手机。艾媒咨询分析师认为,计算机视觉领域内人脸识别功能可应用场景广泛,商业化落地能力强,除了计算机视觉创业企业,互联网巨头和硬件巨头企业也纷纷关注布局人脸识别领域。但目前人脸识别技术仍然存在一定缺陷,艾媒大数据舆情管控系统数据显示,“手机人脸识别”热词言值数据为48.5,整体舆情偏负向。现阶段人脸识别技术在智能手机终端上的应用仍处于起步发展阶段,技术和安全性仍有待提高,未来随着各计算机视觉企业加强技术研发,人脸识别技术有望进一步改善,成为智能手机标配。

iiMedia Research(艾媒咨询)数据显示,2017年中国计算机视觉市场规模为68亿元,预计2020年市场规模达到780亿元,年均复合增长率达125.5%。艾媒咨询分析师认为,人们安全和效率需求不断提升,计算机视觉技术在各行业应用能有效满足人们需求,市场发展空间巨大。国家政策对人工智能行业的支持也为计算机视觉的发展提供了有利的环境。随着计算机视觉技术日渐成熟,企业商业化落地能力不断提高,未来计算机视觉市场规模将迎来突破性发展。

iiMedia Research(艾媒咨询)数据显示,商汤科技以24.3%的企业知名度排名各计算机视觉企业首位,旷视科技与云从科技则分别以23.1%以及21.7%的知名度分列二三位。艾媒咨询分析师认为,商汤科技计算机视觉技术及算法能力在行业内较为出色,同时在安防、金融、商业、手机端等多个领域均有商业落地应用,在企业认知和品牌推广方面具有优势。

iiMedia Research(艾媒咨询)显示,61.7%的受访网民通过手机APP应用接触计算机视觉应用,另外有50.9%的受访网民接触途径为通过智能手机终端。艾媒咨询分析师认为,计算机视觉企业主要服务B端用户及政府机构,相比于其他途径,移动端更适合应用计算机视觉技术的产品推广。计算机视觉技术日趋成熟,在移动终端和APP上均有落地应用,也进一步为计算机视觉企业在大众中奠定基础。未来企业可通过线上渠道开发挖掘C端用户市场。

iiMedia Research(艾媒咨询)显示,半数受访网民认为智能手机及APP加入人脸识别技术功能方便了二者的使用,另有48.8%的受访网民认为人脸识别技术在手机及APP上的应用是未来技术发展的趋势。艾媒咨询分析师认为,人脸识别技术在手机及APP端的应用满足人们智能化和便捷化的需求,随着越来越多的手机及APP产品加入人脸识别功能,未来其普及和认可程度将得到进一步提高。

iiMedia Research(艾媒咨询)显示,41.8%的受访网民表示未来愿意使用人脸识别技术进行手机及APP解锁,同时有41.4%的受访网民虽持观望态度,但愿意尝试。此外,47.4%的受访网民认为人脸识别将取代其他手机及APP解锁技术成为未来主流。艾媒咨询分析师认为,近期智能手机纷纷应用人脸识别技术解锁推动该功能技术的普及,便捷性的优势使该功能技术前景受看好。但目前人脸识别解锁技术的准确性仍然受到质疑,随着未来技术进一步成熟,该技术有望成为智能手机设备标配。

iiMedia Research(艾媒咨询)显示,33.9%的受访网民曾使用过人证比对功能进行业务办理。在使用过该功能的人群中,54.6%认为其方便了业务办理,提供了效率,且有47.3%该部分人群认为其识别准确程度高。艾媒咨询分析师认为,政府、银行等机构业务办理效率以往常遭诟病,人证识别技术的应用提高了办事效率,在提高人们满意度的同时,加强了计算机视觉技术的认可度。未来计算机视觉技术在政府、银行等机构的落地应用将进一步扩展,但其中涉及到个人信息保护等问题需要企业及相关机构合力解决。

