前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇垃圾渗滤液现状范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1 我国的生活垃圾渗滤液处理现状与SBR工艺的简介
1.1 垃圾渗滤液水质特点及我国目前采取的常用处理方法
我国城市的垃圾产量已到了不容忽视的地步,且处于上升趋势。生活垃圾处理通常使用填埋法,在填埋过程中,因垃圾物本身就有水分,在微生物的分解作用及重力的物理压力作用下,垃圾中的污染成分会随着水分溢出,再加以降雨、地下水、地表水流等因素的影响下就形成了垃圾渗滤液。
垃圾渗透液属于废水中最难降解的一部分,它的这种性质源于垃圾的处理方式、组成成分及处理地点和气候等因素。其水质特点具体如下:第一,内含多种污染物且有较高浓度的有机物。其中不乏有大量致癌物质,对人们身体健康造成极大隐患。第二,水质有较大的变化范围。一般为1200-54412mg·L-1。第三,有较高含量的NH3-N,大约是1000-3000mg·L-1,去除该物质将会是一项长期的任务。
我国目前采取的常用处理方法有:物理化学方法、回灌法及生物处理方法,前两种方法成本较高,且脱氮效果相对较差,因此局限性强。后一种方法节能效果好且能实现高效脱氮,普遍被人们接受,SBR工艺就是其中一种。随着对污水处理技术要求的提高,SBR工艺已成为新时代的渗滤液处理方式之一。
1.2 SBR工艺的简介
SBR是活性污泥污水处理技术,此工艺主要是根据间歇性的曝气方法来运行的,该技术的别名是序批式活性污泥法。其核心技术是由SBR反应池组成的,反应池集进水、初沉、生物降解反应、排水,再次沉淀等功能于一体,是一种活性污泥回流装置。SBR有较强的抗冲击能力,可调试运行方式以除去氮和磷,SBR工艺也具有效率高、净化效果好、运行稳定灵活、工艺简单、耐冲击负荷、工艺简单且占地面积少、节省费用且便于维护、泥水分离效果好、活性污泥高、可实现脱氮除磷等优点,因此SBR工艺技术在渗滤液处理上的应用较为广泛。
2 SBR工艺应用于渗滤液处理的常用操作流程
SBR工艺处理渗滤液是一个完整的周期,在一定的时间内完成了进水、反应、沉淀、排水和闲置等系列过程。SBR处理装置主要包括以下部分:水箱、水泵、电磁阀、水流量器、搅拌电机、曝气头、充气泵、气流量器、排水斗。其具体的操作流程如下:
(1)进水:进水期是原废水或经过简单处理的废水流入SBR反应器,然后进入反应池。首先打开电磁阀,使水泵得以工作,将水箱中的污水注入另一端水泵。此时,水流量器对水流量进行检测,其余装置不工作,持续适当时间后,闭合电磁阀,使水泵停止工作。在这一过程中,应注意反应器的水位不宜超过50%,进水时间避免连续而是保持断续的。在进水期内,一定要注意反应抑制因素,比如反应物的积累和进水速度。还要及时调整曝气时间与方式。
(2)曝气:在这一阶段充气泵开始工作,通过曝气头将空气注入水箱。气流量计开始对空气的流量进行检测,保持其余装置不工作。使该过程持续一段时间后,停止充气泵的工作,进入下一阶段。
(3)搅拌:此时搅拌电机开始工作,不断搅拌水箱中的物质,停止其余装置的工作持续一段时间(时间长度可事先设定),然后结束搅拌机的工作。进入下一阶段。
(4)沉淀:这一阶段停止所有装置的工作,使水箱中含有的杂质得以沉淀,保持一段时间停止。这种充分的沉淀有利于释出不良污染物。为了缩短周期,也可以根据适当的条件对沉淀时间进行调节,以便及时地将泥与水分离开。
(5)排水:此时打开电磁阀,使一个水箱中的清水通过排水斗排入另一个水箱,最后排往别处,期间其他装置不工作,维持一段时间后闭合电磁阀。但反应器内必须保有一定量的活性泥污,以便供下个周期使用。
(6)闲置:闲置期主要是为处理渗滤液的下一个周期进行准备的,在此期间,不再进水或曝气,可以利用微生物的反硝化反应进行脱氮处理,以便使活性泥污获得活力、有效发挥其吸附的能力。
3 SBR工艺在垃圾渗滤液处理实例
目前,SBR工艺处理渗滤液在我国有很大的应用。如:上海交通大学与澳大利亚BHP公司合作,使SBR污水处理工艺在我国获得应用和推广,不过现在还处于初步阶段。近年,武进夹山垃圾填埋场在运用SBR的同时,采用厌氧及混凝法对渗透液进行处理,最终使得COD含量为1780.3mg的水质去除了63%COD,取得了良好的效果。鞍山垃圾填埋场采用UASBF-SBR组合技术工艺对COD含量10000到15000、NH3-N含量800到1500mg、SS含量2000到4000的水质进行处理,最终使得垃圾渗滤液的进水水质到出水水质有明显的改变,基本能符合国家的排放标准。
常德市环卫处桃树岗生活垃圾卫生填埋场使用SBR工艺和人工湿地技术相结合的办法对垃圾渗滤液进行处理,选用较好的设备,其中采用隔振隔声、吸声消声等措施来减少对附近居民的影响,充分利用地形特点采用梯田式布局,培植了近30亩人工湿地,最终使COD、NH3-N等去除效果显著,出水水质达到了国家的排放标准。现在越来越多的公司与企业采用SBR工艺来处理渗滤液,随着人们对环境保护意识的增强,SBR工艺处理渗滤液技术会慢慢趋向于成熟,并且能被人们所理解接受。
4 结语
综上所述,随着我国经济实力的逐步强大,我们不能再以牺牲环境为发展的代价,而是要做好环保工作,这才是实现持续、快速发展的基础。我们应该努力积累经验,通过SBR工艺做好对垃圾渗滤液处理的试验研究,从而有效对垃圾渗滤液进行处理。
参考文献:
[1]陈凌.SBR工艺对垃圾渗滤液处理的研究及改进探讨[J].武汉大学硕士论文.2010(10).
[2]沈耀良.新型废水处理——人工湿地[J].污染防治技术.2011(1).
