前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇流体的力学特征范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2016)11-0248-03
一、引言
英国著名教育学家J.K.Gilbert教授在其组织编著的“Visualization:Theory and Practice in Science Education”一书别强调:可视化技术在现代科学教育教学中的应用是一个亟待深入研究的问题[1]。Gilbert教授从认知模型的角度考虑了可视化在宏观、亚微观和符号层面认知中的作用,讨论了照片、示意图、图表等可视化技术在科学知识描述中的功能。本文在总结“流体力学”、“空气动力学”和“计算流体力学”教学内容以及“飞行器部件空气动力学”教学经验的基础上,结合参考文献[1]中的教学思想,系统探讨计算流体力学(CFD)可视化技术在流体力学课程教学中的应用。
CFD是采用计算机模拟流体流动及相关现象的一门科学,主要涉及物理、数值数学和计算机科学等学科。CFD的应用历史可追溯到上个世纪70年代,理论研究的历史则更早一些。随着计算机技术的发展,CFD所能求解问题越来越复杂,最早是求解简化方程控制的跨声速流动,到了80年代初就可以求解二维或三维的Euler方程,随后Navier-Stokes方程的求解也成为可能。经过本世纪近十年来的快速发展,CFD技术基本成熟,相应的软件被广泛的应用于航空、航天、汽车、船舶、生物、材料、气象、海洋以及石油工业等领域。
在应用需求的牵引下,目前大部分CFD软件都已经具有非常友好的人机交互界面,不仅能够以一定精度计算流体运动控制方程、模拟复杂的流体流动,更能够通过一定的可视化技术显示所计算流场的空间结构和时间演化特征。因此,流体力学本科与研究生教学中涉及的诸多基本概念、一般规律和关键问题等,都可以结合CFD软件进行直观而科学的探讨。
二、基本概念的解释
在传统的教科书中,流体力学中的基本概念,如流场、梯度、散度、旋度、流线、迹线、点源和偶极子等,常常采用一定的数学公式或抽象语言来描述,这对学生理解实际的流体流动问题是十分不利的。借助于CFD软件,上述概念可以采用云图、矢量图和等值面等十分直观的显示出来,下面举例来说明。
标量场可采用云图来显示,所谓云图就是采用不同的颜色对应不同的标量数值。图1所示为利用云图显示喷管流场中马赫数的分布情况,其中黑色到白色的渐变表示马赫数从0.1变化到5.0。由喷管内部流场中颜色的分布可以看出,喷管内部马赫数从左到右是一直增加的。这样一种显示方法不仅直观的显示了什么是流场,更从物理上说明了流场中马赫数的变化规律。
由于矢量既有大小又有方向,矢量场不能像标量场那样仅仅以颜色的变化来区分。在CFD中矢量一般用具有一定长度的箭头来表示,箭头的方向对应矢量的方向,箭头的长度代表矢量的大小。图2所示为喷管内部速度矢量场,由图可以看出流场中每个点处的速度相对大小和方向,很直观的表示了喷管内部气体逐渐加速的过程。图3所示为喷管内部流线,每条曲线表示定常流动条件下流体质点在喷管中的运动轨迹,同样直观的表现了喷管的流场结构。
在流体力学教学中经常会从简化的模型出发,讨论理想状态下的流动问题,如点源、偶极子等的流动。这种流场在现实中是不存在的,通过电磁学或其他方式类比来显示相应的结构往往也不够直观。借助于CFD软件则可以很容易地通过求解简化的控制方程,得到理想状态下的流场,然后通过可视化技术实现三维、动态的流动演示。随着CFD技术的越来越成熟,大部分流体力学教学中涉及的基本概念、假设等,均可以通过CFD可视化的方式展现给学生,改变传统教学方法,提高教学质量。
三、流体力学基本物理现象的演示
CFD软件是通过求解不同初、边值条件下的流动控制方程来研究流体运动特征,能够客观地反映流体运动的物理规律。因此,在流体力学教学中,很多关键物理现象,如边界层、激波、射流、混合层、卡门涡街等,也可以通过CFD技术进行分析,并通过可视化的方式展现给学生。
在流体粘性的作用下,绕流物体表面一般都会存在紧贴物面非常薄的一层区域,这层区域被称为边界层。边界层概念的提出是流体力学发展史上里程碑式的事件[3],然而在流体力学教学中往往很难把边界层的重要性讲清楚。借助于CFD软件,可以直观地观察水流、气流中边界层的形成过程及其差别,通过显示边界层速度剖面的形状解释边界层如何影响流场结构,如图4所示。从图中可以很明显地看出壁面附近气流速度的降低,体现了气体的粘性效应在近壁附近的作用。
激波是超声速流动中广泛存在的流场结构[4],采用CFD技术可以模拟各种类型的物体绕流,显示对应的正激波、斜激波和弓形激波等现象,从不同的角度加深学生对激波这一物理现象的理解。射流、混合层和卡门涡街同样可以通过适当的CFD技术模拟,甚至可以显示其中非常精细的流场结构。图5所示为混合层涡结构的CFD数值模拟结果,由图可以看出混合层流动的失稳过程,类似的数值模拟结果对流体力学专业高年级本科生和研究生教学是大有助益的。
四、流体力学应用问题分析
在流体力学专业的研究生教学中,常常会涉及生物流体力学、飞机空气动力学、环境流体力学、化工流体力学、汽车空气动力学等一系列应用流体力学课程。CFD软件在工业上的广泛应用为这些课程的教学提供了大量的素材。图6、图7和图8所示为鳗鱼[5]、高超声速飞行器和F1赛车绕流流场的CFD数值模拟结果,从中可以分析绕流物体的流动和受力特征,探索隐藏在背后的物理规律,加深学生对问题的理解。
五、小结
CFD软件在流体力学课程教学中有着非常广泛的应用前景,本文以具体实例展示了CFD软件在流体力学基本概念解释、基本物理现象演示和应用问题分析方面的关键作用。通过在教学中恰当的应CFD软件,可以有效地增强学生的学习兴趣,提高教学质量。
参考文献:
[1]J. K. Gilbert,M. Reiner,M,Nakhleh,Visualization:Theory and Practice in Science Education,Springer Science+Business Media B.V. 2008.
