前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电源电路的设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:开关电源;过压保护;过流保护;M51995A电源芯片
中图分类号:TM13 文献标识码:A 文章编号:2095-1302(2016)11-0-02
0 引 言
随着时代的前进与社会的发展,开关电源已逐渐代替传统的铁心变压器电源。开关电源的集成化与小型化正逐步成为发展趋势[1-3],开关电源更是在计算机、通信、电器等领域得到广泛应用[4]。但开关电源系统若无性能良好的保护电路便很容易导致仪器寿命的缩短甚至使仪器受到损坏。由此可见,为了能够让开关电源在恶劣环境以及突发故障的情况下安全稳定的工作,保护电路的设计就显得尤为重要。开关电源的基本结构框图如图1所示。
1 M51935AFP开关稳压芯片简介
M51995A是一款开关电源初级PWM 控制芯片,专为AC/DC变换设计,芯片功能如表1所列。它主要包括振荡器、PWM比较、反馈电压检测变换、PWM锁存、过压锁存、欠压锁存、断续工作电路、断续方式和振荡控制电路、驱动输出及内部基准电压等。
M51995A既具有快速输出和高频振荡能力,又具有快速响应的电流限制功能[5]。此外,过流时采用断续方式工作可以有效保护二次电路。该芯片的主要特征如下:
(1)工作频率低于500 kHz;
(2)输出电流能够达到±2 A;
(3)输出上升时间为60 s,下降时间为40 s;
(4)起动电流比较小,典型值为90 A;
(5)起动电压为16 V,关闭电压为10 V;
(6)起动电压和关闭电压的压差大;
(7)过流保护采用断续方式工作;
(7)用脉冲方法快速限制电流;
(8)欠压、过压锁存电路。
3 实验仿真分析
为进一步验证所设计的开关电源保护电路的工作性能,我们采用计算机仿真软件MultiSIM对所设计的保护电路做了软件仿真测试。当电源输出电压为60 Hz正弦波、有效值为24 V时,电源保护电路的光耦控制OVP端的信号输出状态如图4所示。
图4中的仿真结果表明,输出电压信号变化控制光耦的导通,从而控制了光耦OVP端的电压输出,当电源输出电压在0 V-24 V期间时,光耦输入端没有电压信号不导通,OVP端电压为0,电路处于保护工作状态;电压在0+24 V期间时,光耦输入端有电压信号作用而导通,OVP端电压为+5 V,电路处于正常工作状态。当输出电压过高时,OVP端电压为0,电路处于保护工作状态。40 V电压信号的状态图如图5所示。
实验仿真结果表明,当电源输出电压范围为0+24 V时,开关电源电路正常工作;当电压为负电压时,光耦中的二极管反向截止,OVP端电压为0,开关电源的保护电路工作,电源输出为0;当输出电压高于+24 V时,OVP端电压为0,开关电源进入保护电路工作状态,电源输出0。
4 结 语
本文基于M51995A电源芯片设计了开关电源的过压和过流保护电路,通过计算机仿真结果表明,该电路设计合理,工作稳定,电路设计可以有效降低电路的复杂程度和成本,能对开关电源电路进行有效保护,从而使电源运行安全可靠,设计完全能满足系统性能的指标要求。
参考文献
[1] 欧浩源,丁志勇.电流控制型脉宽调制器UC3842在开关电源中的应用[J]. 今日电子,2008(C00):88-89.
[2] 王朕,潘孟春,单庆晓.UC3842应用于电压反馈电路中的探讨[J].电源技术应用,2004(8):480-483.
[3] 关振源,张敏.基于电流型PWM控制器的隔离单端反激式开关电源[J].电子元器件应用,2005(2):21-23.