关键词:生活垃圾 渗滤液 处理工艺 选择
一、生活垃圾渗滤液的性质分析
生活垃圾渗滤液是一种有机废水,这种有机废水的成分复杂,且浓度较高,如果不加以处理而直接排进环境中,会造成严重的污染。垃圾渗滤液的性质主要受到季节、垃圾成分、填埋场使用年龄、填埋场的作业方式和技术等影响。高浓度的有机废水中有高浓度CODcr及BOD5,这两种化学成分会导致水质恶化、地面水体发臭、水中动植物死亡等,因此如果渗滤液渗到地下水的富集区,会使地下水失去利用价值,一旦污染物进入食物链中,会直接对人类的身体健康造成威胁。
由上文分析,我们不难看出,各个地区的垃圾渗滤液的产量和污染浓度在不同时期的变化也是不同的。一般情况下,PH值在4-9间时,COD处在2000-62000mg/L间,BOD5在60-45000mg/L之间,NH3-H在300-4000mg/L之间,重金属的浓度和污水中重金属的浓度基本保持一致。
目前,我国生活垃圾渗滤液的处理工业尚不成熟,一般采用焚化或是物化的方式来处理,国外也还没有可靠且经济适用的处理方式,有的采用反渗透或是纳滤等方法进行处理。我国对渗滤液的处理工艺始于九十年代,目前国内有少数的渗滤液处理厂,这些处理厂主要采用生化处理的方法,也就是说,我国的垃圾渗滤液的处理技术还有很广阔的提升空间。
二、泉州市室仔前垃圾填埋场垃圾渗透处理厂工艺
泉州市室仔前垃圾填埋场是泉州市中心市区唯一的垃圾卫生填埋场,该场负责接纳处理泉州市鲤城、丰泽、洛江及清蒙经济技术开发区的生活垃圾,该填埋场自2000年11月投入使用至2011年年底大约共填埋处理生活垃圾200多万吨。该场为山谷型垃圾填埋场,环库区四周最高处建有永久性截洪沟,有效地避免山洪的渗入,填埋场垃圾填埋库区采用高密度聚乙烯防渗,并有一个库容为2.5万立方米的渗滤液收集池及日处理为250吨的渗滤液处理站。垃圾堆积产生的渗滤液经防渗导排汇流于渗滤液收集池,由提升泵输送至氧化处理系统,处理系统的处理工艺为:厌氧、好氧氧化、氨吹脱、臭氧催化氧化、碳过滤、超滤、反渗透膜处理等。可以看出此处理厂处理垃圾的流程大概可以分为预处理和深度处理两个步骤。预处理主要是采用UASB+DAT/IAT工艺,首先进行混凝沉淀、砂滤,其次进行精滤、微滤和超滤工作,最后进行纳滤和反渗透,处理站处理后的渗滤液尾水经专用管道并入市政污水管网,经城市污水处理厂深处理达标后排放。我认为,该垃圾渗滤液的处理工艺较为完善和彻底,可以供国内垃圾处理厂参考借鉴。
三、生活垃圾渗滤液的处理工艺分析
目前,常见的生活垃圾渗滤液的处理方法主要是生物法、组合法、土地处理法和物理化学法,下面我们对这些方法进行简单的分析:
1.生物法
生物法可以分为厌氧生物处理法及好氧生物处理法。常用的厌氧生物处理法主要是厌氧滤池、厌氧序批式反应器、上流式厌氧污泥床等。厌氧生物处理法耗能少、有机负荷较高、对无机营养元素的含量要求不高。而好氧生物处理法主要是通过活性去污泥、曝气氧化塘、生物膜法等工艺对生活垃圾进行处理,其优点主要是去除有机物较彻底,出水的水质较好。
2.组合法
由于单一的使用生物法或是物化法对渗滤液的处理难度较大,很难达到国家的排放要求,因此采用组合法既经济又合理,且效率较高。
3.土地处理法
此处理法是通过将土壤中的微生物转化为废水中的有机物,经由土壤颗粒过滤、吸附、交换和沉淀,有效的去除其中的悬浮固体物和污染物,除此之外,土壤中的植被还能够利用各种营养物帮助自身生长,从而减少废水量。
4.物理化学法
此方法受水质水量影响较小,但是处理过程中的成本较高,不适于进行大量的处理。此方法主要是化学沉淀、吸附、化学氧化、离子交换等。
四、生活垃圾渗滤液的工艺选择原则
综上所述,我们要选择一种性价比高,且易于管理的渗滤液处理工艺。那么在工艺的选择方面应该遵循哪些原则呢,我认为主要有以下几点:
1.低能耗
在众多工艺中,我认为生物法的能耗量较低,且对污染物的降解也较为彻底。
2.处理彻底
根据《生活垃圾填埋场污染控制标准》,目前很多城市的垃圾处理厂都很难达到此标准,因此,在工艺选择方面,对垃圾渗滤液的处理彻底程度是十分重要的。
3.后续处理负担小
大部分的物理处理方法后续处理的负担都较重,我们应当优先选用生化系统,这样就能够有效的降低后续处理的负担。
4.深度处理能力强
随着填满年限的不断增加,渗滤液的可生化能力会逐渐减弱,如果仅仅依靠生化处理方式很难进行深度的处理。我认为,膜处理工艺的稳定性和经济性都较好,可以作为深度处理工艺的首选。
5.自动化程度高
在生活垃圾渗滤液的处理工艺中,要尽量使用精度较高的仪表,它可以通过流量保护、压力和温度保护等不断进行自身调节,是系统能够安全稳定的运行的良好保障。
6.有处理污泥及浓缩液的方案
对污泥和浓缩液的处理如果不当的话可能会产生二次污染,因为污泥和浓缩液中含有重金属和难降解物。因此,在垃圾渗滤液的处理工艺选择上,要尽量选择有处理污泥和浓缩液方案的工艺,我认为,将浓缩液灌回到填埋区是较为可行的方法。
五、结论
通过以上的分析,个人认为:选择生活垃圾渗滤液的工艺要从环保性和经济性出发,综合使用良好的工艺方法,在生活垃圾渗滤液的处理过程中,采用纳滤或是反渗透等工艺进行辅助,达到国家排放标准,尽量简化工艺的流程,从而达到降低运行成本的目的。
参考文献
[1]张旭.生活垃圾渗滤液组合处理工艺的选择及应用现状[J].天津科技,2010,(03).
[2]高慧,王敏.垃圾渗滤液处理技术现状及展望[J].环境科学与技术,2010,(01).
[3]刘国勇.垃圾渗滤液处理工艺分析[J].沿海企业与科技,2010,(03).