[2]J. H. Spurk,N. Aksel. Fluid Mechanics,Springer-Verlag Berlin Heidelberg,2008.
[3]G. E.A. Meier,K. R. Sreenivasan,IUTAM Symposium on One Hundred Years of Boundary Layer Research,Springer,2006.
根据流体力学课程的性质、特点,结合自身的工程实践经历和教学体会,文章从优化教材内容、提炼讲授方法、发挥传统教学模式优势、挖掘多媒体教学潜力、培养学生科研能力等方面,探讨了流体力学课程教学改革的具体措施和成效,提出了有益于学生理解流体力学重点内容的教学方法。此研究对改善流体力学课程的教学效果、探索大专业背景下的专业基础课教学模式有一定的参考意义。
关键词:流体力学; 教学改革; 实践教学; 创新能力
中图分类号:G420 文献标志码:A 文章编号:
10052909(2013)04004103
流体力学是关于流体机械运动规律及其应用的一门学科,是力学的一个分支。中国各高校的土木工程、流体机械、农林、石油化工等专业均开设了流体力学课程,它属于专业基础课。
该门课所涉及的基本原理和基础理论对专业课的学习、课程设计、毕业设计以至解决工程实际问题等起着非常重要的理论支撑作用和指导意义。尤其对于工科学生,他们毕业后大部分在生产一线从事技术管理工作,必须具备一定的专业基础、技术应用和现场协调能力。这就要求流体力学课程教学将理论知识与实践能力培养相结合,将课堂教学与实践教学相结合,不断改进教学方法,积极探索适应工科学生专业设置和就业主导方向的课程教学新模式。兰州交通大学在土木工程、环境工程、市政工程、建筑环境与设备工程、热能动力工程等专业均开设了流体力学课,在长期的教学实践中积累了一些该课程的教学体会。
一、优化教材内容,课堂讲解力求深入浅出
流体力学课程体系的主要内容包括基本理论和实验两大部分。由于流体力学学科的快速发展以及社会对各专业学生知识结构要求的不断变化,有些在用教材已不能满足教学要求。因此,教师在备课时要尽可能多地参阅质量高、实用性强的教材,力求对同一个问题进行多角度分析。教学中应将不同教材版本的不同提法告诉学生,让学生课后独立思考并提出自己的见解。在制定教学计划时,应该从课程内容的系统性和完整性出发,将教材原有章节顺序重新调整,便于学生对相关知识的理解。比如,在讲解流体运动学基础、动
力学基础时,先从粘性流体三维不可压缩流动的运动微分
方程(即N-S方程)入手,对实际流体的流动特征进行描述,学生就可获得流体动力学的基本轮廓,进而了解只要该方程中粘性力项为零就可得到理想流体运动微分方程。在此基础上,再令加速度项为零(即流体处于静止状态或相对平衡状态),就可得到流体平衡微分方程(即欧拉方程)。通过这一调整,省去了许多推导过程,而且也能让学生对流体质点运动的力学机制有更明晰的认识。
在课堂讲解上,教师要力求做到深入浅出。流体力学中的一些公式或方程的推导过程很繁杂,教师过多地罗列推导内容会导致学生的厌学情绪,甚至有些听不懂的干脆就放弃学习。比如,在讲解流体微团运动分析时,可以将多数学生儿时玩的“泥球沿坡面下滚”游戏作为例子来讲解,因为大部分学生有过这样的亲身体验,他们很容易理解泥球在滚动的同时将伴随变形和旋转,这样后面的推导就容易被学生接受了。在讲解管嘴出流时,可以学生每天接触的水龙头用水的例子。比如在12∶00-13∶00期间用水,12∶00时流出水龙头的水流速度很大,随着锅筒内水位的逐渐下降,到接近13∶00时用水,在同样的水龙头开度下,水龙头内的水流速度明显要比12∶00时的流速小,学生由此很容易理解有效作用水头与排水量的关系。
二、发挥传统教学模式的优势