iiMedia Research(艾媒咨询)显示,34.1%的受访网民认为公安办案为最有必要应用人脸识别技术的安防情景。而关于网民对人脸识别技术在安防监控领域应用看法调查中,56.1%的受访网民认为其能有力保护人们人身财产安全。艾媒咨询分析师认为,计算机视觉技术,尤其是人脸识别技术在安防领域应用意义重大,在刑侦破案、身份认证、公共安全保护等情景具有重要应用价值。未来安防领域将成为计算机视觉技术重点应用领域,而安防的重要性也对相关企业技术实力有严格的要求,未来安防领域市场或由少数技术实力较强的企业占据。

商汤科技是专注计算机视觉与深度学习原创技术的人工智能创业企业,拥有强大的技术能力和人才资源储备支撑发展。商汤科技在计算机视觉领域综合实力较强,获资本方青睐,B轮融资4.1亿美元,同时与国内外知名企业展开合作。艾媒咨询分析师认为,商汤科技在商业营收上同样处于行业领先水平,但其本质专注于技术发展,强大的技术基础能较好支撑商汤科技在上层应用场景的扩展。商汤科技在技术驱动商业应用的同时,积累商业应用经验,提高企业知名度,拓展应用至更多领域。

艾媒咨询分析师认为,商业化落地能力欠缺是目前计算机视觉行业大部分企业的痛点,商汤科技在商业落地应用方面处于行业领先位置。这一方面源于商汤科技技术能力往专业化发展,以专业技术和研发基础实现场景差异化应用。另一方面,纯计算机视觉技术或算法由于其专业性,需求方在使用时需要具备专业能力,而商汤科技技术产品往标准化方向打造,打包成行业解决方案,能适应更多企业使用需求,也有利于商汤科技技术进一步落地应用。未来坚持技术为基础,继续提高商业落地能力,商汤科技有望继续保持良好发展态势。

旷视科技成立于2011年,2017年10月完成巨额C轮融资,专注于人脸识别、图像识别和深度学习技术自主研发和商业化落地,深耕于金融安全、城市安防、商业物联、工业机器人等领域,同时打造人工智能开放云平台。艾媒咨询分析师认为,旷视科技利用云平台为开发者提供技术支撑,有利于计算机视觉技术进一步结合产品运营,同时可以收集海量图片数据,通过进行深度学习,旷视科技图像识别技术又能进一步得到提升,有利于其强化自身核心技术能力。

艾媒咨询分析师认为,人脸识别技术对于金融行业业务办理及风控等流程具有重要应用价值,旷视科技在人脸识别技术上的优势也助其有效开展金融领域的服务应用。未来随着旷视科技利用云开放平台相关图片数据进行深度学习强化人脸识别技术,以及在金融领域积累的渠道资源,其有望在金融领域继续强化技术服务,成为该领域市场有力的竞争者。

艾媒咨询分析师认为,自动驾驶为人工智能和汽车行业未来发展方向,计算机视觉技术在自动驾驶汽车实现路况感知、高精度定位等方面发挥重要作用,自动驾驶为计算机视觉技术未来重要应用领域。图森未来的计算机视觉技术和算法在自动驾驶领域实现专业化发展,未来有望在此细分领域成长为领先企业。

2017-2018中国计算机视觉行业发展趋势

需求驱使计算机视觉行业发展潜力巨大应用场景拓展渗透各行业

艾媒咨询分析师认为,人们对生活安全以及生产效率追求两大需求的提升,决定计算机视觉行业具有巨大发展空间。而计算机视觉技术场景应用具有广泛性,有望发展成为下一个智能时代的标配。目前计算机视觉技术主要应用在B端领域,短期内行业发展趋势也是集中于B端领域。未来随着技术成熟,计算机视觉有望拓展更多新的应用场景,实现场景落地,渗透至各行各业,形成AI+,开拓更多C端业务。此外,计算机视觉技术可以跟其他技术,如AR、VR、无人驾驶等结合发展,创造新的应用领域。