【关键词】Multisim 双电源 仿真分析
LM117/LM317 是美国国家半导体公司的三端可调正稳压器集成电路,LM117/LM317 的输出电压范围是1.2V至37V,负载电流最大为1.5A。它的使用非常简单,仅需两个外接电阻来设置输出电压。此外它的线性调整率和负载调整率也比标准的固定稳压器好。LM117/LM317 内置有过载保护、安全区保护等多种保护电路。通常LM117/LM317 不需要外接电容,使用输出电容能改变瞬态响应。调整端使用滤波电容能得到比标准三端稳压器高的多的纹波抑制比。利用LM117/LM317设计出正负连续可调的双电源,通过实验测试和软件仿真,基本上可以满足绝大多数运算放大器所需要的电压幅度。
一、MultiSim仿真软件简介
MultiSim是一款将电子电路设计及其测试分析相集成的电路设计仿真软件。它具备信号源、基本元器件、模拟数字集成电路、指示器件、控制部件、机电部件等各类元器件,可以对各类电路进行仿真,并且提供十多种虚拟仪器(如示波器、万用表、信号发生器、波特图图示仪、功率表等),以及18种仿真分析功能(如直流工作点分析、交流分析、瞬态分析、傅里叶分析、噪声分析、直流扫描分析等)。由于元件库中有若干个与实际元件相对应的现实性仿真元件模型,配合强大的仿真分析,使结果更精确、更可靠。
二、直流稳压电源的理论基础与电路设计原理分析
(一)直流稳压电源的理论基础
电子设备都需要稳定的直流电源供电,如基本放大电路中的集电极电源、运算放大器的双电源等。这样,就需要将市电电网的交流电,变换为直流电。对于小功率的直流电源,它一般由电源变压、整流电路、滤波电路和稳压电路组成。如图1所示:
(二)直流稳压电源电路设计的基本原理
电源变压器的作用时将220V的电网电压变换成所需要的交流电压值。
整流电路的作用是将交流降压电路输出的大小、方向都变化的电压较低的交流电转换成单向脉动直流电。单相整流电路的类型有半波整流、桥式全波整流、中心抽头全波整流等。
滤波电路的主要任务是将整流后的单向脉动直流电压中的纹波(单向脉动直流电中含的交流成分)滤除掉,使单向脉动电压变成平滑的直流电压。滤波电路的主要元件是电容和电感,以电容滤波电路最常用,其特点是电路简单,输出脉动较小,输出电压平均值增大,但输出电压随负载变化较大。采用电容滤波时,输出电压的脉动程度与电容器的放电时间常数τ有关系,τ大一些,脉动就小一些,多采用大容量的电解电容。电容的耐压值应大于它实际工作时所承受的最大电压,耐压值一般取所接工作电路电压的1.5-2倍。为了降低输出直流电压的纹波系数(输出电压中交流分量占额定输出直流电压的百分比),正、负电源的滤波电路均采用一个1000μF/50V的电解电容。
滤波电路的输出电压虽已变得平滑,但输出电压随负载变化较大,后面需接稳压电路。稳压电路的作用是当交流电源电压波动、负载及温度变化时,维持输出稳定的直流电压。稳压电路的类型有分立元件稳压和集成稳压器稳压,分立元件稳压时,电路稳定性不好,而集成稳压器稳压具有体积小、电路简单、稳压精度高,可靠性高等优点,被广泛采用。选择集成稳压器时应先确定稳压器的类型,是固定式还是可调式,是正压输出还是负压输出,然后根据其额定电压和额定电流选择具体型号。
三、LM317、LM337正负连续可调的双电源的仿真分析
运行Multisim10,在绘图编辑器中选择变压器、整流二极管、电阻、电容、电位器、三端可调稳压块LM317、LM337等元件,组成LM317、LM337正负连续可调的双电源电路。
调整电位器R5、R6,可以连续调节输出电压的大小。
其仿真的电路用波形如下图所示。
四、结束语
应用Multisim10仿真软件进行仿真教学,设计的双直流稳压电源的电路具有结构简单、电源利用效率高、输出电压噪声小、稳定精度高、可靠性高等特点,可以满足高精度形状测量仪的电感测头信号处理电路中运算放大器的高稳定性的双电源需求,增强整个测量系统的工作稳定性,最大限度地减小电源引起的测量误差,提高测量精度。在课堂上使模拟电子技术教学更形象、灵活,更贴近工程实际,达到帮助学生理解原理,更好地掌握所学的知识的目的。尤其适用于综合设计性实验项目,可有效克服传统实验与实验室开放的局限。通过对双直流稳压电源的分析设计、仿真测试可以看出,利用Multisim的虚拟电子实验平台,能实时直观地反映电路设计的仿真结果,验证电路正确性,可缩短设计周期,提高设计成功率。
学生可据所学知识和能力,自选实验内容,自行设计电路方案,进行电路分析,从而掌握电子电路的设计与仿真分析过程,对提高学生动手能力和分析问题、解决问题的能力、综合设计能力和创新能力,具有重要的意义。
参考文献:
关键词:光伏发电系统;DC/DC仿真;DC/AC仿真
DOI:10.16640/ki.37-1222/t.2016.24.142