传统教学模式即教师以讲解、板书的形式将知识传授给学生的一种教学方法。该方法在不同层次的教学活动中发挥了积极的作用。教师生动、形象的描述以及肢体语言能使学生有身临其境之感,这种教学模式有利于教师主导作用的发挥,教师可以根据课堂上学生的反应来适时调整讲解速度和思路,并以板书的形式突出重点和难点。流体力课程中有相当一部分内容是力学知识和数学知识的综合,只有通过严密推导或作图才能比较透彻地讲清其基本原理。比如连续性方程、能量方程、动量方程、(N-S)方程等是流体力学中的经典理论,也是难点所在。只有通过板书推导,学生才能理解其物理事实,明确其解决工程问题的一般思路和步骤。流体微团运动分析一节是运动学中的核心内容,许多学生很难理解流体微团能同时具有“平动、变形(线变形和角变形)、旋转”三种运动趋势。这就要求教师从介绍速度分解定理入手,通过理论推导和对流体微团运动变形的图示两种方法来讲解。水击现象中伴随管道中压力和流速交替变化从而引起压力波的“顺向”及“逆向”传播过程,如果不通过在黑板上逐步图示的方法,学生很难明白水击发生的物理实质。另外,传统教学方法也能展示教师的板书和绘图功底。如果教师的书法很漂亮,徒手绘图效果好,能增加学生对教师的敬重感,从而激发他们对流体力学课程的学习兴趣。
三、深挖多媒体教学潜力
随着科技的飞速发展和国家对教学投资力度的加大,现代化的教学手段在提高课程教学质量上发挥了重要作用。在流体力学课程教学中,通过播放课件、视频、教学片等,能让学生很直观地理解流体流动的具体特征。比如,漩涡的形成、管嘴出流时真空区的形成、两个相邻局部阻碍之间的干扰等现象,这些内容用枯燥的文字描述是很难理解的,但利用多媒体演示,学生从动态的、形象逼真的图像中就很容易理解流体力学现象。紊流是一种高度复杂的三维非稳态、有旋流动。对其流动规律的研究一直是流体力学学科领域的热点和难点。紊流中,存在高流速层的流体质点进入低流速层,并与低流速层质点发生动量交换,以及低流速层流体质点进入高流速层与高流速层质点发生动量交换的过程。过去教师通过板书图示讲解之后,仍有近70%的学生不理解雷诺应力与紊流脉动的因果关系。但是,通过动漫形式显示具有不同初速度的流体质点进入另一流层后对两个流体质点速度在不同方向的影响过程,使这一复杂问题简单化,学生也容易接受。另外,利用教学录像,学生对流体力学现象尤其是大海的潮起潮落、龙卷风运动、桥墩后尾流变化,以及1940年美国塔科马海峡大桥由于风振而坍塌的整个过程印象深刻。多年的经验表明:多媒体在教学中的运用对于激发学生学习流体力学的兴趣、增强求知欲、开阔视野起到了积极的作用。但是,多媒体教学潜力的开发取决于教师的前期投入,也就是说,授课前教师必须投入大量的精力制作多媒体课件,使其包含丰富的教学内容,同时还能调动学生积极的参与意识[1]。只有这样,作为传统教学方法辅助手段的多媒体教学,才能在帮助学生理解难点、掌握重点、提高学习效率上发挥越来越重要的作用。
四、加强科研实训,开阔学生视野
引导学生参与科研活动,在科学研究中增长学生的专业知识,开阔学生的学术视野。教师在完成课堂教学任务之后,就课内某一知识点引导学生查阅相关文献,开展科学研究,培养学生的科研意识,提高其认知水平。学生以书面形式定期反映自己在查阅文献和学习研究中的收获。教师根据学生书面总结的完成情况给予评价。此外,教师也鼓励学生主动参与校内外的科研活动,并定期写出自己的体会交指导教师评定[2-3]。学生参与的科研内容即使与其所学专业的学科领域有一定距离,也将得到支持,因为参与科研活动对学生能起到开阔视野、激发科研热情、训练科研思维的作用[4]。同时还将进一步密切科学研究与专业学习之间的关系,为学生进入更高层次的学习和工作打下坚实的基础[3]。
流体力学是一门系统性和理论性都较强的课程,它既体现了经典力学的基本思想,也反映了数学、物理、机械等多学科在现代工程中的交叉应用。在学分制教学管理体制和大专业背景下的人才培养模式,根据学生的基础和专业培养目标来寻求合适的教学方法,构建有创新特色的流体力学课程教学改革体系,是一个艰难而漫长的过程,还需要在今后的教学工作中作出更多的努力。
参考文献:
[1] 杨小林, 杨开明, 严敬,等.流体力学课程教学改革探析[J].高等教育研究, 2006, 22(2):47-48.
[2] 王烨, 孙三祥, 张济世.《水泵及水泵站》课程设计教学新模式研究[J].高等建筑教育, 2010, 19(3): 117-119.
[3] 王烨, 陈焕新.《水泵及水泵站》课程设计教学改革[J].高等建筑教育, 2011, 20(3): 91-94.
[4] 马宝峰,李岩, 郭辉,等.基于科研问题的力学综合实验教学研究与实践[J].力学与实践, 2012,34(1): 103-105.
