前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇可降解塑料产业前景范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】 生物塑料 降解塑料 发展
石油资源的匮乏、生态环境的恶化是摆在人类面前的急需解决的两大问题。近年来,欧美日等发达国家和地区纷纷制定相关法规,采用禁止、限用、强制回收等措施限制不可降解塑料的使用,我国在2008年也出台了限塑令,同时鼓励生物塑料的应用和推广。生物塑料是治理塑料废弃物对环境污染及缓解石油资源矛盾的有效途径之一,是塑料产业未来的发展方向,市场前景十分广阔。
一、生物塑料的概念
生物塑料是生物基塑料和生物降解塑料的统称。生物基塑料的原料来源于可再生资源的碳,但不是所有的生物基塑料都是可降解和可堆肥的。生物降解塑料和可堆肥塑料是从产品功能角度,达到了科学公认的关于塑料和塑料产品的生物降解性能和可堆肥性能规范标准的生物降解聚合物。这些标准主要是欧洲的EN13432标准,美国的ASTM D6400标准,以及ISO 17088标准。也有部分生物降解塑料和可堆肥塑料是来源于石油基。
二、全球生物塑料产业发展特点
1、政策驱动生物塑料产业快速发展
据欧洲生物塑料协会统计,2011年全球生物塑料产量超过100万吨,预计到2015年将达到170万吨。越来越多的企业将生物塑料纳入到企业可持续发展计划中。该产业在发展初期,驱动力主要来自于政府政策推动,以欧美发达国家为主。1989年纽约市开始对生产厂家给予补贴,1996年美国设置了总统绿色化学挑战奖,2002年要求每一个联邦机构都必须制定生物塑料使用计划;德国禁止将含有大于5%有机物含量的固体废弃物掩埋地下,强制生产传统塑料袋的企业承担回收塑料袋的义务;日本给予购买环保产品消费者70%的政府补助,确定了到2020年20%的塑料袋来自可再生资源的目标。
2、原材料生产装置的制造逐渐转向亚洲和美洲
目前生物塑料的消费市场主要集中在欧美等经济发达地区,但近几年,在对原材料生产装置的投资集中于亚洲和美洲地区。2011年萘琪沃克公司与泰国PTT公司合作建设年产14万吨PLA生产装置;法国阿科玛和韩国CJCheilJedang公司合作在东南亚建设产能8万吨/年的生物蛋氨酸和硫代化学品工厂;荷兰Purac公司在泰国建设7.5万吨/年乳酸厂;巴西Braskem投资建设20万吨/年的绿色聚乙烯项目和年产能为40万吨的新工厂;美国Myriant公司在路易斯安娜州建设全球最大的生物基琥珀酸工厂,产能超过1万吨;法国BioAmber公司在北美建设生物琥珀酸和改性聚丁烯琥珀酸酯工厂。
3、应用领域逐渐高端化
随着性能增强,生物塑料向汽车、消费品电子、食品等高端耐用品领域延伸。日本本田、三菱、马自达、丰田等汽车制造中,从车底板垫、座垫、车门防擦板等多个零部件都有应用,丰田的一款车80%的内部部件由生物塑料制造,在笔记本电脑、手机、复印机等的外壳和零部件也广泛采用了生物塑料。2012年,英国以激光烧结生物塑料为原料采用3D打印技术建造了纤维尼龙结构房屋模型。
4、原材料种类趋于多样化
目前市场上的生物塑料多以玉米、小麦、甘蔗、植物秸秆等为原料,其中以玉米最多,但是这难以替代数量大、品种多的石油系列材料,因此众多研究机构及企业积极开发新的生物塑料。日本研发了木质生物系列塑料,提高了环境性能和材料特性。英国科学家利用地沟油作为原材料,合成了适于医疗应用的可降解生物塑料。巴西以发酵菌在甘蔗渣中发酵制造的PHA具有生物相容性,可用来生产药用胶囊。悉尼利用二氧化碳废气开发了PPC,可解决当前PPC生物塑料生产上的问题。新西兰正在研究基于肉类的Novatein生物塑料产品。
三、我国生物塑料产业现状
21世纪初,国内企业开始涉足生物塑料领域,现已初步建成了涵盖研究开发、生产加工、应用开发、市场推广、技术服务的全产业链,生物塑料正朝着以绿色资源化利用为特征的高效、高附加值、定向转化、功能化、综合利用、环境友好化、标准化等方向发展(生物基材料产业科技发展“十二五”专项规划)。
1、生物塑料产业出具规模
据统计,2012年我国仅生物降解塑料产业总产量约30万吨,三年复合增长率为27.3%,年产值3000万元以上企业超过40家,产值超过3亿元企业在5家以上。国内知名企业主要有:金发科技、齐翔腾达、鑫富药业、彩虹精化、扬农化工、大东南、浙江海正生物、武汉华丽环保、宁波天安生物等。
2、部分原材料生产技术处于国际领先
我国生物塑料的发展与其他制造业不同,不是在承接国际产能转移的基础上发展起来的,该领域的研发和工业化水平处于世界先进水平,多家高校和科研机构都进行了大量研究,如清华大学、上海同济大学、四川大学、南开大学、天津大学、天津工业生物研究所、中科院理化所和长春应化所等,研究成果为产业发展提供了技术保障。现已实现产业化的品种有聚乳酸、聚羟基烷酸酯、聚丁二酸丁二醇酯等,部分产品的生产工艺和技术还处于国际领先水平。
3、终端产品研发制造有待于进一步提高