[4]齐普荣,孙博,孙婷婷,高成虎,席建忠.垃圾渗滤液处理技术的新进展[J].资源调查与环境,2009,(03).
[关键词] 城市垃圾 渗滤液 扩容改造 生态处理
红庙岭垃圾卫生填埋场1995年10月投入使用,位于福州市北郊的北峰山地,离城区17km,占地300公顷。一期工程建设设计库容715万m3,投资1.2亿元。截至2008年,红庙岭垃圾卫生填埋场(一期)已超过设计库容,拟进行封场。但垃圾场封场后,垃圾渗滤液仍会继续向外排放污染环境。因此,开展红庙岭城市垃圾渗滤液处理技术研究,进而采用生态循环处理的方式来解决垃圾填埋场封场后渗滤液的处理问题,不论对垃圾填埋场本身的污染治理,还是对其周边生态环境的保护,都具有极其重要的意义。
1 垃圾填埋场渗滤液的特点及其水质影响因素
垃圾填埋场渗滤液由三部分组成:一是外来水分,包括大气降水和地表径流;二是垃圾受到挤压后部分释放的初始含水;三是垃圾降解过程中大量的有机物在厌氧及兼氧微生物的作用下转化为后所释放的内源水[1]。
垃圾渗滤液具有有机物浓度高、成份复杂,含有大量病毒和致病菌等特点,其中可检测出有机污染物就有几十种,如单环芳烃类、多环芳烃类、杂环类、烷烃、烯烃类、醇及酚类、酮类、羧酸及酯类及胺类等。渗滤液中污染物种类多、浓度高、浓度变化范围大;加上水量变化,不同的月份其浓度可相差几十倍,旱季和雨季其水量更相差数百倍。因此,垃圾渗滤液具有水质、水量大幅度急变的特性。
1.1 垃圾填埋场渗滤液的特点
垃圾渗滤液的性质会随着填埋场使用时间的变化而变化,垃圾填埋场渗滤液的产生量与降雨量、蒸发量、垃圾性质、地表径流、地下水渗入、地下层结构和下层排水设施等条件有关。以红庙岭城市垃圾填埋场渗滤液为例,其水质特征主要有以下几个方面。
1.1.1营养元素比例失调,不利于生化处理
近些年来,红庙岭城市垃圾成分发生了很大的变化。无机物的含量锐减,渣砾组分变化较大,有机物的含量增加;渗滤液中的COD、BOD和NH3-N浓度越来越高,但磷元素含量较低,尤其是受渗滤液Ca2+浓度和总碱度水平的影响,溶解性的磷酸盐浓度更低。渗滤液中高浓度的NH3-N会降低脱氢酶的活性,抑制微生物的活性,而磷元素的不足也不利于微生物的生长,同时渗滤液中高浓度的NH3-N也使得生物脱氢反硝化过程中的碳源显得严重不足,渗滤液中营养元素比例失调给渗滤液的处理带来了一定的困难。
1.1.2金属含量低
红庙岭垃圾渗滤液中含有多种重金属离子,同时渗滤液带出的重金属累计量约占垃圾带入总量的0.5%~6.5%。垃圾中的微量重金属有很少一部分进入了渗滤液,其浓度与所填埋垃圾的类型、组分和时间密切相关,垃圾本身对重金属有较强的吸附能力。
1.1.3生物的可降解性随填埋年份的增加而逐渐降低
垃圾渗滤液中含有大量有机污染物,一般来说可以分为三种:低分子量的脂肪酸类、腐殖质高分子的碳水化合物和中等分子量的灰黄霉酸类物质。在填埋初期,渗滤液中大约90%的可溶性有机碳是短链的可挥发性脂肪酸,其次是带有较多羟基和芳香族羟基的灰黄霉酸,随着所填埋的垃圾增多填埋场使用年限的延长,渗滤液的水质将发生变化。红庙岭及垃圾填埋场封场后,渗滤液主要来源于降水和地下水,渗滤液水质将趋于稳定。渗滤液水质具有可生化性差、氨氮浓度高、C/N值低、溶解性磷酸盐浓度低、色度大等特点。
1.2 垃圾填埋场渗滤液的水质影响因素
1.2.1垃圾成份对渗滤液水质的影响
垃圾渗滤液水质受垃圾成份影响很大,渗滤液中COD、BOD5主要是厨余有机物产生的;另外,炉灰、脏土等对渗滤液中有机物有吸附、过滤作用,其含量也会影响渗滤液有机物浓度。居民生活水平越高,垃圾中厨余含量越高。研究表明,当垃圾中炉灰含量相近时,垃圾厨余含量越高,渗滤液中COD、BOD5、NH3-N浓度越高。特别是福州地区城市居民以食用海产品为主,厨余亦以海产品剩余为主。因而,特别是夏秋两季气温升高后,渗滤液中NH3-N浓度较高,经污水库下泄的渗滤液中NH3-N浓度检出高达2000 ~2500mg/L。
1.2.2垃圾填埋时间对渗滤液水质的影响
垃圾填埋后,随着时间的变化,填埋场各阶段垃圾分解形态与水质变化发生如下:
调整期:填埋场初期或垃圾填埋作业进行中,水分逐渐积累且尚有氧气存在,厌氧发酵作用及微生物作用缓慢,此阶段渗滤液水量较少。
过渡期:水分达到饱和容量,垃圾及渗滤液中的微生物渐由好氧转变为兼氧性及厌氧性,此阶段尚无甲烷形成。
酸形成期:由于垃圾及渗滤液的兼氧性和专性厌氧微生物的水解酸化作用,垃圾中的有机物迅速分解为脂肪酸,而含N、P的有机物经氨化和磷酸盐转化为氨氮和磷酸盐,产生的渗滤液COD极高,可生化性好,属于初期渗滤液。
甲烷形成期:在酸形成期间,如果有机酸未随渗滤液流出填埋场,则将进入甲烷形成期。有机物经甲烷菌分解转化为CH4、CO2,同时也会产生一些氢气。CO2溶解于水形成HCO3-、CO32-、H2CO3等不同形态的碳酸化合物,pH值则由于重碳酸盐的缓冲系统而维持在6~8之间,同时也给甲烷菌提供了较好的生存条件;由于有机酸的急速分解,渗滤液的COD、BOD浓度会急剧降低,BOD/COD也降为0.1~0.01左右,渗滤液的可生化性变差,是后期渗滤液。