技术应用由点及面行业解决方案及软硬件结合成商业产品出路

对于计算机视觉技术使用者来说,由于技术的学习应用需要花费较多时间和精力,硬件产品及行业解决方案往往更受青睐。未来计算机视觉企业需要将软硬件结合,如打造嵌入式芯片等。此外,计算机视觉企业应将技术应用由点及面,将技术应用发展成针对各行业的解决方案。未来市场将出现更多基于计算机视觉技术应用的行业解决方案和软硬一体化产品,只有打造方便用户使用的商业产品,才能有效适应其需求,帮助计算机视觉企业迅速占领行业市场,在市场竞争中取得领先优势。

计算机视觉行业发展对企业综合实力要求高

艾媒咨询分析师认为,计算机视觉行业巨大的发展前景决定其具有高成长性特点,未来将涌现更多人工智能领域优秀企业。但行业发展同时伴随高风险性,行业竞争需要比拼企业技术算法能力、资金能力、以及人才资源,同时考验企业能否实现技术迅速落地,对企业综合实力要求高,综合实力不具备优势的企业在行业内将难以生存。

计算机视觉技术与应用范文第3篇

【关键词】计算机;视觉系统;框架构思

在现代计算机技术的支持下,对人类视觉功能进行模拟的计算机系统被称为计算机视觉系统,因为视觉系统本身兼具科学性和应用性,所以计算机视觉系统本身既具有科学学科的特性又具有工程学科的特性。对其的研究不仅能够进一步了解人类本身,而且能够在工业生产领域发挥更大的作用。

1 计算机视觉系统现有理论框架

1.1 计算机世界理论框架

20世纪80年代,麻省理工学院教授Marr在视觉理论研究领域获得突破,提出了利用计算机实现视觉能力的理论框架――计算机视觉理论,这一理论主要特点是以现代信息处理的方式对人类视觉能力作用机制进行了分析,并以人类的视觉能力为基础在计算机技术的支持下形成了三个不同的计算机层次。分别是计算机理论层次、表示层次和算法层次。这三个层次分别对应着人类对视觉信息进行处理的三个环节,通过各个环节的仿生设置,计算机视觉系统就能够将初步的视觉处理能力赋予计算机。这一理论中的核心是计算机理论层次,Marr认为人类的视觉能力主要是从图像中建立物体形状和位置的描述,所以在这一层次中设计者设计的主要环节是从初步获取的二维图像中提取和细化物体的三维结构和位置,并将这些信息在一个二维平面上反映出来,即三维重建。

1.2 基于知识的视觉理论框架

基于知识的视觉理论框架最早产生于20世纪90年代,最早的提出者是Lowe。认为在人类的视觉能力发挥过程中,对三维物体的实际测算是不必要的,人类的视觉能力与三维测算能力没有直接的关系,虽然使用三维测算技术也能够实现计算机视觉系统的功能,但并不是对人类视觉功能的模仿。Lowe认为在人类的视觉活动中,会将三维物体看成二维物体,也会将二维物体看成三维物体。这种现象本身并不是偶然性的,而是一种视觉作用机制的必然。既然人类肉眼能够借助一定的作用机制和处理能力实现二维的三维化,在计算机视觉系统中就完全有可能设计出这种对人类肉眼直接模拟的机制。以感知系统感知物体的二维特性,并在其基础上直接生成三维图像,而不需要借助复杂的测量过程。

1.3 主动视觉理论框架

主动视觉理论是在现有计算机理论的基础上形成的新型理论框架,是根据人类视觉功能实现的主动性提出的。在人类实现视觉功能的过程中,人类的视觉系统并不是被动的,而是会根据视觉系统的要求调动身体的其他部位进行配合的、具有主动性的,所以在人类视觉功能的发挥过程中,视觉系统是具有主动性的,人类视觉系统的视角、关注点都会是动态变化的。