目前国内从事降解塑料制品加工研究的力量尚显薄弱,大部分企业将关注的重点集中在材料合成上,而忽略了制品加工开发,一些制品在耐热、耐水及机械强度方面与传统塑料制品相差较远,而这一点恰恰是生物塑料能否大规模市场化的关键。
4、高端应用领域有待于开发
我国的生物降解塑料制品主要目标市场为:食物软硬包装、包装膜(袋)、垃圾袋、台布、餐具、地膜、育苗钵、发泡网等,电子、医疗、汽车等高端消费领域产品还不多。
5、国内市场普及率较低
与国外市场相比,生物塑料在国内市场还远未普及,主要原因在于成本高,是石油基塑料制品的2―10倍,国内消费者虽在环保意识上有所提高,但仍不愿意为此支付较高的费用。其次是产品性能,目前还无法完全满足消费者需求,石油基降解塑料性能比较稳定,而生物基降解塑料在性能上还存在不足。
6、政策对产业发展推动力不足,产品以出口为主
我国在新材料产业“十二五”发展规划、生物产业规划、可再生能源法、863计划中均有涉及,主要包括:基础研究、产业化示范工程、产品认证、市场激励等。但在具体实施上,政策的针对性和可操作性不强,使得国内生物塑料市场推广缓慢,企业想通过政策打开市场很难。国内大部分产品以出口为主,市场在外不利于行业的持续健康发展。
四、天津(生物)塑料产业发展现状
1、塑料企业集中度较高
天津市塑料产业,2012年规模以上企业302家,从业人员60867人。塑料产业主要集中在宝坻区、西青区、静海县,其中以宝坻区塑料产业规模最大,宝坻塑料制品工业区规划面积10.8平方公里,重点发展塑料原材料加工、农用塑料、工程塑料、塑料建材生产及塑料加工机械制造。
2、中小民营企业占主体地位
天津市塑料产业规模以上企业有302家,其中国有企业只有5家,国有企业工业总产值占地区工业总产值的4.6%,并呈逐年下降趋势(2011年为5.46%);规模以上民营企业236家,工业总产值占地区工业总产值的94.54%。民营企业以小微企业为主,共255家。
3、环保、功能性是产业发展的主题
天津塑料产业在技术创新、产品创新方面取得了一定的成就,企业在产品研发中把握世界塑料发展趋势,在环保、提高性能方面投入了大量资金,开发了一批畅销国内外的塑料制品。比如:久大塑料制品公司的可回收环保购物袋、旭辉恒远公司的阻燃塑料包装袋、华庆百盛利用回收的废旧塑料再生制造的包装袋。
4、生物塑料是产业转型的重要方向
自上世纪90年代以来,天津传统塑料制品行业相对于我国华南、东南沿海的广东、浙江、江苏和上海等省市地区发展速度慢了一些,企业经营模式陈旧、规模偏小。同时,部分企业开始转至生物塑料领域,2008年国韵生物获得帝斯曼风险基金、崇德投资、中国环境基金、KPCB、北极光创投等七家共计2000万美元的投资,成立国内最大的PHA的生产基地。天津市塑料产业逐渐向生物塑料方向发展。
5、在生物塑料方面具备一定的研发基础
天津在生物塑料研究方面做了大量工作,取得了一系列的成果。天津工业生物技术研究所开发了以木薯为原料炼制丁二酸的生物合成技术,并与山东兰典生物科技股份有限公司合作实施“非粮原料生物炼制琥珀酸及生物基产品PBS产业化”项目,实现我国PBS下游产品规模化生产。天津大学理学院、南开大学生物活性材料研究教育部重点实验室等研究机构也在生物塑料领域各有建树。
五、天津市发展生物塑料产业的建议
1、加强生物塑料新产品开发研究
天津是较早开展生物塑料研究的地区之一,在生物材料研究方面取得了丰硕的成果,但主要研发方向是高分子材料,而先进成型工艺、高性能的结构设计和产品设计方面总体研发力量薄弱。加强新产品的开发是扩大生物塑料产业化的重要手段。一是要加强新产品应用研发,开发具有自主知识产权的创新型产品,围绕天津市塑料研究所开发医用生物塑料系列制品,引领生物塑料向高端化发展;二是要加大生物塑料制品加工研究,提高产品性能,促进产品的大规模市场化,降低成本以替代石油基塑料制品。
2、加大政策支持力度,推动塑料加工企业转型升级,
给予以生物塑料产品生产企业税收优惠、价格补贴、设立专项资金等政策,鼓励传统塑料制品企业向生物塑料制品转型,一是解决塑料产业的低迷,二是利用天津在塑料加工方面良好的产业基础,加强生物塑料制品加工能力。适当限制甚至分期分批禁止某些传统塑料制作的一次性非降解包装产品。
3、建立生物塑料研发平台,促进科研成果转化
加快突破生物基材料制造过程的生物合成、化学合成改性及树脂化、复合成型等关键技术,促进重要生物基材料低成本规模化生产与示范。依托天津大学、南开大学、天津工业大学等研究机构,构建生物基材料研发转化平台,促进研究机构科研成果向企业转化,提升企业科技创新能力,为生物塑料产业培育提供科技支撑。
4、市场推广先国外后国内,提高环保消费理念
生物塑料制品市场主要在欧美地区,采取先立足国外市场,逐渐培育国内市场的策略。价格高是影响我国市场推广的重要因素,我国消费者对价格的承受能力较差,国内市场尚未打开。提高消费者环保消费的理念对于打开国内市场至关重要。
【参考文献】
[1] 于浩强、张艳梅等:生物降解塑料的研究现状与发展前景[J].上海塑料,2012(1).