独立型光伏发电系统系统结构如图1所示,主要有太阳电池组件(方阵)、控制器、储能蓄电池(组)、直流/交流逆变器等部分组成。光伏阵列发出的直流电通过器将其逆变为交流电供给负载,蓄电池将光伏阵列在白天发出的电能存储起来,并在夜间和阴雨天给负载供电。
1 独立型光伏发电系统构成
1.1 光伏电池组
光伏电池板又称太阳能电池板 Solar panel,是由若干个太阳能电池组件按一定方式组装在一块板上的组装件,通常作为光伏方阵的一个单元。通常做法是把片单体多晶硅电池串联在一起。在实际应用时,根据负载要求,自由组合组件达到输出功率的条件。
1.2 蓄电池组
蓄电池组是用电气方式连接起来的用作能源的两个或者多个单体蓄电池。白天太阳光照射到太阳能组件上,使太阳能电池组件产生一定幅度的直流电压,把光能转换为电能,再传送给智能控制器,经过智能控制器的过充保护,将太阳能组件传来的电能输送给蓄电池进行储存。
1.3 控制器
蓄电池充放电过程需要控制器来调节。光伏控制器是用于太阳能发电系统中,控制多路太阳能电池方阵对蓄电池充电以及蓄电池给太阳能逆变器负载供电的自动控制设备。
1.4 逆变器
逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电,一般由升压回路和逆变桥式回路构成。升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。
2 独立光伏发电系统逆变电源的要求
要求具有较高的效率。由于目前太阳电池的价格偏高,为了最大限度地利用太阳能电池,提高系统效率,必须设法提高逆变电源的效率。 要求具有较高的可靠性。目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变电源具有合理的电路结构,严格的元器件筛选,并要求逆变电源具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热,过载保护等。同时,逆变电源的输出应为失真度较小的正弦波。
3 单相独立型光伏发电系统逆变电源主电路仿真
3.1 DC/DC变流电路仿真
直流升降压斩波电路仿真模型如图2所示,直流电源电压为100V,负载为带有电容滤波的电阻负载,电阻为2Ω ,滤波电容为1000μF 。开关采用IGBT,驱动信号由“Pulse Generator”环节产生,驱动信号频率为1000Hz,占空比为50%。此时电路的仿真波形为图3所示。
三幅波形中波形依次为驱动信号、负载电流、负载电压,此时电路已接近稳态。
3.2 DC/AC逆变电路仿真
单相全桥逆变电路仿真模型如图4所示,直流电源电压为100V,负载为电阻电感负载,电阻为1Ω,电感为0.01H,开关采用MOSFET,逆变器工作频率为50Hz,驱动信号由两个“Pulse Generator”环节产生,占空比为49.5%。此时电路的仿真波形为图5所示。
三幅波形中波形依次为负载电流、负载电压和开关管1的电压和电流,此时电路已接近稳态。
关键词: 星载电源; 多路输出开关电源; 小型化设计; 电路设计
中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2014)20?0145?03
Design of satellite?borne multi?channel output DC/DC converter
ZHANG Qian, LIU Ke?cheng, WANG Wei?guo
(Lanzhou Institute of Physics, Lanzhou 730000, China)
Abstract: A satellite?borne multi?channel output DC/DC converter is introduced. The method of the power supply design can meet the needs of most of the satellite?borne multi?channel output DC/DC converters. The design characteristics of the power supply are particularly introduced. The operating principle is analyzed. The design formulas are also given. The miniaturization design of the satellite?borne DC/DC converter was optimized. It can be widely used in satellite?borne multi?channel output DC/DC converters.