Investigation and practice on multiangle teaching method of fluid mechanics
WANG Yea, LI Yaningb
(a. School of Environmental and Municipal Engineering; b. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Gansu 730070, P. R. China)
Abstract:
关键词:雷诺实验原理 流动状态 流动速度 粘滞阻力
中图分类号:O357 文献标识码:A 文章编号:1674-098X(2014)07(a)-0062-01
实验是流体力学研究流体运行规律、揭示其内在本质的重要手段和方法,因为实验更接近现实,更具有真实性。但由于实验受客观条件及人们观察能力的局限,最终所得结论未必是事物的本质。也就是说,尽管人类可以透过现象看本质,但所看到的现象未必都是本质。雷诺实验中就反映出了这样的问题。
层流和湍流两种流态是英国著名科学家雷诺(Reynolds)1883年在管道流体(水)实验中发现的,并在实验原理中揭示出两种流态的变化规律。其中的观点为:在管径、流体密度和粘度(动力粘滞系数)等条件不变的情况下,流速与流动状态相关。当流速小于某一数值时,流态为层流;当流速大于某一数值时,流态为湍流。流速增大,使层流转变为湍流;流速减小,使湍流转变为层流[1]。这一观点被后人沿用至今。德国流体力学教授欧特尔在《普朗特流体力学基础》一书中也曾借助香烟冒出的烟气来描述层流到湍流的变化过程,并以图示[2]。但笔者在烟气实验中发现:烟气上升从层流到湍流,流速不是在加快,而是在放慢。这一发现引发新的观点:在其它条件不变的情况下,流态改变不是取决于速度,而是粘滞阻力。这一观点是否合理,我们可通过分析以下两个实验得以证实。
1 对“烟气上升”现象的分析
在空气相对静止(无风力干扰)的环境下,我们观察香烟点燃后冒出的烟气:烟气从冒出到消散,其形状是由窄到宽的过程。刚冒出的烟气是细而集中的烟柱,上升时如同一条稳定的直线,距离热源最近的烟气颜色更淡,用手触摸此处会感到很烫,这里的烟气上升速度很快。随着烟气的升高,最初细而坚实的“直线”开始有些松散、变粗。在烟气继续升高时,开始出现波动,先是幅度不明显、频率不快的波动,逐渐发展成幅度较大、频率较快的波动。然后烟气开始慢慢散开,逐渐消失在空气中。消散时的烟气运动速度是全流程中最慢的(见图1)。
通过对烟气实验的观察发现:烟气上升是温差(忽略压差、惯性等因素)作用的结果。但随着烟气升高,与热源距离的拉大,温度下降。这时烟气本应在惯性作用下继续保持原速直线运动,但在空气阻力作用下(沿程阻力),烟气上升的速度在减缓,形状由细变粗。这说明烟气虽处层流状态,但内部的分子横向运动在增加,只是规模不大而已。随着烟气继续上升,而温度进一步下降,空气阻力进一步显现,烟气开始波动,并进入明显的整体横向移动,湍流就这样逐渐形成,随后向周边扩散,直至溶于空气之中。在这过程中,烟气和空气是通过流体特有的动力与阻力之间的变化关系体现了牛顿第三定律―― 作用力与反作用力,作用在同一条直线上,力的大小相等,方向相反,二者均属同一性质的力―― 摩擦力。
从图2中可以看出,尽管作用力与反作用力之间的划分方式有所不同,但它们之间的比例关系仍然是1∶1,只是需要一个渐变的过程。当烟气因温差作用而上升推动相对静止的空气时,空气为受力者;但烟气推动空气的同时,也受到空气的推力,所以烟气又为受力者。由于气体分子之间的相对运动是建立在相互接触的流体层内部,所以这种阻碍作用力属于摩擦力中的粘滞阻力。物理学认为:分子间有距离、分子间有相互作用力及运动无规则等特征是物质分子运动论的基本概念[3],由于液体分子间距远远小于气体,所以在液体分子动量较小时,分子间距变化仅局限在分子力控制范围内,粘滞阻力主要体现在分子间的引力上,流体运动呈现规则性,所以称为层流;当液体分子动量较大时,由于分子间距已超出分子引力的控制范围,所以粘滞阻力主要体现在无规则动量交换的加大,流体运动呈现不规则性,所以称为湍流。由于气体分子间距远远大于液体,分子间虽然也有引力,但作用很小,所以无规则运动是气体分子运动中产生粘滞阻力的主要因素。气体只有在空气相对静止的特殊条件下才体现出层流状态,而在多数情况下都是湍流。为了强调烟气上升的粘滞阻力效果,使其更接近雷诺实验,我们在烟气上升的某一高度放置一个顶端有孔的圆筒透明玻璃罩。观察发现:罩内少部分烟气被放走,多数烟气被拦住并与上升的烟气相混(局部阻力作用),产生的湍流还有向下延伸的趋势(见图3)。这证实了粘滞阻力是湍流形成的重要原因。
2 重新分析雷诺实验
从烟气上升的观察和分析中得出结论:在其它条件不变的情况下,流态的改变取决于粘滞阻力,而不是流速。如果这一结论合理,那么在雷诺实验中也应得到证实。从雷诺实验中看到:湍流的最初形成是从管道阀门处开始的,这说明阀门与湍流产生密切相关。流体力学告诉我们:阀门处是管道中“局部阻力”的产生地。所以说“局部阻力”对流态改变所产生的功效与笔者的观点不谋而合(在现实中体现更多的是“沿程阻力”对流态改变的作用)。流体力学认为:阀门是管道突然收缩而引起流体在流动中产生“颈缩”现象,由此而产生的“旋涡”是局部阻力的主要特征[4]。笔者在同意这一观点的同时,还要强调的是“颈缩”现象与阀门打开程度的关系。为了剖析雷诺实验中湍流产生的原因,首先从层流产生时所需的必备条件谈起。