关键词:植物纤维;粘结剂;育苗钵
中图分类号:TS721 文献标识码:A 文章编号:1674-0432(2010)-11-0039-1
0 概述
专家分析,随着中国加入WTO,对一次性塑料的淘汰步伐将大大加快,由此促进塑料替代品研究开发的兴起。植物纤维制品从研制思想上完全突破了用降解法解决“白色污染”的框框,从根本做起,采用全天然的麦秸、稻草、稻谷壳、玉米杆等多种植物纤维型无污染废弃物为原料,将全天然材料配制成可食用的粘结剂,将上述全天然废弃物原料压制粘结而成。其产品具有无毒、无味、强度高、可在-26℃至100℃条件下正常使用、成本低(与纸浆模塑容器相比)、抛到野外后3月内可全部被土壤吸收、粉碎后可用做家畜饲料、生产过程不产生任何污染等特点。由此可见,开发研制秸秆育苗钵是社会的需要,是解决塑料对环境污染的一个重要途径和手段。
1 国内研究现状
目前国内育苗钵的原料主要以普通塑料为主,可降解塑料次之,秸秆为主体原料的育苗钵生产相对很少。目前市场上销售的以秸秆为原料的育苗钵主要有:纸制育苗钵、新型无菌营养育苗钵、秸秆贮水育苗钵、多元营养育苗钵等。主要制取方法有以下几种:
1.1 滕翠青等采用稻草纤维为增强材料,以淀粉为基体,研制出一次性秸秆纤维增强复合材料
采用土埋法研究了该复合材料的可降解性能。将该复合材料模压成花盆,结果发现该复合材料具有优良的可降解性能。陈海荣等对用稻草、木屑制成的育苗钵进行了甜瓜育苗研究,结果表明,采用该育苗钵进行甜瓜育苗是可行的,其中以口径7cm的最为合适,能培养出壮苗;在湿度较高的情况下,钵体能在15-25天的时间内被甜瓜根系穿透,埋土30天后钵体开始被降解。
1.2 彭祚登等对以小麦秸秆为主要原料制成的秸秆容器进行了育苗试验
研究表明:该容器易分解和腐烂,分解的快慢与基质中的水分状况有密切的关系;容器的透气、透水性好,但保水性能较差;容器易破碎;容器可以促进苗木侧根形成根团,但苗木的主根很容易穿透容器的底部。试验的秸秆容器适合培育幼苗期侧根发达、主根细弱的植物.对于主根发达且生长迅速的植物不适宜。
1.3 沈明卫、郝飞麟等对水葫芦制作温室栽培育苗钵的可行性作了研究
试验虽然取得初步的成功,但是发现的问题也很多,例如:干燥所需要的消耗的功率较大;耐水性不令人满意等。
1.4 彭祚登、刘彦明、杨会英等对秸秆育苗钵的技术特性作了部分研究
其研究结果为:秸秆育苗钵可以促进苗木侧根形成根团,但是苗木的主根却很容易穿透容器底部;秸秆育苗钵透气、透水性好,但保水性能较差,温度越高,钵内基质水分散失速度越快,温度大于35℃时,钵内水分急剧散失;秸秆育苗钵就有可分解性;湿度是影响秸秆育苗钵分解的重要因子;秸秆育苗钵的容易分解性对于培育1年生以上、生长速度较快的苗木以及育苗时间较长的苗木不利。
1.5 杨青、沈新原等选用废纸、废棉等为原料制取育苗钵
该试验采用真空吸附网模成型法制取育苗钵。成型原理为:以不锈钢网模作为过滤介质,在其一侧造成一定程度的负压(真空),而使废纸浆中的水排出,实现纤维和水的固液分离,从而使纤维附着在网模表面,形成与网模形状一致的钵体,经脱模、烘干,即得育苗钵。
2 国外研究现状
我国育苗钵以塑料为主,而国外则以降解塑料和纸质育苗钵为主。利用秸秆制取育苗钵的研究很少。
国外使用的纸制苗钵,主要由中国等发展中国家生产和提供。纸制苗钵由于前期造浆过程中多采用化学处理法,不仅会排放出含有腐蚀性的强碱黑液,而且还排放有害的废渣、废气,“三废”的污染严重。目前,纸制苗钵的价格过高,在国内很少使用。从德国的一些用户信息反馈,这种苗钵还有一个致命的弱点,即容易受潮变形,难以在育苗自动生产线上使用。
据资料显示,北美地区几年内有8家生产农作物秸秆育苗钵的厂家倒闭。通过这些失败的例子,我们可以吸取农作物秸秆制取育苗钵的失败的原因和经验教训。首先对原料的收购、收集、贮存、利用率和实际成本等缺乏了解。一般遗弃在农田的秸秆是其强度最好的部分,在运到工厂的过程中带回大量尘土、脏物和垃圾,在贮存中必须控制虫害和含水率。其次,工厂的规模小,难以达到盈利的目的。秸秆制取的育苗钵的价格高于传统的塑料育苗钵。小型秸秆育苗钵厂由于原料成本一般较高,加之小厂在承受技术、安全和销售等管理费用方面的能力处于劣势,它们初期投资小的优势很快会被生产现实所抵消。
3 结语
按照可持续发展战略的要求,以循环经济行为原则构建环保产业体系,以发展环保科技促进生态环境的改善,以对环境改善的要求促进环保科技的发展。这是环保产业的发展目标。而新兴的植物纤维材料,是对废弃物的循环利用,顺应了时代的发展潮流,只要将植物纤维工程材料替代塑料发泡容器技术全面地转化为生产技术,以此为起点,面对市场的强烈需求,不断扩大植物纤维材料在各个领域的应用范围,我们完全可以相信,植物纤维材料必将像塑料的使用范畴一样具有广阔的市场前景。
参考文献
[1] 范学凤.秸秆新用途[J].农村实用科技,1998,(9),25.
[2] 郭康权,赵东,等.植物材料压缩成型时粒子的变形及结合形式[J].农业工程学报,1995,11,(1):138-143.
[3] 郭佩玉.秸秆综合利用的重大发展[J].饲料工业, 1992,13,(12):20-24.
[4] 金耀光.浅析“白色污染”和治理方法[J].中国包装, 1996,16,(1):24-34.