基于这一理论,主动视觉理论框架认为人类的视觉活动是一种“感知――动作”过程。根据这一原则,主动视觉理论框架认为计算机视觉系统并不需要精准的三维测算系统。而应该以计算机视觉获取系统为核心,设置主动的视觉系统。这一理念在实际的应用中主要通过对图像获取系统技术参数的调整和控制来实现,例如摄像机的位置、取向、焦距、光圈等,通过对这些参数的调整图像信息获取系统就能够从不同的视角对物体进行观察,进而获取物体的三维图像信息。

2 计算机视觉理论框架中存在的问题

计算机视觉理论框架的产生极大的支持了计算机视觉系统的研发工作,但是在计算机视觉系统的实际研发工作中,也逐渐暴露出了计算机理论框架的缺陷。当前主流的计算机视觉系统框架中,计算机视觉理论是最早产生的也是唯一一种被动的计算机视觉技术。在其理论系统中更多的强调人类视觉系统的测算能力,而没有意识到人类的视觉系统是一种主观性很强的、目的性很强的信息获取系统,完全建立在测算基础上的计算机视觉理论框架是不必要的。

基于知识的理论框架,认为人类视觉系统的功能实现主要环节是反馈,强调了人类视觉活动中主观意识的指导作用。但是它过于强调系统的目的性和主观性,完全否定了计算机视觉理论,认为人类视觉系统是个完全脱离计算机的认识过程,这种认识显然是错误的,在判断物体尺寸大小、距离远近时,测算无疑是极为必然的。

主动视觉理论并不完全排除三维重建,认为计算机视觉系统的三维重建应该建立在图像获取系统的主动性上。通过改变图像获取摄像机的角度、参数对时间、空间和分辨率等进行有选择的感知,解决了计算机视觉系统认知过程中的不稳定问题,降低了计算机视觉系统实现的难度。但是在其理论框架内部缺乏主观、高层的指导,从整体上看并不完善。

3 计算机视觉系统框架的新构思

在计算机视觉系统的研究领域,三种理论构建各有优劣。但是无疑反应了当前计算机视觉系统研发的主流思想,因此计算机视觉系统框架的新构思应该在其基础上进行,致力于克服各个理论的缺点。综合比较三种理论框架,笔者认为计算机视觉理论虽然存在某些问题,但是从整体上看这一理论框架是最具实践性和操作性的,其存在的问题完全可以借助其他理论框架加以解决,因此笔者以计算机视觉理论为主体,结合基于知识的视觉理论和主动视觉理论,提出一个更加完善和通用的计算机视觉系统构架。

计算机视觉系统视觉功能实现的主体结构还是建立在计算理论结构的基础上的,将计算理论框架中的早期视觉处理环节分为图像预处理、图像分割和二维模式识别两个部分,因为图像的预处理是在平面图像基础上的简单处理,不需要主观主导意识和目的性的参与,同时图像分割和二维模式识别能够最大限度的提升后继图像处理的效果。

在早期处理完成以后,后继的中后期处理还是分别情调了二维模式识别和三维模式识别,虽然这两种模式本身的识别原理是一样的,但是其面对的对象不同,物体的模型也不同。一般来讲,在我们的世界中二维信息具有很强的重要性,图形、文字、指纹等关键二维信息在通常情况下作用更大、应用范围更广,所以计算机视觉系统矿建的新思路中,要对二维信息进行进一步的处理。

模型库提供具体物体模型的表示。知识库不但要对物体进行抽象表示而且还要对抽象知识进行推理。人类经验的积累和知识的获取是通过学习而得到的,所以加人模型库、知识库管理,并让其从输出结果中进行学习。这将使模型库和知识库更加丰富和完善。