雷诺实验中为了使染色流束保持一条直线―― 层流,必备条件两个:(1)管道阀门开口很小;(2)染色水针管出口要对准管道的轴心。这两项要求使我们有了新的设想:所谓的“层流”流域并非布满管道,而是只存在于管道轴心处很窄的流动范围内。我们知道:由于受管道壁面与流层以及流层与流层之间粘滞阻力的影响,最活跃、最易流动的流体在管道轴心处,这里是最先产生流量和流速的区域;又由于阀门打开得很小,管轴中心虽然有流动,但速度很慢,流动的流体层对周边流体层的影响范围也会很小(据上述得知:分子动量较小时,分子力起主要作用),所以流动范围会很窄。笔者的这一观点在“皮托管”测试流量的实验中得到证实:当阀门开量较小时,“皮托管”只能测到管道轴心处的流量,而距离管轴中心线稍远的地方则无法测到。这说明:只有轴心处的流体在流动,而周边的流体则处于静止状态。另外,流体力学在描述管壁粗糙度对摩擦系数的影响时认为:层流状态下管壁粗糙度对摩擦系数没有影响,而在湍流状态下有影响[5]。这也在进一步证实:流量与轴心径向扩展的正比关系。即使在牛顿内摩擦定律中也只有“在一定的实验范围内,液体层中的速度呈线性分布” 的说法[6],但没有证实过在流速很慢、液层厚度不限的情况下,速度的“线性分布”可无限延续。笔者所要证实的是:染色水针管出口之所以要对准管轴中心,是因为只有管道轴心处的水在流动,而且流动的范围很窄,染色水针管只有对准轴心,染色水在流动中才能形成一条“直线”。当阀门逐渐开大时,情况改变了。在管道轴心的流体流速加快的同时,流动范围也开始从轴心向周边(径向)扩展,流动范围的扩展进度远大于阀门截面扩大程度(这是由固体的稳定性与流体的易流动性的不同特性决定的),这样,除阀门管道存在轴向流动外,阀门管道口周边又增加了更多的流体往里流动,与轴向流动的流体所不同的是:周围的流体在进入阀门管道时,由于流体质点在运动中的惯性,只能平滑过渡,而不能完全随着管道边壁的形状突然变化而变化其运动方向,这样一来阀门周边的流体流动方向就要与阀门的轴向产生一个角度,使流体在阀门入口的不远处集中,而形成局部阻力。在局部阻力的作用下,使染色流束的流动端速度放缓,但此时上游流束的流动仍保持原速,这样一来在上游染色流束的推动下,使靠近阀门处的染色流束最先开始弯曲、波动。随着阀门进一步开大,使阀门口周边流量增大的同时,阀门处的阻力越加明显。在这种情况下,阀门的排出量无法满足更多需要流出的量,而剩余的流量则被堵在阀门口形成回流,对前行流体产生反作用力,正是这种反作用力增加了液体分子间无规则运动,使弯曲、波动的染色流束开始紊乱形成湍流,随着阀门的继续开大,这种紊乱现象逐渐从下游向上游延伸,最终扩展到整个管道。这就是在粘滞阻力作用下,雷诺实验中的染色水从层流转变为湍流的全过程(见图4)。
通过对雷诺实验的重新观察,使我们又一次证明:在其它条件不变的情况下,流态的改变来自运动流体中的粘滞阻力,而流速不是确定因素。
以上结论是在雷诺实验设备完善、无外界干扰、调试得当的情况下完成流体流态转换过程中得到的,其实,在雷诺实验的调试过程中我们仍然可以发现粘滞阻力对运动流体的作用[7]。如:当管道阀门被突然关闭时,管道水停止流动了,但有色水仍并没停止,在管道中静止水的阻碍下,有色水的流速开始减缓并向周边扩散,此景与烟气上升似乎完全相同。但有人可能将这种速度放缓、扩散、紊乱的流动现象与布朗运动联系起来,从而否定其湍流的本质,这种理解是不合理的。布朗运动在说明分子是以不规则运动为存在方式,而烟气或有色水在流动中流速放缓、扩散现象则是在揭示流态改变的原因。其实,雷诺实验中的湍流现象与烟气和有色水的流动图景本应该是完全一样的,只是由于在管壁的制约下其原貌没有得到显现而已,如果将管壁取消,我们就会看到与以上两种流动完全相同的图景,就会更清楚地观察到粘滞阻力对流态改变的重要作用。
3 结语
尽管实验是科学研究的重要手段之一,但事实证明,在实验中所产生的现象最终是由人的主观来判断和选择。在判断和选择的过程中,由于人认识能力的局限,很容易被实验的外表现象所迷惑,忽略了现象背后的本质特征,从而得出错误结论。液体和气体的不同实验结果告诉我们:由于流速在改变流态的过程中因实验条件的不同而变化,所以它不是改变运动流体流态的主要原因,粘滞阻力才是改变运动流体流态的重要条件。
参考文献
[1] 林建忠,阮晓东,陈邦国.流体力学[M].2版.清华大学出版社,2013.
[2] 〖德〗H.欧特尔.普朗特流体力学基础[M].科学出版社,2011.
[3] 李椿,章立源,钱尚武,著.热学[M].2版.高等教育出版社,2012.
[4] 吴持恭.主编.水力学(上册)[M].4版.高等教育出版社,2013-04.
[5] 孔珑.主编.工程流体力学[M].4版.中国电力出版社,2014.