如何在众多企业中找到与自己理念一致并且具有发展前景的企业,对风投而言是一个比较难的过程。
“KPCB做任何一个项目,都把行业知识、专业视野、过去的工作经验、全球资源全面利用整合,然后对项目做判断。”汝林琪说出KPCB看项目的秘诀,“团队如何互补、合作,对项目在质量上做正确的判断是非常关键的。”
李立伟最近正在积极洽谈国内的CIGS技术。“我们认为它代表了薄膜领域的重要发展方向。它的转换效率很高,可以达到12%-13%,未来可以达到19%。”
第一代太阳能产业的生态环境已经比较完善,从研发到生产、系统安装、并网发电,已经有了很好的系统和模式。下一代的太阳能技术目前在美国已有了大规模的安装,正慢慢进入主流。
与李立伟相似,KPCB China合伙人钟晓林也在接触一个具有革命性变化的产业――能量存储技术。“如果做出来,它的影响堪比当年互联网的流行,对人类生活会有巨大的改变。”钟晓林表示。
钟晓林看来,能量存储技术100多年来没有什么变化,都是用电化学的方法,比如说锂电池、铅酸电池。但是各个学科在每一个单独的技术领域都有长足的发展,比如材料领域的纳米技术、半导体技术,单一的生物科技方面也是很多创新,现在KPCB关注的是怎样把这些技术组合起来,形成一个新的创新。例如KPCB美国就投资了用超级病菌提高油井产量的GloriOil公司。
“这项新的能量存储技术目前还处于实验室阶段。我们和美国团队一起在帮助它。因为我们有这方面的经验,指导一个技术从实验室走向市场。一旦成功,这将是跨时代的爆发式成就。”
对比起之前中国的绿色科技技术大都来源于国外,再成功的大规模商业化后应用于国际市场的模式,现在已有中国公司开始有创新的技术和应用出现,而且开始在世界范围内广泛应用。这是一个很激动人心的迹象。
Editor’s note:Bio-based polyester is an important kind of eco-friendly polyester products, and it has attracted more and more attention in some developed regions including EU, US and Japan. Some enduse brands also join the team to drive the development of bio-based polyester, such as the top soft drink brands Coca-Cola and Pepsi. However, there is a consensus that bio-based polyester can hardly totally replace the petroleum-based polyester in a long time, due to its economy and technology bottlenecks.
全球生物基聚合物材料的市场发展
Market Development of Global Bio-based Polymers
资源与环境是人类在21世纪实现可持续发展所面临的重大问题,生物技术和生物质资源将成为解决这一问题的关键之一。
生物基高分子材料是传统化学聚合技术和工业生物技术的完美结合。目前世界上合成的高分子材料主要是石油化工材料,与之相比,生物基高分子材料具有原料可再生等特点,开发前景广阔。据统计,2011年全球生物基原料生产的可降解和非降解的高分子聚合物达到116.1万t,预计2016年可达578万t,从2011年后的 5 年内,主要的增长将源自生物能源的技术突破,从实验室走向规模化的步伐加快,其副产物用于合成和转化聚合物的原料来源相对充足,为已经具备在现有聚合物生产装置上替代部分矿物资源的连续化批量生产提供可能,且具备相当的市场竞争力。
据乐观预计,到2050年,生物基聚合物产量可达1.13亿t,约占有机材料市场的38%;即便保守估计,到2050年,其产量也可达2 600万t。到2015年,生物基聚合物市场将达到68亿美元,2010 — 2015年的年增长率约为22.8%,而其中,市场增长最快的将是聚羟基脂肪酸酯(PHA)、PLA和生物乙烯等用于生产生物塑料的材料。表 1 是2015年生物基聚合物的预测产能。
欧洲生物基塑料协会(European Bio-plastics Organization)将生物基塑料分为四大类,一是采用生物基原料生产非自然降解的材料,例如全部采用生物基原料的PE、PP、PVC、PTT、PET、PEF等;二是部分生物基原料MEG、丁二醇、丁二酸、1,3-丙二醇(PDO)等生产的PBT、PET、PTT、PU等;三是全部采用生物基原料生产并在完全自然条件下可生物降解的聚合物,例如PLA、PHA等;四是部分采用生物基原料(单体),合成达到可生物降解国际标准的聚合物,例如聚丁二酸丁二醇(PBS)、PBST、PCL等。
据统计,2011年,世界范围内生物基塑料的区域分布发生了一些变化,发展中地区的亚洲和南美占总产量的2/3,其中亚洲地区占34.6%,南美地区占32.8%,欧洲占18.5%,北美和澳洲分别占13.7%和0.4%。从合成材料的种类来看,非降解领域用部分采用生物基单体的聚合物PET占据38.9%,其次是PE,占17.2%,采用生物基单体和可降解应用领域的聚乳酸(PLA)、脂肪族可降解聚酯占26.1%。生物基聚酯类合成材料接近50%。
据欧洲生物基塑料协会介绍,生物塑料正呈现快速增长的态势,到2016年其产能将增加近70%。引领这种增长的将是PLA和PHA,分别为29.8万t(增长50%)和14.2万t(增长550%)。而由HelmutKaiser顾问公司完成的一份有关生物塑料市场的报告则指出,全球生物塑料市场将快速增长,预计年均增速可达8% ~ 10%,将由2007年的10亿美元增至2020年的100亿美元。与之匹配的是,到2015年,全球生物塑料的需求量据称将由2010年的57.2万t增至300万t以上。