视觉活动本身是带有目的性的,所以在有些时候视觉系统的应用确实需要视物体的实际情况来决定,有时只需识别场景中存在的是什么物体或某物是否存在,而不要求定量恢复场景中的物体。因此,在计算机视觉系统中引人视觉目的来判断输出是否满足要求。同时,用视觉目的对图象分割和二维模式识别、中期视觉处理、后期视觉处理和三维模式识别加以控制。如果需要三维重建则由主动视觉控制成象来获得景物更完整的信息。

计算机视觉系统框架是支持计算机视觉系统实现的重要基础,所以在计算机视觉系统的研发、设计工作中,对理论框架的研究具有鲜明的现实意义,本文简单介绍了现有框架思想,并分析了其各自的优缺点,最后再这些理论框架的基础上形成了计算机视觉系统框架的新构思。认为计算机视觉系统构架应该以计算机理论为基础,以视觉活动的主观性和目的性为指导,以具体的视觉实现形式为方法。

【参考文献】

计算机视觉技术与应用范文第4篇

关键词:计算机视觉图像 精密测量 构造几何模型 信号源的接收

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)05-1211-02

新型计算机视觉图像精密测量是一种基于计算机程序设计以及图像显示的高精度的关键技术,它广泛用于测量的领域,对于测量的准确性有很好的保证。这种关键技术是几何了光学的特性,发挥了图像学的显影性,把普通的测量技术瞬间提升到了一个新的高度。在这项关键技术中包含了物理学中光的效应,图像中的传感器以及计算机中的编程软件,这还不完全,还有一些其他科学领域知识的辅助,可以说这项关键技术是一个非常有技术含量的技术,很值得学者进行研究。

1 计算机视觉图像精密测量的关键技术的具体形式

在以往的测量中,选择的测量方式还是完全采用机械的形式,但是在使用了计算机视觉图像精密测量后,完成了许多以往技术所不能达到的任务。在我们的研究中,计算机视觉图像测量的原理是通过摄像机将被处理的对象采集进行影像采集,在多个控制点的数据采集完成后,系统会自动将这些图像进行整合,得出相关的几何多变参数,再在计算机上以具体的数据显示出来,以供技术人员使用参照。

在上面所说的摄像机并不是我们通常意义上生活中使用的摄像机。它是一种可视化较强,表针比较敏感的测试仪。可以将视觉中的二维形态通过显影,记录在机械的光谱仪上,再将这种的二维图像做数学处理,有二阶矩阵转换为三阶矩阵,通过播放仪呈现出三维的影像。这时的图像变为立体化,更有层次感,效果上也有了明显的变化,这是一种显示方法。此外还有一种造价较高的仪器,我们不常使用,就是图像提取器。同样是采集控制点的数据,将数据整合在系统之内,然后对于原始的图像进行预处理,不再经过有曝光这个程序,将图像中关键点的坐标在整个内部轴面上体现出来,提取数据帧数,再运用机器的智能识别系统,对控制点的坐标进行数据分析,自动生成图形,这也可以用于精密测量。它的优点就是使用上极其的方面,基本只要架立仪器和打开开关,其他的工作机械系统都会自动的完成。使用的困难就是造价极其的高,不适合一般企业使用。在基于计算机视觉图像测量中使用上的原理如下:

1) 计算出观察控制点到计算机视觉图像测量仪器的有效距离;

2) 得出观察点到目标控制点之间的三维的运动几何参数;

3) 推断出目标控制点在整个平面上的表面特征( 大多时候要求形成立体视觉);