关键词:计算机流体力学;CFD;制冷空调;应用研究
1 前言
计算流体力学,又名计算流体动力学,英文简称CFD,这是一种对流体学问题进行数值模拟与分析的新分支,主要得益于计算机技术与数值模拟技术的辅助。简而言之,CFD属于现代模拟仿真技术,研究专员利用计算机来模拟仿真实际的流体流动,通过虚拟的实验情况来得出相应理论,并将理论运用于实际的工程领域中。成本低、速度快、资料完备等这些都是CFD技术的优势,加之伴随计算机技术与数值模拟技术的越来越成熟,在解决工程中的实际问题时CFD技术发挥着越来越重要的作用。1974年,CFD首次被运用于HVAC(暖通空调)工程领域,丹麦的Nielsen利用CFD对通风房间内的空气流动进行模拟,主要模拟预测室内外或设备内的空气或其他工质流体的流动情况。
2 计算机流体力学在制冷空调中的应用
2.1 暖通空调CFD技术
暖通空调CFD技术,即结合CFD方法、流体力学、湍流力学、计算方法、计算机图形处理技术等在计算机中求解出流体流动的各种守恒控制偏微分方程组的技术。在模拟暖通空调领域内流体流动实验时,分析结论是流动问题多为低速流动,保持10m/s以下的流速,而根据变化不大的流体温度与密度情况可判断其为不可压缩流动,这一结论等同与应用范围内的CFD与数值传热学。但由于湍流流动是暖通空调领域内的主要流体流动,而CFD技术对湍流现象尚未取得全面解决理论,因而只能依靠湍流半经验理论来解决暖通空调的湍流现象,不过在解决实际问题中依然存在诸多困扰。暖通空调CFD技术主要有建立模型、数值求解、可视化处理三大主要步骤。
2.1.1 建立模型
在研究流动问题时,需要通过建立数学物理模型才能完成数学描述。由于连续性方程、动量方程、能量方程都能满足HVAC领域的流动问题,一般可采用不可压流体的粘性流体流动的控制微分方程,但又因湍流流动是HVAC领域中的主要流体流动,为完整描述HVAC领域的流动问题,还需要运用适当的湍流模型模拟湍流流动及求解数值。当前,房间空气流动广泛采用两方程模型中的k-ε模型,也可以采用新的零方程模型来解决HVAC领域的一般工程。粘性流体流动通用的控制微分方程为: ,其中变量 可代表不同的物理量,进而表示不同含义的方程,如 表示速度时,就代表流体流动的动量守恒方程; 表示焓时,代表能量守恒方程; 表示湍流参数时,则代表湍流动能及湍流动能耗散率方程。通过上述方程,研究专员就可以计算出工程流场所需的温度、浓度、速度等物理量的分布。
2.1.2 数值求解
在对HVAC领域的流动问题进行数值求解时,可以通过上述各微分方程进行数值求解。但由于那些微分方程相互耦合且非线性特征非常明显,因而只能通过离散实际问题的求解区域采用数值方法来求解。一般,有限容积、有限差分、有限元这三种是数值方法中主要运用的离散形式,普遍应用在HVAC工程领域的CFD技术中。又因低速、不可压流动是HVAC领域的特征,且其存在传热问题,因而在离散情形中更多是采用有限容积的数值方法求解。
2.1.3 可视化处理
通过数值求解步骤能够得出离散后的各网格节点上的数值,不过这种方式的求解结果直观性不强,不便于一般工程人员及其他相关人员理解,因而需要对求解结果的温度场、浓度场、速度场进行可视化处理。运用计算机图形学技术直观形象的表示出HVAC工程领域中的温度场、浓度场、速度场,使之成为暖通空调CFD技术应用中的必要组成部分。
通过制冷空调的CFD预测仿真空调房间内的空气分布详细情况,从中得到的分析结果是要想达到良好的制冷空调效果,需要重点解决通风空调系统中通风空调空间的气流组织设计,合理的气流组织设计不仅能够实现制冷空调的满意效果,而且还能达到能源节省的目的。在制冷空调的设计中,通风空调空间是设计问题的关键部分,根据不同的空间特征可将制冷空调的通风空间划分为两类,一类是如住宅、办公室、高大空间等的普通建筑空间;一类是如洁净室、客车、列车等特殊空间。如此,可根据不同的空间需求在制冷空调设计中应用计算流体力学中的CFD技术,并借鉴暖通空调CFD技术的设计经验来帮助解决制冷空调设计中实际问题的解决。
2.2 食品的冷冻、冷藏与运输
现如今,随着我国经济的快速发展,食品物流行业获得了巨大的发展空间。但是,制约于保鲜、冷冻、冷藏技术的落后,造成我国每年因食品运输而浪费了大量的物资与财力。据统计,我国每年在转运与存放过程中因缺乏冷冻、冷藏技术的支持,进而造成每年腐烂损坏的果品高达25%、蔬菜高达30%、家禽肉类高达20%、奶制品高达23%,而这些腐烂损坏的食品每年高达上亿吨的总量,造成的经济损失巨大。如此可见,亟待解决我国食品运输中的冷冻、冷藏技术十分必要,而在冷冻、冷藏过程中食品的品质变化(如维生素的保持与损失、食品蛋白质的变性、食品质地与鲜度、脂肪氧化等)也引起了人们的广泛重视,食品安全也是研究冷冻、冷藏技术需要考虑的关键因素。为了解决食品运输过程中的腐烂损坏问题,研究者提出了将CFD技术应用于冷冻、冷藏技术的开发中,充分利用CFD技术的独特优势来有效解决食品冷冻、冷藏方面存在的问题,从而确保食品的安全性。
2.2.1 生活与商用的冷藏装置