随着生物基塑料的不断发展,大到电视机的支架、电脑框体,小到小摆件、厨房垃圾袋,这些材料将越来越多地走进人们的日常生活中。据了解,目前在北美市场已有约 2 万余种产品由生物基原料制成。
日益增长的低碳经济发展诉求和波动的原油价格都在一定程度上推动了这一领域的发展,同时,技术的不断进步改善了生物基塑料的性能,也为其开辟了更多的市场机会。美国Freedonia Group公司最新的报告称,从2012 —2016年,美国对生物塑料的需求将以每年20%的速度增长,达到25万t的规模。到2016年其生物塑料销售额将达6.8亿美元,这主要得益于该领域的技术创新,在提高生物塑料性能的同时也降低了成本。该报告称,在2011年的生物塑料销量中,生物可降解树脂虽然占据了绝大多数的份额,但生物基树脂的不断发展将使整个市场改头换面。到2021年,这类材料占总需求量的比例将从2011年的13%增至40%以上,其背后的推动因素包括生物基聚乙烯的大批量生产和生物基 PET、聚丙烯及PVC的最终商用化。与此同时,PLA仍有望成为生物塑料市场上应用最广泛的树脂,但生物基聚乙烯预计到2016年将显现出巨大的增长机会。
生物基聚合物领域主要生产企业(部分)的发展动态
Development Trend of Some Leading Producers in Bio-based Polymers
生物基材料产业巨大的发展前景自然吸引了各国政府和企业,Bayer(拜耳)、BASF(巴斯夫)、DOW(陶氏)、DuPont(杜邦)、ExxonMobil(埃克森美孚)等国际化学品巨头纷纷进入这一领域。全球主要生物基材料和化学品生产企业及其开发现状如表 2 所示。
在生物基材料和化学品领域,世界范围内技术突破不断,早期存在的生产成本较高、产品性能欠佳等问题已有明显改观。领头羊们你追我赶,纷纷加快了相关项目的商业化步伐。
据统计,2011年脂肪族原料己二酸、丁二酸的产量为300万t,部分用于合成脂肪族可降解聚酯,如PBS等。由于生物基来源的脂肪族聚酯还未完全改善使用性能,尤其是耐热性问题,因此部分生物基PBST依然占据相当部分的市场,以欧洲巴斯夫为代表的几家企业已在生物可降解聚酯的吹膜、注塑应用加工等方面形成商业化格局,产能超过10万t/a。中国的上海石化也成功开发了PBST,目前正在实施合成工艺的进一步优化和应用领域的市场开发。
据分析,未来几年内市场对丁二酸的需求可能会有大幅增长,主要驱动领域包括生物塑料、化学中间体、溶剂、聚氨酯和增塑剂等。自2009年起,巴斯夫和CSM便已签署了共同发展协议并开始对丁二酸进行研究。双方在发酵和下游处理方面的互补优势形成了可持续的高效生产过程。生产过程中使用的细菌为产丁二酸厌氧螺菌,可以通过自然过程生产丁二酸。这一过程可以生成很多可再生的原材料,结合了高效和可再生原材料使用的优点,同时还具有很好的固碳效果。因此其生物基丁二酸的生产既经济又环保。
目前巴斯夫和CSM正在改建普拉克巴塞罗那附近的工厂,准备用于生产丁二酸。该工厂计划在2013年底正式投产,年产能为 1 万t/a。为满足日益增长的丁二酸需求,第二个丁二酸工厂的建设也在筹划之中,据介绍年产能可达5 万t。
BioAmber和日本三井将携手在加拿大的萨尼亚建立生产线生产生物基丁二酸,据称2013年产能可达1.7万t。其后,还计划将丁二酸产能扩至3.5万t/a,将1,4 -丁二醇(BDO)产能扩至2.3万t。两家公司另外还计划再共同建立两条生产线,加上萨尼亚的产能,丁二酸总产能将达到16.5万t/a,BDO则为12.3万t/a。
美国Genomatica公司于2012年1月25日宣布已获得意大利Beta可再生能源公司(Beta Renewables SpA)全球独家专利使用权,将采用Proesa工艺通过任何发酵基工艺从生物质生产BDO。据介绍,将Proesa工艺与Genomatica公司的直接生物工艺集成在一个完整、专有的过程中,可采用非食品、纤维素生物质作为原料,用于第二代技术生产BDO。其中,Proesa工艺可用于将木质纤维素转化为可发酵的糖类,而Genomatica公司的生产工艺可提供更好的经济性,与石油基BDO生产相比具有较低的碳排放。
以生物原料生产的PC和PHA等塑料产品也受到市场关注,但要实现全面的商业化推广,还有很长的路要走。以生物质生产的异山梨醇为原料生产PC 的工艺与传统的化学法相比,无需使用有毒的光气和安全性广受争议的双酚A,日本三菱和法国罗盖特公司都有计划开发此产品,但均表示其经济性和质量有待提高。
其他生物化学产品的产业化推进计划还包括:陶氏化学和诺维信的相关生物丙烯酸项目,以糖类或水煤气为原材料,预计2015年将达4.5万t;巴西Braskem产能为 3 万t/a的乙醇-丙烷工程,计划于2013年第四季度开工建设;巴斯夫、Cargill(嘉吉)公司与诺维信公司已签署一项协议,将共同开发由可再生原料生产丙烯酸的新技术。
我国生物基聚合物领域的发展现状
Status-quo of Chinese Bio-based Polymer Field
在杜邦公司于近期公布的一项名为“杜邦中国绿色生活调查:消费者对于生物基产品的认识及使用”的调查中,超过75%的受访者表示他们一定或极有可能购买各类生物基产品。调查结果显示,中国消费者比北美消费者更加相信绿色产品有助于环保,绝大多数的中国消费者极有可能购买由对环境有益的生物基原料制作的服装、个人护理产品、个人卫生产品及家用产品。当被问及是否相信绿色产品对环境有益时,70%参与调查的中国消费者表示非常或比较相信绿色产品有助环保。这项调查还发现,中国消费者相信生物基原料的使用会提高产品质量。超过60%的消费者认为用生物基原料制造的个人护理产品、个人卫生产品及清洁用品质量更好。