4) 还通过观察可以判断出目标物体的几何坐标方位。

在整个计算机视觉图像精密测量的关键技术中最关键的元件就是压力应变电阻仪,这也是传感器的一部分。压力应变电阻仪的使用方式是将应力片粘贴在控制点位上,事先在物体表面打磨平整,清理干净后,涂抹丙酮试剂,在液体完全风干后就可以黏贴应力片,通过导线的联接,形成了一小段闭合的电路,时刻让计算机视觉图像系统可以感应到并作跟踪观察。因受到来自不同方面谐波的影响后,应力片会产生一定数值的电阻,在电路中,这些电阻会转化为电流,视觉图像系统接收到了电流后就会显示在仪表盘上相应的数据,我们就可以根据仪表盘中的数据记录测量中的数据,很好的解决了原始机械在使用过程中大量的做无用功所消耗资源的现象。传感器对每个应点都进行动态的测量,将数据模转换成现实中的图像,精确的成像可以测算出控制点的位置,用计算机视觉图像精密测量结合数据方面的相关的分析,得出施工中的可行性报告分析,减低了施工中的成本,将施工的预算控制在一个合理的范围之内。

当无法观察到控制点是,计算机视觉图像精密测量可以通过接收信号或是相关的频率波段来收集数据,不会因为以往测量的环境不好,距离太远,误差太大的影响。

2 计算机视觉图像精密测量的关键技术分析

在计算机视觉图像精密测量的关键技术中解决了很多以往很难完成的任务,但是在使用过程中还是发生了很多的问题。尤其在视觉图像的选择中,无法使用高帧数的图片显示,无法将计算机视觉图像精密测量的关键技术的优点发挥出来。我们就计算机视觉图像精密测量的关键技术中常见的问题进行讨论。

2.1 降低失误的概率

在很多的数据误差中,有一部分是出现在人为的因素上面。对于机器的不熟悉和操作中的疏忽都会在一定程度上对图像的视觉感模拟带来麻烦。对于网络设备的配置上,要经常性的学习,将配置在可能的情况下设置的更加合理和使用,保证网络连接系统的安全性。为防止更多因操作带来的误差,选用系统登入的制度,用户在通过识别后进入系统,在采集数据后,确定最终数据上又相关的再次确定的标识,系统对本身有的登录服务器和路由器有相关的资料解释,记录好实用操作的时间,及时备份。

2.2 对于权限的控制

权限控制是针对测量关键所提出的一种安全保护措施,它是在使用计算机视觉图像精密测量的关键技术中对用户和用户组赋予一定的权限,可以限制用户和用户组对目录、子目录、文件、打印机和其他共享资源的浏览和更改。图像中的运行服务器在停止的情况下可以做出不应答的操作指令,立刻关闭当前不适用的界面,加快系统的运行速度,对于每天的日志文件实时监控,一旦发现问题及时解决。对于数据终端的数据可采用可三维加密的方法,定时进行安全检测等手段来进一步加强系统的安全性。如果通过了加密通道,系统可以将数据自动的保存和转换为视图模式,对于数据的审计和运行可以同时进行,这样就可以很好的保证大地测量中的图像数据安全,利用防护墙将采集中废弃的数据革除在外,避免数值之间发生紊乱的现象,进一步改善计算机视觉图像精密测量的关键技术。

2.3 开启自动建立备份系统

计算机视觉图像精密测量的关键技术的完善中会常遇到系统突然崩溃或是图像受到严重干扰导致无法转换的一系列情况,发生这种情况最大的可能性就是系统在处理多组数据后无法重新还原成进入界面。这时为保证图片转换成数字的系统数据不丢失,我们对系统进行备份。选定固定的磁盘保存数据,定期将产生的数据(转换前的图像和转换后的数值)导出,保证程序的正常运行。当系统一旦发生错误,可以尽快的恢复数据的初始状态,为测量任务的完成争取更多的时间。我们还要减少信号源周围的干扰,定期的更新系统数据库,保持数据采集的稳定性,把摄像机记录出的数据节点保存在相应的技术图纸上,用这样的方式来知道测量工作。系统备份的数据还可以用于数据的对比,重复测量后得出的数据,系统会自动也备份的数据进行比对,发现误差值在规定以外,就会做出相应的预警,这样也能在工作中降低出现误差的概率。