冰箱、冷藏陈列柜、冷库等是较为常见的冷藏装置,主要适用于生活与商用。其中,冰箱的制冷原理是通过电能消耗来保持适当容积绝热箱体内的低温,以达到制冷目的来实现食品的保鲜、冷藏贮存。在冰箱冷藏装置的技术设计中,最主要的困扰问题是流场优化,绝热箱体内的空气流场与温度决定了食品的保鲜质量,箱内温度场受制于冰箱耗电量的影响。流场的具体信息获取也是一个棘手问题,不可以通过代数方程计算来获得,若采用实验的话传感器的装置会破坏箱内的流场,并加大了工作量,而应用CFD方法与技术能够有效解决这些困扰问题。
人们生活水平的提高促进了商业的发展,而人们生活节奏的加快也在一定程度上刺激了商品市场的崛起,其能够为人们提供各种生鲜食品、熟食与半熟食品,通过冷藏陈列柜来实现对蔬菜、肉类、水果、奶制品、日配品等的保鲜与冷藏。因而,人们对冷藏陈列柜的保鲜存储设备提出了高要求,研究工作者基于CFD技术对冷藏陈列柜进行了改良,温度与湿度控制、气流组织、节能等技术问题可广泛使用CFD技术来解决。
食品的冷冻加工与冷藏需要冷库来解决,而冷库的建筑结构复杂且具有严格标准,要求冷库具备坚固性、隔热性、抗冻性、密封性。其中,库内货物的贮藏质量、贮藏期直接受制于冷库内的温度场、湿度场、速度场三个方面的分布合理性,为了提高冷库内食品的卫生与安全,将CFD技术应用于冷库领域十分必要。
2.2.2 运输用冷藏装置
在运输食品的过程中,交通工具上的冷藏装置必不可少,这是确保食品在运输期间保鲜、保质的关键所在。为此,结合交通工具的特点,人们研制出了运输用冷藏装置,其相当于一个移动的冷库,冷藏集装箱、冷藏汽车、冷藏船、铁路冷藏车是当前主要的运输用冷藏装置,以确保运输过程中食品能够贮存在低温环境中,避免因运输而造成的食品腐败损坏。在运输用冷藏装置中应用CFD技术能够有效提高其对食品的保鲜冷藏质量,冷藏集装箱是冷藏食品运输中的主要工具,利用CFD方法能够实现对箱内稳态流场、温度场等进行实验及数值计算。而在铁路冷藏车中应用CFD,可以利于完成对充放冷过程(冷板冷藏车)、冷冻货物温度分布(运输过程)、温度场(堆码方式)的数值模拟,以及数值计算与分析。总之,在CFD方法与技术的支持下,运输用冷藏装置的功能会越来越完善,进而食品的运输过程中的保鲜冷藏等卫生安全性。
3 结语
通过上述分析可知,将计算流体力学应用在制冷空调还是一个全新的理论设计领域,得益于现代计算机技术与数值模拟技术的高速发展,以及HVAC(暖通空调)领域中CFD技术的广泛应用成效,使得制冷空调CFD技术及其应用具有很大的发展前景。相信在相关研究专员的努力下,CFD技术将在制冷空调工程领域中获得更普遍、广泛的实际应用。
[参考文献]
[1]田虎,李娜.暖通空调中CFD技术的应用概述[J].中国科技博览,2010(6):17-17.
[2]李钢.计算流体力学(CFD)在制冷与空调专业中的应用[J].价值工程,2011,30(28):261-263.
[3]谢秋荣.CFD的应用范围及在暖通空调中的应用分析[J].黑龙江科技信息,2007(4X):232-232.
[4]贾宗朴.CFD技术在暖通空调施工的应用探析[J].中国科技财富,2011(8).
关键词CDIO;流体力学;能力培养;教学改革
1引言
“流体力学”作为理工科的一门专业基础课和必修课,它的重要性是众所周知的,作为力学分支,其在安全工程专业有着广泛的应用,与泄漏、火灾、爆炸、通风等有着密切的关系,是后续工业通风、消防工程等专业课程学习的重要基础。近年来流体力学学科发生深刻变化,对流体运动认识加深,测量手段更为先进,对流体运动分析和处理的能力空前强大,与工程应用结合更加紧密。然而“流体力学”这门课程概念抽象、数学公式多,在以往课程教学过程中更多重视理论知识的传授,人才培养过程中存在着过分偏重理论知识学习,缺乏对学生工程能力的培养等不足之处。因此,本文借鉴国际流行的CDIO工程教育理念,拟对安全工程专业“流体力学”课程进行教学改革,使理论知识服务于后续的安全知识学习及工作实际,将知识教育和能力培养有机地结合起来,增强学生发现问题、分析问题和解决问题的能力,使学生专业理论知识的学习真正地更好地融入之后的安全工作中。
2CDIO工程教育理念
CDIO是构思(Conceive)、设计(Design)、实施(Imple-ment)和运行(Operate)的简称。“C”构思指系统性的构想、思考,明确产业需求。“D”设计是把将要被实现的计划通过视觉的形式描述出来的活动过程;“I”实施是执行、施行实际的行为,指把设计转变为产品的过程;“O”运行是指产品实现之后(即实施之后)使用其来达到想要的价值的过程。从构思、设计、实施到运行的全过程就是产品的整个生命周期,用它来代表工程的范畴[1]。CDIO教育模式提倡培养具有较高专业理论水平和符合产业需求的综合性应用能力并重的高等工程教育专业学生,这种模式在安全工程专业领域具有一定的借鉴意义[2]。CDIO强调在系统和产品构思、设计、实施、运行的真实工程实践环境中培养学生的工程能力,通过引导学生以主动的、实践的、知识之间有机联系的方式培养学生的工程能力,使学生在创新思维能力、终生学习能力、团队合作能力和工程实践能力等方面得到全面的训练和提高。
3基于CDIO理念的流体力学课程实施
3.1优化教学内容