成熟期:渗滤液中可利用的有机成份已大量减少,细菌的生物稳定作用趋于停止,并停止产生气体,渗滤液中剩余腐殖质易和重金属离子发生络合作用,水中ORP增加,氧气及氯化物也随之增加,自然环境状况逐渐恢复。
1.2.3区域降水及气候状况对渗滤液水质的影响
红庙岭垃圾填埋场是一种山谷型垃圾填埋场,渗滤液的产生量高,时变性比较大,渗滤液产生量受降水量的影响。该填埋场虽然汇水面积不大,但红庙岭是福州雨量最大的地区之一,其降水比福州平原地区大约要高20%左右。据气象资料统计,近年来福州市年均降水量可达1500~2400mm,这势必加大渗滤液的产生量。降水是渗滤液的主要来源,其大小直接影响着渗滤液产生量,降水一部分形成地表径流,另一部分下渗到垃圾填埋体成为渗滤液,影响地表径流下渗的主要因素有降雨量、降雨强度、降雨历时和填埋场覆盖状况等。红庙岭垃圾场属早年建设工程,仅结合当地地形地貌特点,局部开展垂直防渗,无水平防渗。根据近年统计结果,垃圾渗滤液平均排放量为1500~1800 m3/d,现已全面完成排洪沟建设和覆盖,预计渗滤液产生量将有所下降。
2 红庙岭垃圾场垃圾渗滤液处理现状分析
2.1 红庙岭垃圾场垃圾渗滤液处理工艺
现有的处理工艺是采用物化+生化工艺,其处理流程如下:
渗滤液污水库配水井UASB反应器中沉池氨氮吹脱塔(由于运行费用高,未启用)氧化沟絮凝反应池二沉池一、二、三级生物塘消毒池四级生物塘排放。
2.1.1污水库单元
红庙岭垃圾填埋场污水库(10万m3)具有沉淀、厌氧等多种综合处理效果,调蓄污水库垃圾渗滤液流入污水处理厂水量的作用。作为污水处理的一个单元,垃圾渗滤液在污水库中经过长时间的贮存、沉淀、厌氧等作用,使污水中的有机物得到很好的分解、降解,同时,使进入处理设施的污水有较好的均值。垃圾污水库渗滤液中CODcr为6300~7000mg/L,污水在污水库中的CODcr去除率高达57%~67%,污水库出水管中污水的CODcr为2300~3000mg/L。在污水库出口处渗滤液中CODcr平均值为2800mg/L;BOD平均值为1750 mg/L,氨氮浓度为708 mg/L,总氮平均浓度达7000 mg/L,平均色度达251度,重金属含量均不高。
2.1.2厌氧处理单元
污水处理厂采用上流式厌氧污泥反应器(UASB)作为污水厌氧处理工艺的主要处理单元。其在工艺上选用UASB时,控制适宜的污水温度是保证厌氧消化高效进行的条件,在冬季实际运行中,进厌氧器的污水水温不会超过17℃。UASB在处理负荷为设计能力的47.6%时(20m3/h),实际容积负荷为2.04 kgCODcr/m3.d。
2.1.3好氧处理单元
奥贝尔氧化沟利用外沟、中沟、内沟控制不同体积和不同溶氧量,达到生物硝化与反硝化的作用。其中第一沟(外沟)溶解氧控制在0~0.5mg/L;第二沟(中沟)溶解氧控制在0.5~1.5 mg/L;第三沟(内沟)溶解氧控制在1.5~2.5 mg/L;既在第一沟中对污水中的有机物水解酸化,又能利用污水中的BOD为碳源对回流自第三沟中的硝酸盐进行反硝化,总氮量可去除80%左右。
2.1.4生物氧化塘处理单元
利用红庙岭溪的自然落差,建了4个生物氧化塘,利用水生生物水葫芦以及池中的微生物对污水进一步处理。氧化塘的构造和设施比较简单,运行和维修管理的技术要求不高,进入污水水质的波动变化也不会引起出水水质大的波动,耐冲击负荷的能力比较强。同时,氧化塘对污水中的细菌有一定去除作用。对于垃圾渗滤液这种含有较多难以生物降解的有机物的污水有一定的去除能力。红庙岭的四级氧化塘在设计时分别按厌氧兼氧好氧流程来设计,但在实际运行中没有按设计运行,特别是第四级氧化塘原来的定位为“好氧塘”,实际变成了“厌氧塘”,其二、三级原设计为兼氧塘,实际都成了“厌氧塘”,因此影响了其处理效果,特别是降低了对氨氮的处理效果。经四级氧化塘的处理后,出水口污水水质为:CODcr 163mg/L,BOD5 59 mg/L,NH3―N 88 mg/L,SS 210mg/L。
2.2 红庙岭垃圾处理场污水处理现状评价
红庙岭垃圾渗滤液处理设施由沉淀、厌氧、好氧等处理单元构成,污水厂尾水进入生物氧化塘深度处理后排放。污水处理厂现有设施存在的最大问题是其设计处理能力仅为1000吨/日,而实际渗滤液产生量为1600吨/日,这是未能达标的关键所在。红庙岭垃圾场现有配套氧化塘处理单元,利用红庙溪的自然落差,按兼氧―好氧设计建设4个4.2万m3的生物氧化塘,利用微生物对污水深度处理,大大提高了系统的抗冲击负荷能力。因此,前端处理设施由于设计能力太小,非正常运行时,尾水进入生物氧化塘后,基本上能达到接近《污水综合排放标准》二级排放标准。
2.3渗滤液处理系统扩容改造技术分析
根据2008年颁布的《生活垃圾填埋场污染控制标准》规定[2],渗滤液未经处理达标不得排放,因此,必须对现有渗滤液处理系统进行技改扩容。