3 计算机视觉图像精密测量的关键技术遇到的困难和使用前景

计算机视觉图像精密测量的关键技术作为一种新兴技术在使用时间上不过十几年,其使用的程度已经无法估算。正是因为它的简单、使用、精度高以及自动化能力卓越的特点受到了测量单位的广泛青睐。在测量方面的这些可靠性和稳定性也是有目共睹的。在土木和机械测量的行业计算机视觉图像精密测量的关键技术都会有广泛和良好的使用,前景也是十分的广阔。但是不容忽视该技术也有一些弊端。这项关键技术中涵盖的学科非常的多,涉及到的知识也很全面,一旦出现了机器的故障,在维修上还是一个很大的问题,如何很好的解决计算机视觉图像技术的相关核心问题就是当下亟待解决的。

我们都知道,人的眼睛是可以受到吱声的控制,想要完成观测是十分简单的,但是在计算机视觉图像技术中,毕竟是采取摄像机取景的模式,在取得的点位有的时候不是特别的有代表性,很难将这些问题具体化、形象化。达不到我们设计时的初衷。所以在这些模型的构建中和数据的转换上必须有严格的规定和要求,切不可盲目的实施测量,每项技术操作都要按规程来实施。

上文中也谈到了,计算机视觉图像精密测量的关键技术中最主要的构建是传感器,一个合理的传感器是体统的“心脏”,我们在仪器的操作中,不能时时刻刻对传感器进行检查,甚至这种高精度的元件在检查上也并不是一件简单的事情,通过不断的研究,将传感器的等级和使用方法上进行一定的创新也是一项科研任务。

4 结束语

在测量工程发展的今天,很多的测量技术已经离不了计算机视觉图像技术的辅助,该文中详细的谈到了基于计算机视觉图像精密测量的关键技术方面的研究,对于之中可能出现的一些问题也提出了相应的解决方案。测量工程中计算机视觉图像精密测量的关键技术可以很好的解决和完善测量中遇到的一些问题,但是也暴露出了很多的问题。

将基于计算机视觉图像精密测量的关键技术引入到测量工程中来,也是加强了工程建设的信息化水平。可以预见的是,在未来使用计算机视觉图像技术建立的测量模型会得到更多、更好的应用。但作为一个长期复杂的技术工程,在这个建设过程中定会有一些困难的出现。希望通过不断的发现问题、总结经验,让计算机视觉图像精密测量的关键技术在测量中作用发挥的更好。

参考文献:

[1] 汤剑,周芳芹,杨继隆.计算机视觉图像系统的技术改造[J].机电产品开发与创新周刊,2005,14(18):33-36.

[2] 段发阶,等. 拔丝模孔形计算机视觉检测技术[J]. 光电工程时报, 1996,23(13):189-190.

计算机视觉技术与应用范文第5篇

关键词: 计算机视觉;快速开发;框架;模块化;模块耦合;底层剥离

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2012)29-7084-04

在视觉分析实际应用项目中,如何通过建立计算机视觉分析快速开发框架,搭建一个分工明确,快捷有效的图像学应用处理平台,提高开发效率,缩短开发时间,已成为项目开发人员关注的重点内容之一。本框架从项目应用和实际需求出发,将计算机视觉技术的核心算法从底层研究工作中剥离,可极大的缩短开发时间,提高开发效率。

在本框架下,开发人员可各司其职,分工、构成和职能划分明确,框架开发人员只专注于框架接口的定义;算法开发人员只专注于图像处理与识别等算法的开发;上层应用开发人员只负责抽取出一般的处理流程,专注于项目的具体实现和功能模块的组合应用。

1 研究与应用

1.1背景

计算机视觉是用摄像机和电脑代替人眼对目标进行识别、跟踪和测量的机器视觉。系统将获取的视频或图像资料,通过计算机处理成为更适合人眼观察或传送给仪器检测的图像,其中包括图像处理、模式识别或图像识别、景物分析、图像理解等相关内容,它们之间既有差别,又有相互重叠。