Keywords: satellite?borne power supply; multi?channel output DC/DC converter; miniaturization design; circuit design
随着我国航天事业的发展,卫星有效载荷的数量和种类越来越多,势必要求与之相配套的开关电源的体积和重量进一步减小。因此,开关电源的小型化设计成为目前星载开关电源研究的一个热门课题。众所周知,开关电源的小型化可以从优化电路设计和采用新工艺两个方面入手,例如采用混合厚膜工艺可以大幅度地减小电源的体积和重量,但国产混合厚膜开关电源在航天领域目前还处在推广中,主要是其抗辐照性能对于高轨长寿命卫星来说存在着一定的局限性。因此,采用表贴工艺的开关电源在航天领域依然具备广阔的市场。这就要求必须在电路设计上进行优化,以满足星载开关电源小型化的要求。本文介绍一种多路输出开关电源,它采用不同拓扑组合的方式,能够满足星上大部分中小功率设备的供电需求。
1 星载多路输出开关电源的几种设计方案
1.1 单端反激式多路输出开关电源
图1所示单端反激式多路输出开关电源的设计思路是:考虑到星载开关电源的磁隔离要求,采取前级自持预稳压,后级各路输出进行二次稳压的方式。反激式拓扑的特点是电路结构简单,易于实现多路输出。如果不采用二次稳压,次级各路输出的电压和负载稳定度不会优于±3%,很难满足星上大部分用电设备的需求,因此,常常会在输出端进行二次稳压。常用的方法是采用三端稳压器进行二次稳压,这样输出各路电压稳定度优于±1%,能够满足星上用电设备的需求,采用三端稳压器进行二次稳压的另一个优点是如果用电设备对低频干扰比较敏感,那么输出后级采用三端稳压器进行二次稳压还能有效隔离输入端引入的低频干扰,保证用电设备正常工作[1]。但是单端反激式多路输出开关电源同样有它的局限性,如果其中某一路输出电流比较大,后级采用三端稳压器进行二次稳压会造成很大的功耗,从而降低了电源的转换效率,进而影响了电源的工作寿命。
1.2 单端正激式多路输出开关电源
图2所示单端正激式多路输出开关电源的设计思路是:主路输出采用闭环直接反馈控制,辅输出采用磁链耦合技术以改善辅路输出的电压和负载稳定度。设计上一般主路输出功率比较大,辅路输出功率相对比较小,即便如此辅路输出的电压和负载稳定度也不会优于±5%,而且辅路输出的功率越大,辅路输出的稳定度也越差。这种方案一般设计成3路电源,路数再多辅路输出的稳定度就无法接受了。总体上单端正激式多路输出开关电源辅路输出负载和电压稳定度要比单端反激式多路输出开关电源各路输出负载和电压稳定度差。
图1 单端反激式多路输出
图2 单端正激式多路输出开关电源
1.3 单端反激和单端正激相结合的多路输出开关电源
从图3可以看出电源由反激拓扑和正激拓扑组成,考虑到电源小型化的需求,电源共用一个消浪涌电路和输入滤波电路。反激电路组成三路小电流输出,后级各路输出通过三端稳压器进行进一步稳压,反激主变压器上绕制的两个辅助绕组的输出电压给正激电路的PWM芯片供电,由于反激电路采取了前级预稳压,同时给PWM芯片供电的负载电流比较小(小于100 mA)。因此反激主变压器上的两个辅助绕组给PWM芯片的供电电压非常稳定,能够满足在不同条件下PWM芯片的供电要求。这种方案既满足了星用开关电源的磁隔离要求,又避免了方案(1)中大负载电流下使用三端稳压器进行二次稳压造成的功耗过大的问题,同时也解决了方案(2)中的辅路输出稳定度不高的问题。最大的优点是这种方案不受路数上的限制,设计上可以把小电流各路全部在单端反激中输出,大电流各路从单端正激中输出。本文设计了一款五路输出电源,其中18.5 V,±14.5 V负载电流小于1 A从三路反激电源中出;7.5 V,5.5 V负载电流比较大从正激电源中出,它们的PWM芯片供电电压都是从三路反激电源的辅助绕组中输出的。
2 关键电路参数设计
技术指标如下:输入电压为DC 25~33 V;开关频率为200 kHz;最大占空比为0.5;输出电压/电流为18.5 V/0.33 A, +14.5 V/0.3 A,-14.5 V/0.11 A,7.5 V/2.9 A,5.5 V/5.8 A;转换效率≥78%。
图3 单端反激和正激相结合的多路输出开关电源
2.1 变压器的设计