相较于一些发达国家和地区如火如荼的生物基材料开发,中国的生物基材料市场也正在不断发展壮大。随着国内一些大型企业,如安徽丰原集团、华源生命、吉林燃料乙醇、江苏南天集团、浙江海正集团等先后进入生物基材料研发行列,我国生物基新材料产业的发展将提速。
如浙江海正集团与中国科学院长春应用化学研究所长期合作推进聚乳酸的产业化。2008年,该公司完成5 000 t/a聚乳酸示范生产线的建设、运行和技术优化,成为我国第一家实现千吨以上规模化生产的厂家,预计将于2013年开建年产 3 万t生产线。另据报道,国内另外两大聚乳酸生产企业上海同杰良和深圳光华伟业也都有扩大产能的项目。这两家企业的万吨级厂都已建成并在试生产中。另外,常熟长江化纤年产4 000 t的聚乳酸熔体直纺纤维工厂也已顺利生产,南通九鼎及云南富集也有千吨级生产线在建厂测试中,中粮也已宣布要在吉林榆树建万吨级聚乳酸工厂。
虽然现阶段我国生物基新材料已取得了一定的发展,尤其是淀粉基生物降解塑料、PLA、PHA、PBS等,但受到市场、成本等因素的制约,在产业化过程中也面临着各种各样的问题,例如目前国内市场对聚乳酸等生物基材料的需求滞后于其产能扩张。有分析认为,成本较高以及国家环保塑料的配套政策不足是限制我国相关生物基塑料产业发展的两大瓶颈。
根据国家发改委的《“十二五”国家战略性新兴产业发展规划》,生物制造是我国“十二五”期间重点发展的生物产业之一,该产业涉及生物基新材料、生物基化学品等领域。
而国务院于2013年1月下发的《生物产业发展规划》(以下简称《规划》)则明确,到2020年,把生物产业发展成为国民经济支柱产业等目标。根据《规划》,到2015年,我国生物产业增加值占国内生产总值的比重将比2010年翻一番,工业增加值率显著提升(表 3)。
在支持生物制造产业规模化发展方面,《规划》表示将推动生物基产品,特别是非粮生物醇、有机酸、生物烯烃等的规模化发展应用。未来将建立生物基产品的认证制度,制定生物基产品消费的市场鼓励政策和农业原料对工业领域的配给制度。此外,绿色工艺产品也将获补贴,预计到2015年生物制造产业规模将达7 500亿元。
生物基合成纤维的发展趋势
Development Trend of Bio-based Synthetic Fiber
近年来,化学纤维从植物/农作物途径取得原料的趋势在全球日益明显。美国能源部和美国农业部赞助的“2020年植物/农作物可再生性资源技术发展计划”就提出2020年从可再生的植物衍生物中获得10%的基本化学原材料。而一向以功能性纤维见长的日本企业正逐渐将目光聚焦在个人健康、卫生与舒适性的纤维与纺织品领域的开发,而且很多原料取自于天然的植物。
继生物法合成多元醇取代部分化学法乙二醇生产聚对苯二甲酸多组分二元醇酯共聚物(PDT)纤维成功后,研发可再生资源成为聚酯产业链可持续发展的潮流。但PTT 纤维、聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)纤维、聚对苯二甲酸丁二酯(PBT)纤维的产业化进程相对较缓,在很大程度上是受制于这些纤维原料稀缺,尤其是丙二醇、丁二醇等的价格一直居高不下,影响了产业链的整体效益和推进。近年来,美国、欧洲的一些研究机构和生产企业对这些原料的生物转换合成表现出极高的商业投入积极性。
在全球倡导低碳经济和可持续发展的大背景下,积极发展生物质纤维及生化原料,不仅可有效解决石化资源的不足,对化纤行业实现可持续发展、促进行业转型升级具有现实意义,而且有利于促进农副产品的深加工进而提高农产品的附加值。我国的《化纤工业“十二五”发展规划》中也提出了关于推进生物质纤维及其原料产业化的相关内容。根据中国化纤工业协会对生物质纤维及生化原料的发展规划,生物质纤维在未来将实现“资源有效利用”、“技术环境友好”和“产品灵活多样”,其中涉及生物质合成纤维的内容主要如下。
PLA纤维:借鉴国内外最新聚合、纺丝及多领域应用技术,实现产业化突破,形成万吨级产业化规模。大力推进非粮作物原料的开发利用。
PTT纤维:突破生化法PTT及其纤维产业化成套装备、工程化技术及其制品的生产技术,形成年产12万 ~ 15万t的产业化产能。
生物法多元醇:以生物法PDO、乙二醇、BDO等为重点,实现产业化突破,形成多元醇的规模化、产业化生产和应用。
具体如表 4 所示。
国内外生物基聚酯的开发及应用
Development and Application of Bio-based Polyester
对更具可持续性发展消费品日益增长的需求是生物基材料增长的重要驱动力。品牌商和原始设备生产商致力于减少自身的环境足迹,并用可再生的生物基解决方案来取代有限的石化基材料。因此,有越来越多的企业开始把生物材料纳入企业可持续发展战略中。
10年前美国杜邦公司开发了生物基PDO用以合成PTT,近几年法国METabolic Explorer公司也开发了利用粗甘油生物法制取PDO,用于合成PTT,尽管与马来西亚的合资工厂工程项目(产能 9 万t/a)推迟,但其技术已经从实验室走向产业化应用。上海石化也已采用生物化工技术成功研发了PDO,预期在2015年前该公司可向市场提供部分生物基的纺丝级PTT和工程塑料级PTT切片。
据国际能源署生物基化工产品分会报告(I E A
Bioenergy Bio-based Chemical Value Added Products From Bio-refineries Task 42),从2010 — 2014年,世界生物基聚酯会大幅实现技术突破,除了研究领域的成果可实现产业化外,传统的聚酯生产企业已从技术和如何降低成本角度做好准备,并积极寻找合适的最终用户形成最终商品推向市场。在日本、欧洲和北美政府的支持和鼓励下,终端产品生产企业也加入到生物基聚酯材料的市场开发中,践行绿色环保和可持续发展的理念。