红庙岭垃圾场渗滤液处理系统生化处理设施维护方面,应注重总结现有系统单元设置和运行方面经验,包括:增加铁碳电化学处理单元,氧化沟两段曝气提高脱氮效果,增强沉淀单元优化出水水质。现有生化处理设施维护,包括适当的清理和各单元的维修和保养,预计投资300万元。重点内容包括设施维护调试达到设计要求,在垃圾封场前期和中期内应保持正常运行,中后期排放垃圾渗滤液浓度达到相关要求后停止使用,渗滤液由污水库收集后,进入氧化塘和生态滤床处理系统处理和回用[3]。
现有10万m3污水库和4.2万m3氧化塘的清淤,改造成为好氧塘,引进水生植物、特效微生物提高氧化塘净化能力。此部分污泥约有10万m3,将清理出的污泥进行脱水、干化、堆肥处理后,作为花肥加以综合利用。清淤工程设计经费预算1000万元,污泥干化堆肥处理工程经费预算2000万元,氧化塘改造为好氧塘工程投资预算100万元[3]。
3 渗滤液生态处理技术
3.1 人工湿地的组成与分类
人工湿地是一种人工建造和管理控制的与沼泽地类似的复合生态系统。建造人工湿地的目的是建造湿地生物的栖息地、食物与纤维物质生产地及废水处理设施。人工湿地主要由四部分组成:①具有各种透水性的基质,如土壤、砂、砾石等。基质具有支持植物、保持湿地系统中的生命和非生命物质,为微生物生长、同体物的沉积提供较大的表面积。②湿地植物。它们适于在饱和水和厌氧基质中生长,如芦苇、香根草等具有供氧、降低水流的速率、协助水的传导、养分的吸收和有机物的分泌等作用。③水。即在基质表面下或上流动的水。人工湿地水面的高低影响着系统中的生化反应环境,决定着反应的产物,影响着湿地生态系统功能。④活的生物体。湿地中有许多大型和微型的生物体,在湿地系统中处理废水起关键作用的是微型生命系统,如细菌、真菌、原生动物。
目前对人工湿地的分类有两种方法:一种是按照水流方式将人工湿地分为表面流湿地、水平潜流湿地和垂直流湿地;另一种方法是按大型植物的类型,将人工湿地分为浮水植物型、沉水植物型和挺水植物型湿地。
3.2人工湿地处理垃圾渗滤液的应用现状
自1953年德国科学家发现可利用适当的水生植物降低内陆水的肥力、污染物以来,一些政府及私人研究机构对利用自然或人工湿地系统处理废水进行了不少努力,随着利用人工湿地进行废水处理的研究不断深入,应用领域也不断扩大。目前,该技术已可处理生活污水、城市径流、工业及农业废水、垃圾渗滤和酸性矿排水等。美国利用人工湿地处理垃圾渗滤液较广泛,如阿拉巴马州的垃圾填埋场将一般污水和渗滤液混合进水后,采用表面流人工湿地,经过沉淀池沉淀后达到排放标准,其COD去除率达90%、TSS去除率达97%、重金属Cu去除率达52%、Pb去除率达到94%;美国纽约市采用表面流湿地和潜流湿地对封场后的渗滤液进行处理,其COD去除率达68%、BOD去除率达46%、Fe去除率达80%;美国爱荷华州地区采用人工湿地直接处理垃圾填埋场的渗滤液,效果显著。在实际运用中,人工湿地多与其它处理工艺相结合来稳定处理后的水质。如我国上海的老港垃圾填埋场采用“厌氧塘+兼氧塘+曝气塘+芦苇湿地”的处理工艺处理渗滤液;挪威的垃圾填埋场则采用“氧化塘+人工湿地系统”的处理模式,均获得了较好的处理效果。
3.3应用生物滤床处理设施处理渗滤液
首先,基于对红庙岭垃圾场封场后排放的渗滤液水质水量预测分析的基础上,提出对现有污水处理设施的改造和修复方案。其次,充分利用红庙岭垃圾卫生填埋场封场后的场地,建成水生植物园、生态滤床处理系统,采取人工湿地技术,形成由多条食物链构成的人工生态系统。总体思路是,封场初期排放的垃圾渗滤液,先经过现有的垃圾污水处理设施和氧化塘处理系统后,尾水提升150米高程输送入生态滤床处理系统,力争出水水质达到地表水Ⅴ类标准。出水用于周边林地的喷灌和其他项目的综合利用。
新建生态滤床处理设施,设计污水处理规模为5000 m3/d,需配套滤床占地40000 m2;包括泵站建设(取氧化塘之后的尾水,设计量按污水+地表水径流)、过滤池建设和配水布水系统建设。利用红庙岭垃圾卫生填埋场一期工程封场后的场地地面建成生态滤床和水生植物生产基地,也可作为温室水培种植基地,可将氧化塘出水的主要污染物指标处理达到地表水Ⅴ类标准。尾水可结合红庙岭生态园区建设项目统筹结合利用。泵站和输水管线建设工程投资预算30万元,生态滤床工程投资预算2000万元[3]。
4 结论
随着城市化进程的加快,城市生活垃圾的处理问题已日趋凸显;垃圾渗滤液处理是城市垃圾填埋中的重要一环,渗滤液的环境污染问题已引起人们的高度关注。特别是福州市现有城市垃圾处理主要由焚烧场来完成,封场后渗滤液将持续10~15年对水环境造成污染影响。笔者认为应当在现有污水处理系统扩容改造基础上,应用人工湿地技术,建成生态滤床处理系统,实现尾水的深度处理,从而有效解决垃圾渗滤液污染问题,生态治理工程投资预算总计5430万元。同时方案提出建设有观赏价值的水生植物生态基地,用于城市的绿化和美化,可以达到和谐双赢的目标。
参考文献:
[1] 王宝贞,王琳.城市固体废物渗滤液的处理与处置.北京:化学工业出版社,2005.