在计算机视觉分析技术中,对于一些复杂的问题,往往不是某单一学科能够解决的,它需要一系列相关技术的支持。例如:对航道中船舶的识别,获取的视频流往往要经过平滑、去噪等图像处理操作后,便于下一步运用基于直方图分类器的图像识别算法来区分船舶和水面,通过图像分割技术来提取检测目标。而这些方案的实现中,同一个问题的解决又往往需要有一系列的算法来支持。还是以船舶识别为例,图像平滑有领域平均、低通滤波等算法;图像去噪有各种滤波器算法;基于直方图的分类器也存在决策树、贝叶斯、SVM等等算法。虽然上述的算法本身没有优劣之分,但在特定的环境下一定会有某个最佳算法。

因此,在实际应用项目中如何找出其最优路径,除了需要开发者拥有深厚的图像学功底,更需要的是通过大量的对比实验来找出该最优路径的解决方案。即便如此,也只能解决特定环境下的计算机视觉需求,换个应用场景,上述步骤又需要重新进行,此类过程的重复,既增加了开发成本,又延长了开发时间。

本框架从工程化的角度出发,在不同项目中的计算机视觉软件开发中,研究如何提高开发结果的复用性,尽量降低上述各条件间的相互依赖关系,将视觉技术的核心算法从底层研究中剥离,达到缩短开发时间,提高开发效率的目的。

1.2研究目标

1) 框架系统的扁平化、模块化;

2) 完成处理过程的任意组合,使图像处理模块单一化;

3) 理行为在处理模块内部完成,处理结果可通过接口方式进行输出;

4) 处理模块间的数据流动定义在框架之中,框架负责配置数据流;

5) 置好的数据流,通过指定图像处理模块实现对物体的识别、行为的识别。

1.3.5框架的效果演示

从右侧功能区中选取两个输入模块:MediaOpen00和MediaOpen01,分别打开视频文件“.\公司监控视频.avi”和图片“.\Lena.jpg”,任意添加一些图像处理模块或者图像识别模块,这里我们选取了行人检测算法、基本全局阈值二值算法、人脸检测算法、轮廓检测算法,加入输出展示模块用于显示处理结果。最后我们用曲线将模块间的输入输出点连起来,完成数据流向的配置过程。其中一个输出点可以连接多个输入点,但一个输入点只能接入一个输出点。

2 结论

随着计算机视觉技术发展的日新月异,算法的更新和积累将会越来越多。计算机视觉快速开发框架从实际应用工程的角度出发,在不同项目计算机视觉软件的开发过程中,将视觉技术的核心算法从底层研究中剥离,使视觉分析应用项目中的框架开发人员专注于框架接口定义的开发,而项目中的算法、上层应用等开发人员各司其职,分工明确,不但提高了开发结果的复用性,同时,也降低了项目开发中各条件间的相互依赖关系,缩短了开发时间,提高了开发效率。

参考文献:

[1] Gary bradski,Adrian Kaebler.《Learning OpenCV》[M].O’Reilly Media Inc,2008.

[2] 张广军.机器视觉[M].北京:科学出版社,2005.

[3] 张少辉,沈晓蓉,范耀祖.一种基于图像特征点提取及匹配的方法[J].北京航空航天大学学报,2008,34(5).

[4] 刘立,彭复员,赵坤,万亚平.采用简化SIFT算法实现快速图像匹配[J].红外与激光工程,2008,37(1).

[5] 戴斌,方宇强,孙振平,王亮.基于光流技术的运动目标检测和跟踪方法研究[D].国防科学技术大学机电工程与自动化学院.

[6] 陈胜勇,刘盛.基于OpenCV的计算机视觉技术实现[M].科学出版社.