在教学时,教材的选取是非常重要的,首先要选择一本好的教材,然后围绕教材的内容,进行全方位的内容设计。湖南工学院安全工程专业选用的教材为蔡增基、龙天渝主编的《流体力学泵与风机》,该教材详细介绍了流体力学及泵与风机的基础知识,并配有丰富的习题供学生课后练习巩固,另围绕教学大纲,每章设置了思考题。但教材内容多是从供热通风空调类专业角度出发,内容较多。按照安全专业职业能力与素质需求为导向,结合我校安全工程专业对该课程课时安排较少,学生文科生多,理科基础薄弱的特点、安全工程专业需求及其与后续专业课程之间的关系,课程教学内容分为四部分:(1)流体静力学。掌握流体平衡的规律,对其中与安全工程关系不大的小节进行删除。(2)流体动力学。研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。(3)有关流体静力学和流体动力学在生产和生活中的应用,如孔口与管嘴恒定流、管道恒定流等。注重与工业通风、消防、安全工程中常见的泄漏等问题相结合。(4)泵与风机工作原理及运行知识,重点掌握如何选择泵与风机。由于课时有限,其他知识可通过学生自主学习来完成。内容设置注重培养学生的创新能力、学习能力和分析解决问题的能力,不因课时少而删除其物理背景、力学建模和求解过程等方面的学习,只讲授结果、计算公式、图表等这种短视的做法培养出来的学生只是现成公式的计算机器,面对新的问题将束手无策,学生没有创新能力,没有利用所学知识解决实际问题的能力。只有掌握正确的基本概念和流体运动一般规律,才能认识特殊规律,才能有分析实际问题的能力,才能正确应用和处理流体力学商业软件。
3.2转变教学方法
在课堂教学中注重学生综合思维、系统思维和工程能力的培养。结合传统的教学方法,采用以问题学习的形式,要求学生基于问题学习。(1)首先要讲授该门课程的性质及作用,让学生掌握该课程在整个专业培养中的作用以及工程实践中的具体应用价值,以及该课程与其他课程之间的关系,从而在学生的整体知识架构中建立起清晰的课程逻辑联系[3],培养学生的系统思维能力。(2)各知识点的教学过程采用启发式教学法,先由老师设置问题,让学生带着问题进行学习;学完之后让学生思考学了什么,有什么用;除了基本的教学过程外,在课程中设置一些小专题讨论,培养学生分析问题、解决问题的能力。(3)传统的教学模式由于缺乏对知识的应用,学生通常将通过考试作为学习目标而专注于记忆考试内容。因此在教学中注重相应知识点的讲解的同时,注重对各知识点的应用和拓展,各知识点多方面地与安全工程专业相结合(如在讲述孔口管嘴出留时与危险化学品物质泄漏进而导致火灾、爆炸、中毒事故相结合;讲述流动阻力时与工业通风管道设计、消防水管道设计相结合),强调其对专业的支撑作用,要求理论知识必须服务于安全工作实际,将知识教育和工程能力培养有机地结合起来。
3.3实验教学改革
实验环节是CDIO模式下教学环节的非常重要的组成部分,学生工程能力的培养和综合应用能力的提高,有赖于此环节[4]。实验教学方面通过建设流体力学实验室,将实践教学贯穿于学生的整个学习过程,实现对学生的动手实践能力、技术应用能力、研究创新能力的培养。实验模块分为基础验证类实验模块、综合性实验模块和开放性实验模块。基础验证类实验主要包括雷诺实验、能量守恒验证实验、沿程阻力实验、局部阻力实验、文丘里管实验、流量计实验、离心泵实验等[5]。这些实验过程简单,能帮助学生更好地理解流体力学的基本原理和定律,但缺乏创造性,没有与安全工程专业实际相结合。综合性实验如与工业通风课程相结合,设计一个通风除尘管道模型,学生通过流体力学知识制定实验方案,使用仪器测量风速、压强等相关参数计算通风阻力。让学生把流体力学知识更好地与安全工程专业相结合,解决专业实际问题。综合类型的实验相对较复杂,采用团队协作的方式,通过互相交流讨论解决实验过程中遇到的问题,发散思维,实验结束后进行汇报,培养学生的团队协作能力和沟通能力。开放性实验模块通过建设开放性实验室,为学生参加各类学科竞赛、科技创新活动、自主实验、参与大学生研究性与创新性实验项目、参与教师科研项目提供实践平台。如学生可进行计算机虚拟流体力学实验、利用flunet软件模拟火灾发生时烟气流动过程。开放性实验可锻炼学生创新能力。
4结论
1)安全工程专业“流体力学”课程作为一门学科基础课,其教学改革应以专业能力需求为导向、学生能力培养为目标,引入CDIO理念进行教学改革,可提高学生创新思维能力、系统思维能力、和工程能力的培养,提高学生的工程意识及大工程观。2)基于CDIO理念的“流体力学”课程教学改革应注重学生主体作用的发挥,以学生为主体、教师为主导,采用问题学习的形式进行教学,培养学生用基础理论分析、解决实际问题的能力。3)在“流体力学”课程教学改革中,应注重实验教学环节,实验教学除了基本的基础验证类实验外,组织学生做一些综合性、设计性、开放性实验,教学中注重学生团队协作能力,人际交往能力和创新能力的培养。
参考文献
[1]顾佩华,等.重新认识工程教育一国际CDIO培养模式与方法[M].北京:高等教育出版社,2009.
[2]张景钢.基于CDIO的创新型安全工程培养方式研究[A]//安全科学理论与创新[C].郑州:郑州大学出版社,2016:92-96.
[3]赵庆贤,葛秀坤,毕海普,等.“变焦式”教学法在专业基础课程教学中的应用[A]//第26届全国高校安全工程专业学术年会论文集[C].北京:气象出版社,2014:262-265.
[4]王海江,彭静,杨玲,等.CDIO模式下的信号处理课程群建设[A]//2009年中国高校通信类院系学术研讨会文集[C].北京:电子工业出版社,2009:593-596.