[关键词]垃圾渗滤液FEO技术应用
垃圾渗滤液是在垃圾填埋过程中产生的一种成份十分复杂的高浓度的有机废水,目前还没有特别有效的治理方法。传统的生化处理法虽然常常用来处理渗滤液,但由于渗滤液中含有多种有毒有害的难降解有机物且水质水量变化很大,生化法的处理效果远不及其对城市污水的处理。“FEO技术”是我公司专门针对垃圾渗滤液开发的处理技术,在BOD5 CODcr比值低和很低时,使渗滤液达标的关键性技术。
1垃圾渗滤液的特性
垃圾渗滤液的来源主要有直接降水、地表径流、地表灌溉、地下水、垃圾自身的水分、覆盖材料中的水分和垃圾生化反应的生成水等。其具有负荷高、水质成份复杂、浓度随季节变化大、色度高、氨氮高、有毒性物质较多、可生化性逐渐降低等特征。渗滤液水质特征见表1。
表1 垃圾渗滤液水质特性表
项目 特 性
色味 呈淡茶色或暗褐色,色度一般在2000~4000倍之间,有较浓的腐臭味。
pH值 填埋初期pH为6-7,呈弱酸性;随着时间的推移,pH可提高到7-8.5,呈弱碱性。若垃圾中煤灰多,呈弱碱性;煤灰成分少,有机物多,呈弱酸性。
BOD5 随着时间和微生物活动的增加,浸出液中的BOD5也逐渐增加,一般填埋6个月至2.5年,达到最高峰值,随后BOD5开始下降。
CODcr 填埋初期CODcr略高于BOD5,随着时间的推移,BOD5急速下降,而CODcr下降缓慢,从而CODcr高于BOD5。浸出液中的BOD5/CODcr的比值比较高,说明浸出液较易生物降解,当填埋场填满封场后的2~5年中BOD5/CODcr逐步降至0.1,则认为后期浸出液中难于生化降解的成分占主要。
TOC BOD5/CODcr值可反映浸出液中有机碳可生化状态。填埋初期,BOD5/TOC值高,随时间推移,填埋场趋于稳定,浸出液中的有机碳以氧化状态存在,则BOD5/TOC值降低。
溶解总固体 浸出液中溶解固体总量随填埋时间推移而变化。填埋初期,溶解性盐的浓度可达10000mg/l,同时具有相当高的钠、钙、氯化物、硫酸盐和铁等,填埋6~24个月达到峰值,此后随时间的增长无机物浓度降低。
SS 一般在1000mg/l以下,垃圾填埋高度增加,SS值下降。
氨氮 氨氮浓度较高,以氨态为主。
磷 浸出液中含磷量少,生化处理中应适当增加与BOD5相当比例的磷。
重金属 生活垃圾单独填埋时,重金属含量很低,一般不会超过环保标准,但若渗混入工业废物或污泥混埋时,重金属含量增加,超标可能性大。
细菌 浸出液含有毒有害物质及细菌病毒、寄生虫等,其中大肠杆菌含量最大。
2垃圾渗滤液的处理技术
2.1生物处理技术
生物处理可大致分为厌氧生物和好氧生物处理两种技术。在厌氧生物处理装置中,渗滤液中的复杂有机分子被产甲烷细菌转化成甲烷和二氧化碳,产生极少数量的需要处理的污泥,同时还具有低能耗、低运行费和所需营养物少等优点。成熟的工艺有厌氧滤池(AF)、升流式厌氧污泥床(UASB)、高效厌氧反应器(UBF)等。
对于BOD与COD比值远大于0.5的早期渗滤液,含有大量易于生物降解的脂肪酸,好氧系统是非常有效的。微生物在氧气存在的条件下作用于有机物质,为保持好氧阶段生物活性,特别是处理含有高浓度有机物的早期渗滤液时,提供大量的氧气是非常必要的,当渗滤液有机负荷随时间变化时,系统可通过改变氧气供应来调整。好氧生物处理方法包括活性污泥法、生物转盘、滴滤池和氧化塘等。
2.2 物化处理技术
物化处理技术是指通过物理化学的方法去除渗滤液中的C0D、SS、色度、重金属等。相对于生物法,物理化学法不受渗滤液水质水量的影响,抗冲击负荷能力较强,出水水质比较稳定,尤其在废水可生化性较差的时候有比较好的处理效果。近年来,用于渗滤液处理的物化法主要有活性炭吸附、化学沉淀法、吸附法、化学氧化法、反渗透法、电渗析、FEO技术等多种方法。其可作为预处理或深度处理而为渗滤液的达标排放和生物处理系统有效运行创造良好的条件。
2.3 组合式工艺处理垃圾渗滤液
渗滤液成分复杂,仅采用普通的生物处理工艺难以达到理想的效果,因此需采用合适的预处理措施来提高它的可生化性,以改善后续工艺的运行环境。对于处理垃圾渗滤液采用物化和生化组合式的处理工艺,可以避免这两种方法的缺点。我公司积累近十年的工程实践经验,成功地开发了“厌氧+FEO+氨吹脱+好氧”的处理工艺,该处理工艺已经成功应用于十几个垃圾渗滤液处理工程。实践证明该工艺处理高浓度的垃圾渗滤液是目前确保出水稳定达标的最可行技术路线之一,CODcr、BOD5、氨氮和色度的去除率均很高,是目前较先进和比较可靠的方法之一。
3FEO处理技术介绍
“FEO处理技术”是我公司专门针对垃圾渗滤液开发的渗滤液处理技术,在BOD5/CODcr比值低和很低时,使渗滤液达标的关键性技术。我公司将该技术应用于漳州市九龙岭生活垃圾填埋场渗滤液处理工程,湛江生活垃圾填埋场渗滤液处理工程、阳江生活垃圾填埋场渗滤液处理工程、福安垃圾填埋场渗滤液处理工程、合肥市龙泉山垃圾填埋场渗滤液处理工程等工程均获得成功,净化效果十分显著。
其作用如下:FEO反应器中填料主要由Fe、Al、C、Mn、Zn、石墨等二十几种物质按一定的配比均匀混合而成。FEO反应器由FE罐及高级氧化罐两部分组成,“FE”指反应器中的主要填料铁(Fe),而“O”表示氧化反应。它主要利用电解质溶液中铁屑及其它金属晶体结构与碳之间形成的许多局部微电池,来处理工业废水的一种电化学处理技术。FEO反应器在没有外加电能条件下,充分利用金属-金属、金属-非金属之间的电位差而产生的无数微小电池的作用,使废水中的污染物通过电化氧化-还原反应、凝聚、气浮和沉降等作用,达到净化的目的。其电极反应式如下:
阳极反应:FeFe2++2e,E0(Fe/ Fe2+)=-0.44V
阴极反应:2H++2e2[H]H2,E0(H+/ H2)=0.00V(酸性介质)
O2+2H2O+4e4OH-,E0(O2/ OH-)=0.41V(碱性介质)
O2+4H++4e2H2O,E0(O2/ H+)=1.23V
FEO反应器特点是作用机制多、协同效应强、适用范围广、去除效果好、运行费用低、脱色效率高。它采用多组合工业混合原料及多元催化剂,进行多种生物化学反应、电化学反应和凝絮吸附共沉淀效应,从而分解难生化和不可生化的有机物,降低色度,为后续生化处理提供良好保障。
4FEO技术处理垃圾渗滤液工程案例
合肥龙泉山垃圾填埋场渗滤液处理站为我公司于2004年设计施工,并于2005年投入运营。合肥龙泉山垃圾填埋场位于合肥市肥东县桥头集镇,该渗滤液处理站是垃圾填埋场的主要配套工程,设在填埋库区的西北面,该项目由我公司设计施工,合肥市建设投资公司负责工程建设,华夏监理公司负责工程监理。垃圾渗滤液污水调节池容积为5万m3,渗滤液处理站设计处理规模为600m3/d,处理达标后的污水,由一条约10km的管线排入店埠河,最终进入巢湖。
垃圾渗滤液处理站设计进水水质如下:
CODcr≤6000mg/L BOD5≤3000mg/L,
SS≤500mg/LNH3-N≤800mg/L
垃圾渗滤液处理站出水排放标准如下:
渗滤液处理出水水质执行《生活垃圾填埋污染控制标准》GB16889-1997标准中的二级标准,即:CODcr≤300mg/L,BOD5≤150mg/L,SS≤200mg/L,NH3-N≤25mg/L,pH=6~9。
本处理站工艺主体路线:UASB+FEO+氨吹脱+CASS是不同于其它传统处理工艺,其是以先进的专利技术及工艺处理理论为依托,以大量的工程实例为基础逐步发展改进确立起来的,具有高度的针对性及先进性,是目前垃圾渗滤液处理的成熟的处理工艺。而FEO技术作为我公司的专利工艺更是在该工艺主体线路中起到关键的作用。
经过这几年的运营实践,FEO对经过厌氧处理以后的垃圾渗滤液处理平均效果见表2。
表2FEO进出水水质对比表
水质指标 CODcr
(mg/L) BOD5
(mg/L) 氨氮
(mg/L) 色度
(倍)
进水水质 3000 1200 800 3000
出水水质 2250 1020 640 150
由此可见FEO对 CODcr有25%的去除率,对BOD5有15%的去除率,氨氮也有20%的去除率,而对色度的去除率达95%。通过测量进出水的B/C也得到了提高。实践证明,FEO有如下优势:
4.1 垃圾渗滤液的色度很高,可达2000倍以上,工艺流程的主体系统采用生化为主的处理工艺,生化处理对色度的去除能力较弱,而“FEO处理技术”对有机色度的去除率可达95%以上。
4.2 垃圾渗滤液含有10%~35%难生化降解的有机物质,特别是填埋场到中后期或封场后,难生化和不可生化物质将占主导成份,只通过生化处理无法有效去除。“FEO处理技术”中因加入特殊的催化氧化剂,可使垃圾渗滤液中的大分子难生化物质断链为小分子,同时可改变一些难生化物质的分子结构,通过投加药剂反应可生成沉淀去除。
4.3 FEO处理技术可以去除相当一部分CODcr、NH3-N,减少后续生化处理的负荷。缩短生化时间,降低运行成本。
4.4 生活垃圾中可能混入一些工业垃圾,增加垃圾渗滤液中重金属的含量,采用FEO处理技术,能有效地去除垃圾渗滤液中的重金属离子,确保处理后的重金属达标排放。
5结论
垃圾填埋场因所处地区气候(降水)、水文特点,也与填埋场运行时间密切相关,渗滤液水质是连续变化的,所以对渗滤液的处理,不仅要考虑工艺方法对渗滤液的处理效果,而且更要考虑该工艺方法对水质、水量变化的适应性。物化法控制条件灵活、调整参数方便可靠,而生物法则对连续变化的渗滤液水质具有较好的适应性,结合两者各自特点,采用组合式工艺“厌氧+FEO+氨吹脱+好氧”处理垃圾渗滤液。FEO技术对于水质水量的变化有很好的适应性,在其水质水量变化时均能够稳定的运行。FEO技术处理垃圾渗滤液将是一个发展方向,有着广阔的应用前景。
参考文献:
[1] 闫志明,普红平,王小凤.垃圾渗滤液的特征及其处理工艺评述[J].昆明理工大学学报(理工版),2003,28(3):128-134.
[2] 蒋彬,吴浩汀,徐亚明 浅谈城市垃圾填埋场渗滤液的处理技术[J].江苏环境科技,2002,15(1):32-34.
[3] 丁忠浩,刘子元,王文斌,赵素芬.垃圾渗滤液处理中SBR法脱氮研究[J].武汉科技大学学报(自然科学版),2003,26(1):24-26.
[4] 程洁红,马鲁铭.厌氧/SBR/混凝沉淀耦合工艺处理垃圾渗滤液的研究[J].水处理技术,2004,30(3):176-178.
[5] 孟玢,李静,王蕾,季民.Fenton氧化处理垃圾渗滤液生化工艺处理的影响因素研究[J].天津城市建设学院学报,2004,10(1):41-45.
[6] Sheng H.Lin and Chin C.Chang,Treatment of landfill leachate by combined eletro-Fenton oxidation and sequencing batch reactor method,Wat.Res.,2000,34(17).