在众多食品公司的强势推动下,采用甘蔗乙烯生产的生物基乙二醇已经被广泛用于PET 的生产。2009年,可口可乐公司推出了生物基聚酯瓶 —— PlantBottle,用于旗下饮品Coke、Sprite、Fresca、iLOHAS、Sokenbicha以及Dasani的包装。该聚酯瓶中30%源于由甘蔗中提取转化而来的MEG,其他则来自石油基PTA。此外,百事可乐也宣布研究从柳枝稷、松树皮和玉米壳中提取原料生产生物基聚酯,并期待扩大植物原料的范围,如柑橘皮、土豆皮、燕麦壳等其他农业副产品也有望成为制瓶的原料。
不过若想将植物材料的比例提升到100%,还需要进行更多的研究工作。生物基PET之前一直采用生物基MEG,而另一主要原料PTA仍采用石油资源。目前,Virent、Gevo、Avantium等生物基化工企业已经成功研发从植物、农作物的废弃物等资源中采用生物技术进行分子重组转化为PX,进而可以用现有的成熟氧化技术生产出PTA,实现PET的100%生物基产品。
可口可乐公司已承诺,2020 年该公司所有的PET容器将完全采用生物材料。为实现这一目标,2011年12月,该公司与美国生物技术公司Gevo和Virent签署协议,共同开发商业化规模的生物合成PX工艺,以实现PTA原料的绿色化。如今这些企业正在积极探索,采用生物质生产PET的另一种合成原料精对苯二甲酸(PTA),进而推出完全由可再生材料合成的生物基PET。
美国Virent公司采用“生物成型”(BioForming)技术,将玉米、甘蔗等含糖源物,与糠醛生物转化为PX,其中试技术已经成功,正在与具有专利的化工设备企业合作进行批量化生产。
Gevo公司采用异丁醇(Isobutanol)生物技术得到PX,日本东丽公司于2011年宣布已经采用此技术生产出100%生物基PET纤维,并与Gevo签订合同,优先购买其制造的生物基对二甲苯,用于小规模生产生物基PET。东丽将通过此次合作开发生物基PET量产技术,并计划在2013年推出商业化产品。
Avantium生物化工制品公司联合美国某大学研究开发了极具革命性的“YXY”技术,其技术核心是将植物资源得到的呋喃糖通过生物转化为2,5-呋喃羧酸(2,5-Furan dicarboxylic,FDCA),取代传统意义上的PTA,与MEG酯化聚合生成PEF(Polyethylene-furanoate),目前已经实现了PEF聚酯瓶的批量生产。美国杜邦、塞拉尼斯,荷兰的DSM(帝斯曼)等都有意成为该技术的积极推进者。
据统计,世界范围内生物基聚酯原料MEG和多元醇产能最大的是中国长春大成,目前该公司据称已具备100万t/a的生物基MEG产能。日本丰田通商株式会社与中国台湾的中国人造纤维公司以50/50合资成立的Greencal Kaohsiung Taiwan公司,将巴西甘蔗来源得到的乙醇转化为MEG,年产能为10万,最终产品用于汽车纺织品和车用工程塑料。
目前,全球PTA的实际产能据称已超过5 000万t,如此庞大的用量和发展潜质,为生物基新产品打开了巨大的研发空间,而新产品对比石油基物料是否有成本竞争优势,将成为决定其市场成败的关键。PX的未来发展也面临相似的情况。据预测,未来一段时间内PX的产能增长会落后于需求,这为生物基PX的研发带来了一定的动力。在PX供不应求的情况下,现时研发生物基替代品是最好时机。
从应用趋势来看,聚酯相对其它高分子合成材料的总体加工成本较低,环保、安全压力相对较轻,回收再生产业链发展基本形成良性循环,后加工技术不断发展,使聚酯在传统的民用纺织品、产业用纺织品、液体包装、薄膜、片材、工程塑料等领域得到很大的发展,因此非降解生物基聚酯最容易推广,预期在液体包装领域将会得到长足的发展。
除了包装行业,纤维领域也是生物基聚酯的重要领地。近日,帝人宣布其生物基聚酯纤维Eco Circle Plantfiber被用于纯电动车Nissan LEAF的内饰中,包括座椅面料,以及门饰板、头枕、座位中间扶手等内饰面材料等,这是Eco Circle Plantfiber首次被用于大批量生产的汽车内饰中。据介绍,Eco Circle Plantfiber纤维中有30%以上为源自甘蔗的生物基原料,不仅可以降低碳排放,而且可保持与石油基PET相媲美的性能和品质。
近年来,鉴于生物基涤纶应用领域的不断拓展,涉及服装、汽车内饰以及个人卫生用产品等,帝人持续扩充其全球产能,据报道,2012年该公司采用生物基MEG生产了 3 万t 涤纶和纺织品,并计划在2015年增至 7 万t产能。该公司还计划进一步扩大生物基聚酯在汽车内饰领域的应用,争取在2015年使这一领域的应用占据其总产量的半壁江山。
随着BCF技术的发展,PDT、PET、PTT等聚酯BCF的本体着色地毯纱和地毯领域将会逐步取代性价比相对较差的PA和PP,在产业用纺织品领域具备满足市场、开拓市场的良好需求趋势。
生物基聚酯发展的障碍
Bottleneck of Bio-based Polyester
生物基高分子材料与传统高聚物生产商在开拓市场中遇到的障碍有相同之处,都需要经济的原料、高效的工艺流程以及成熟的客户。虽然在一些发达国家和地区,以生物基聚酯为代表的生物基材料正成为开发热点,但其市场推广阻碍力也不容小觑,比如不良的产品性能、价格因素导致的消费意愿下降等。
生物基聚酯的市场应用难点最主要还是产品价格。从本质上来说,生物基PET与石油基PET是同一种产品,不同之处在于其原料来源,未来一段时期内,成本将是生物基PET的软肋。目前来看,要使生物基MEG的价格大幅低于石油资源尚需较长时间。
二是市场对所谓的“多元醇”的认识。作为纤维用,多元醇的加工成本相对99.9%纯度的MEG会有30%左右的成本降低和能耗的节省,但纺织和染整行业还需相应的技术配套,如何充分发挥其纤维产品的特点,进而让上下游的利益进一步得到提升仍需要上下游积极合作。
生物基BDO和PDO分别是合成PBT、PTT的主要原料,其开发的基本目标除了绿色、环保和可持续发展的全球社会效益外,更重要的是其生物基醇的合成成本低于石油资源。目前的主要瓶颈是通过生物基醇的规模化生产以降低生产成本,二是进一步考察和优化提高生物转化率,同时关注不同菌种的安全性能。