电源涉及反激电路和正激电路变压器的设计,反激变换器的特点是当主功率开关管导通时变压器原边电感存储能量,负载的能量从输出滤波电路的电容处得到;而当关断时,变压器原边电感的能量将会传送到副边负载和它的滤波电容处,以补偿滤波电容在开关导通状态下消耗的能量[6]。具体设计如下:由于铁氧体材料有很好的储能和抑制信号传输过程中的尖峰和振铃作用,因此采用这种材料作为变压器磁芯是最好的选择之一。综合考虑反激电源的额定功率,转换效率以及磁芯的窗口利用率,选择RM8作为反激电源变压器的磁芯。初级线圈的峰值电流为:
[Ipmax=2TPoTonmaxUiminη] (1)
式中:[Uimin]为变压器初级输入的最小直流电压;T为开关电源周期;[Tonmax]为开关管导通时间;[Po]为输出功率;η为变换效率。
初级线圈的电感为:
[Lp=UiminTonmax0Ipmax] (2)
初级绕组的匝数为:
[Np=UiminTonmaxScΔB×104] (3)
式中:[Sc]为磁芯有效截面积;[ΔB]为磁芯工作磁感应强度。
初次级绕组匝数比为:
[L0≥(Uin-U0)U0TUinI0] (4)
式中:[UD]为输出整流二极管,[Us]为次级输出电压。
次级绕组匝数为:
[n12=NpNs] (5)
变压器气隙为:
[Ig=μrN2pScLp] (6)
式中:[Ig]的单位为mm;[μr]=4π,[Sc]的单位为mm2;[Lp]的单位为mH。按照式(1)~式(6)计算得:[Ipmax]=3 A, [Lp]=16.7 μH, [Np]=7匝;18.5 V的匝数为9匝;±14.5 V时匝数为7匝。给PWM芯片供电的两个辅助绕组的匝数为6匝,变压器气隙为0.24 mm。
正激电路变压器的设计同样需要综合考虑电源的额定功率,转换效率、磁芯的窗口利用率以及磁芯的最佳磁密度。7.5 V选择RM6作为变压器磁芯,5.5 V选择RM8作为变压器磁芯。初级绕组匝数为:
[Np=UiminTonmaxScΔB×104] (7)
式中:[Tonmax]的单位为s,[ΔB]的单位为T,[Sc]的单位为cm2。
次级绕组匝数为:
[Ns≥Np(Us+UD)DmaxUimin] (8)
式中[Dmax]为最大占空比。
按照式(7)~(8)计算得:7.5 V输出[Np]为13匝,[Ns]为10匝;5.5 V输出[Np]为8匝,[Ns]为5匝。变压器导线电流密度取7~8 A/mm2。
2.2 输出滤波电路的设计
反激变换器由于其主变压器初级充当了储能电感的作用,因此其输出各路可以不要差模电感,考虑到EMC的需要,可在输出各路增加一个共模电感,反激变换器的输出电容可由式(9)算出。
[C≥5TsU08UoppR] (9)
式中:[Ts]为电源周期;[U0]为电源各路额定电压;[Uopp]为输出纹波电压,[R]为负载电阻,工程实际中还需要考虑电源的ESR值。
按照式(9)计算得:18.5 V输出[C≥]21 μF,14.5 V输出[C≥]19 μF,-14.5 V输出[C≥]7 μF。正激变换器输出差模电感工作在连续状态其输出纹波电压小,工作在非连续状态其输出纹波电压大。设计上一般将额定输出电流的设定为电感连续和非连续工作状态的临界点,得到输出差模电感的计算公式为:
[L0≥(Uin-U0)U0TUinI0] (10)
按照式(10)计算得:7.5 V输出[L0]=57 μH,5.5 V输出[L0]=20 μH。按照式(9)计算得各路输出滤波电容:7.5 V输出[C≥]169 μF,5.5 V输出[C≥]365 μF。
2.3 关键点波形和数据
表1列出了反激电路两个辅助绕组给正激电路PWM芯片供电的电压在不同输入电压负载一定下的电压值,表2列出了输入电压一定负载变化下的电压值。
表1 不同输入电压负载一定下的电压值 V
表2 输入电压一定负载变化下的电压值 V
图4 额定输入下反激电路主开关管漏源波形
图5 额定输入下7.5 V正激电路主开关管漏源波形
3 结 论
本文介绍了一种新型的星用多路输出开关电源,不仅有效地解决了传统星用开关电源的一些弊病,同时在电源的小型化设计上具备一定的优势,在星用开关电源的应用上具备广阔的前景。
图6 额定输入下5.5 V正激电路主开关管漏源波形
参考文献
[1] PRESSMAN A L.开关电源设计[M].王志强,译.北京:电子工业出版社,2005.