关键词:垃圾渗滤液处理;机电设备;COD 负荷波动系数;污水冷却系统;污泥回流量
引言
随着城市生活水平的不断提高,中国城市垃圾产量也急剧增大,卫生填埋仍将是中国当前主要的垃圾处理方式之一。垃圾填埋过程中,由于厌氧发酵、有机物分解、雨水冲淋等产生多种代谢物质,形成高浓度的有机废液,即垃圾渗滤液。垃圾渗滤液是一种高浓度的有机废水,受垃圾种类、当地环境及降水量、填埋场容积、填埋时间等诸多因素影响,其水质和水量变化较大。它是垃圾填埋过程中产生二次污染的主要因素之一,对水体、土壤、大气和生物都有不同程度的影响。垃圾渗滤液若不妥善处理而直接进入环境,将会对环境造成严重污染。按照《生活垃圾填埋场污染控制标准》(GB 16889―2008)的要求,目前国内垃圾渗滤液处理大多采用“生化处理+深度处理”工艺,而生化处理工艺以采用 MBR 居多。MBR 工艺的特点是运行稳定,处理效果良好,出水再辅以深度处理后能满足排放标准的要求。但MBR 工艺也存在工艺流程复杂、机械设备较多的不足。由于机电设备较多,电耗高,运行成本也较高,如何降低机电设备的能耗,对于垃圾渗滤液处理工程的节能来说具有重要意义。
1垃圾渗滤液的水质特性
(1)水质成分复杂:蒋海涛等总结了中国城市垃圾渗滤液的典型污染物组成及浓度变化情况,如表1所示,可见垃圾渗滤液的水质成分十分复杂。
(2)有机污染物和NH4+-N含量高:经鉴定,垃圾渗滤液中有93种有机化合物,其中22种被中国和美国列入EPA环境优先控制污染物的黑名单。高浓度的NH4+-N是“中老年”填埋场渗滤液的重要水质特征之一,也是导致其处理难度较大的一个重要原因。
(3)重金属含量大,色度高且恶臭:渗滤液含多种重金属离子,当工业垃圾和生活垃圾混埋时重金属离子的溶出量往往会更高。渗滤液的色度可高达2000-4000倍,并伴有极重的腐败臭味。
(4)微生物营养元素比例失衡:垃圾渗滤液中有机物和氨氮含量太高,但含磷量一般较低。
2垃圾渗滤液单元处理工艺
(1)生物处理法:活性污泥法最为广泛,该法受温度影响,能耗高,条件控制复杂,耐冲击负荷能力差。
(2)物化处理法:主要包括混凝、化学沉淀、化学氧化、吸附、吹脱和膜分离等。物化法可以有效削减渗滤液中的有机物、氨氮、重金属离子和色度等,改善其可生化性,为后续生物处理工艺创造良好的条件。
(3)土地处理法:主要是通过土壤颗粒的过滤、离子交换吸附等作用去除其中的悬浮颗粒和溶解成分。目前应用较多的是人工湿地和回灌法。回灌法是利用填埋层的厌氧滤床作用使参滤液降解,提高其可生化性。人工湿地则是近几年出现的新型处理工艺当前已有不少生态环境学家正在研究利用藻类、芦苇、香根草以及各种水草等对渗滤液进行净化,也取得了一定的成果。
(4)其它方法:辐射法、电渗析、电凝、超声技术等在国内外都有应用
3 垃圾渗滤液处理工程的机电节能措施
3.1充分利用渗滤液调节池的调蓄能力
生物反应池中好氧区的污水需氧量,包括去除BOD5、氨氮的硝化和除氮需氧量,其中去除 BOD5是总需氧量的重要组成部分。在计算需氧量过程中,应该考虑 BOD5负荷波动系数的影响,对于垃圾渗滤液而言,应以 COD 来计算。由于渗滤液进水COD 浓度很高,如果考虑COD负荷波动系数的影响,会大幅增加鼓风机的鼓风量。对于垃圾渗滤液来说,一般会在填埋场设置渗滤液调节池,储存1-2 个月的渗滤液产生量。在进行渗滤液处理工程设计时,进水 COD 取最高月平均值,这样可以降低鼓风机的风量,达到节约能耗的目的。如果进水 COD 超出最高月平均值,可以减少渗滤液处理设施的进水量,确保处理设施达标排放。而在渗滤液水质偏低的季节增加进水量,可使处理设施全年的处理量达到设计能力。
3. 2 合理配置鼓风机数量
对于垃圾渗滤液而言,随季节的变化其水质变化也很大,国内的一些垃圾填埋场在春夏秋季节,渗滤液的 COD 一般维持在 6000-8 000 mg/L,甚至更低,而在冬季 COD 可达12 000-15 000 mg/L,最高甚至可达20 000 mg/L。渗滤液的氨氮值也呈这一变化规律,春夏秋季节渗滤液的氨氮一般维持在1 200- 2 000 mg /L,而在冬季氨氮可达 2 000-3 000 mg /L。渗滤液处理工程中鼓风机的设置应考虑季节性变化对渗滤液处理的影响,应根据不同季节鼓风量的变化,合理配置鼓风机数量。由于单台风机的最佳变频调速范围有限,应至少配置3 台风机(2 用 1备),这样可以在不同的季节开启不同数量的鼓风机,进而达到节能的目的。
3.3采用变频调速鼓风机
鼓风量受水质变化的影响较大,虽然按照污染物浓度较高季节的水质进行计算,但在实际运行时,由于降雨、垃圾填埋作业、运行管理等因素的影响,渗滤液水质仍会有较大的变化。采用变频调速鼓风机可以适应这种水质变化,从而达到节能的目的。一般鼓风机的变频调速范围是 0-40%,这个范围可以适应渗滤液水质的变化。
3.4污水冷却系统的节能控制措施
垃圾渗滤液处理运行过程中,生物池内会保持较高的温度,但有时会过高,从而抑制了微生物的生长,影响了生物处理效果。为解决生物池内温度过高这一重要问题,在生物池设置污水冷却系统,当水温超过一定温度时,开启冷却系统,使生物池内水温保持恒定,确保生化处理正常运行。该方法已在工程中得到了应用,效果良好。冷却系统机电设备节能控制措施:(1)根据生物池内温度变化,对冷却塔的风机进行变频调速控制,从而达到节能的目的。(2)根据季节的变化控制冷却系统的运行,当环境温度变化较大时,生物池内水温也相应有所变化,当环境温度较低时(如冬季),可以停止冷却系统的运行,或者间歇运行,节省能耗。(3)温度是影响微生物生理活动的主要因素之一,合理控制生物池内水温非常重要。许多工程实例证明,水温达到40 ℃时生化处理仍能维持较佳的运行状况,因此在渗滤液处理工程设计中,可以将生物池最高水温控制在40 ℃,超过40 ℃时开启冷却系统,这样可以减少冷却系统的运行时间,节省能耗。
3.5污泥回流量的控制
用于处理垃圾渗滤液的 MBR一般采用外置式超滤系统,在硝化池出水端设置超滤进水泵,超滤进水泵的设计流量一般为5Q(Q 为系统设计流量),出水流量为 Q,回流量为4Q。设计中将回流管道接入生化池的前端―――反硝化池内,这样可以作为内回流的一部分,减小污泥回流泵的流量,从而达到节能的目的。在污水冷却系统中,污泥冷却水泵由硝化池出水端吸水,经过换热器换热后再回流到生化池的前端―――反硝化池内,同样可以起到内回流的作用,这样在夏季开启冷却塔的情况下,污泥冷却水可以作为污泥回流的一部分,减小污泥回流泵的流量,起到节能的目的。
结论
综上所述,可得到以下结果:(1)充分利用渗滤液调节池的调蓄能力,在计算鼓风机风量时,可不考虑 COD 变化系数的影响。(2)合理配置鼓风机数量,采用变频调速鼓风机可以起到节能的作用。(3)通过控制超滤及冷却系统回流,可以起到污泥回流的作用,从而减小污泥回流泵的流量,节省能耗。
参考文献
[1]张艮林,徐晓军,童雄. 城市垃圾渗滤液的水质特性及其处理现状[J]. 云南冶金,2005,06:60-62.