完全生物基PET目前还需解决生物基PTA的来源问题。现阶段,生物基PET中的生物基成分主要为EG,目前美国的Gevo、Draths和Anellotech等公司正在进行生物基PTA的产业化研究。如Gevo正在研究如何将生物基异丁醇转化成对位二甲苯,然后再转化成PTA。据介绍,该公司日前又获得一项利用二羟酸脱水酶(DHADs)提高酵母中生物基异丁醇生产效率的专利,这也有利于使其比其他技术更具有商业化生产的可能。而其他一些公司也正研究如何通过生物基正丁醇或异丁烯生成PTA。Draths目前正在研究如何通过反式,反式-粘康酸盐将葡萄糖转变成PTA,而Anellotech宣称已掌握了将生物质转变成BTX(苯、甲苯、二甲苯)的技术。
此外,以生物基聚酯为代表的生物高分子材料同样会引发有关土地过度消耗的争论,目前全球范围内对这种由于大规模生产原材料而进行密集种植的“破坏性”模式充满争议。一些研究机构表示,同生物燃料一样,从更大范围来说,生物塑料和其他生物基产品会与粮食争夺土地,造成间接土地利用变化,导致更严重的森林砍伐和更多野生区域转换成耕地,因此生物塑料相比传统树脂的环保优势并不很明显。
在这个问题上,美国生物科技企业Verdezyne于2011年11月宣布的消息值得注意。该企业宣布第一家试点工厂已开始采用非食品原料生产生物基乙二酸,且制造成本比采用石油基原料低廉。
专家视点:
YXY技术近期的发展很可能引起聚酯链的深层次创新,对传统的石油基聚酯原料带来革命性的“冲击”,尤其是PEF材料的出现,将会在很大程度上占据原石油基PET的瓶用和BOPET市场,即使传统PET的价格低至加工成本,仍很难抵御如此迅猛的发展形势。目前中国大陆的总体聚酯链市场还是以各自为阵为主,生物基基础单体的研发由于受到专利保护、研发单位的成果推广和聚合物生产企业的成本压力等诸多因素,很难得到突破性增长;聚合物生产企业即使已经开发了生物基聚合物,也由于缺少为下游提供积极有效的技术支撑而举步维艰;部分终端市场对生物基聚酯材料缺少应有的准确信息,部分企业的生物基材料在产品质量和关键特征指标尚不具备商业化的条件,加上生物基材料很难在外观上明显区别于非生物基材料,如何推动生物基材料的应用成为目前该领域的主要瓶颈。
绿色化工技术是通过改进改良现有的化学技术及方法,对化学原理的应用和使用工程技术来减少甚至消除化工原料、催化剂、溶剂、化学废物或化工产品等能够污染环境的物质,实现废物零排放,减少其对人类健康和生态环境的危害,建立友好环境。用“资源-产品-再生资源”这种全新的循环物质流动过程替换掉过去的“资源-废物”方式排放的流动过程。利用先进的绿色化工技术,研究出新型环保产品,及绿色工艺技术的运用实现清洁生产,从而大幅度降低三废排放量【1】。21世纪,绿色化工技术已经被国际发达国家在化学有机合成、生物化学、分析化学、催化等领域列为主要的研究发展方向之一。在我国制定的“九五”发展规划中,绿色化学与技术在酿造、制药、造纸、印染、海水淡化等行业作为应逐渐补充及开发应用的重大研究项目。
2绿色化工技术的开发
2.1原料的选用
绿色化工科技的发展,如果不从化工污染、化学反应的源头着手,那么始终是治标不治本而且十分被动的措施。那么化工科技及工艺发展过程中,选择无毒害溶剂、原料、催化剂等化学原料来进行化工生产、制作化工产品可实现零排放、零污染的清洁生产和加工原则,有效防止和控制化学污染的产生。近年较为常见的无害化学原料为:野生植物、农作物等生产物质。将芦苇、树木等天然野生植物纤维,以及稻草、麦秸和蔗渣等农副产品的废弃物作为原料加工糠醛、醇、酮、酸等化工原料。还有利用生物质气化产生氢气等,都是绿色化工技术中原料选择应用的非常好的例子。
2.2无毒害催化剂的选用
在百分之九十的化工生产中催化剂是提高反应速率的必需品。然而在绿色化工科技的开发过程中,无毒害的烷基化固相催化剂是国内外研发工作的重点。南京大学徐国际【2】利用环境友好性绿色化合成过程对烯丙基醇类化合物作为烷基化试剂,在无溶剂的条件下对1,3-二羰基化合物进行直接烷基化反应,反应后处理步骤简单,且催化体系可以循环使用,四次催化循环后收率仍然能大于84%。
3绿色化工技术在化学工业中的应用
3.1清洁生产技术
清洁生产技术是无毒、无害、无污染、无废物排放的绿色化工技术,包括辐射热加工技术,绿色催化技术,临界流体技术等。在冶金工业、印染工业、煤气化、制甲醇、垃圾处理、海水淡化等行业都得到了很好的运用。此外先进的脱硝脱硫技术、垃圾制沼气技术、高效清洁的煤气化技术、利用风能太阳能等自然能发电技术等等这些都利用了清洁生产技术。例如,海水淡化技术的应用不仅解决了我国淡水资源匮乏的现状,还利用有效的化学方法将海水中的盐水分离,在海水淡化的预处理过程中不会产生任何对环境状况的不良影响,也没有对生态环境造成伤害。而且,在海水淡化预处理过程中所产生的氢氧化镁作为一种成本低廉、工艺简单、不产生二次污染的清洁化工产品,具有非常广阔的发展前景。
3.2生物技术
生物技术领域包含细胞、基因、微生物和酶等技术范畴,其主要应用在化学仿生学和生物化工两个方面。生物酶在作为一种在生物体内的催化剂,具有高效、转移性,可以参与到各个生物化工的合成过程中。另外,化学仿生学中的膜化学技术也是这一领域中广泛应用的生物技术。在绿色化工技术中采用生物技术,可以利用再生资源合成化学品。从早期来源于动植物中的有机化合物原料,到后来以石油和煤炭作为原料。例如,在绿色化学工程与工艺中,制备丙烯酰胺,利用自然界中的酶替代丙烯腈催化合成丙烯酰胺后,大大降低能耗,且没有污染环境副产物产生。由此可见,利用广泛存在于自然界中的酶当做催化剂,与工业酶及一般的化学催化剂相比,自然界中的酶具有无污染、反应条件温和、产物性质优良的特点。
3.3生产环境友好型产品