[2] 刘胜利.现代高频开关电源实用技术[M].北京:电子工业出版社,2001.
[3] 户川治郎.实用电源电路设计[M].北京:科学出版社,2005.
[4] 甘久超,谢运祥,颜凌峰.DC/DC变换器的多路输出技术综述[J].电工技术杂志,2002(4):1?4.
引言
设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。
1 Buck电路电感电流连续时的小信号模型
图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。
S导通时,对电感列状态方程有
L(dil/dt)=Uin-Uo (1)
S断开,D1续流导通时,状态方程变为
L(dil/dt)=-Uo (2)
占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为
L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo (3)
稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压Uin成正比。
由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得
L[d(il+il')/dt]=(D+d)(Uin+Uin')-(Uo+Uo') (4)
式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d为D的波动量。式(4)减式(3)并略去了两个波动量的乘积项得
L(dil'/dt)=DUin'+dUin-Uo' (5)
由图1,又有
iL=C(duc/dt)+Uo/R0 (6)
Uo=Uc+ReC(duc/dt) (7)
式(6)及式(7)不论电路工作在哪种状态均成立。由式(6)及式(7)可得
iL+ReC(dil/dt)=1/Ro(Uo+CRo(duo/dt)) (8)
式(8)的推导中假设Re<<Ro。由于稳态时dil/dt=0,dUo/dt=0,由式(8)得稳态方程为iL=Uo/Ro。这说明稳态时电感电流平均值全部流过负载。对式(8)中各变量附加小信号波动量得
式(9)减式(8)得
iL+ReC(dil/dt)=1/Ro(Uo+CRo(dUo/dt)) (10)
将式(10)进行拉氏变换得
iL(s)=(Uo(s)/Ro)·[(1+sCRo)/(1+sCRe)] (11)
(s)=(11)一般认为在开关频率的频带范围内输入电压是恒定的,即可假设=0并将其代入式(5),将式(5)进行拉氏变换得
sLiL'(s)=d(s)Uin-Uo'(s) (12)
由式(11),式(12)得
Uo'(s)/d(s)=Uin[(1+sCRe)/(s2LC+s(ReC+L/Ro)+1] (13)
iL'(s)/d(s)=[(1+sCRo)/s2LC+s(ReC+L/Ro)+1]·Uin/Ro (14)
式(13),式(14)便为Buck电路在电感电流连续时的控制-输出小信号传递函数。
2 电压模式控制(VMC)
电压模式控制方法仅采用单电压环进行校正,比较简单,容易实现,可以满足大多数情况下的性能要求,如图2所示。
图2中,当电压误差放大器(E/A)增益较低、带宽很窄时,Vc波形近似直流电平,并有
D=Vc/Vs (15)
d=Vc'/Vs (16)
式(16)为式(15)的小信号波动方程。整个电路的环路结构如图3所示。图3没有考虑输入电压的变化,即假设Uin=0。图3中,(一般为0)及分别为电压给定与电压输出的小信号波动;KFB=UREF/Uo,为反馈系数;误差e为输出采样值偏离稳态点的波动值,经电压误差放大器KEA放大后,得;KMOD为脉冲宽度调制器增益,KMOD=d/=1/Vs;KPWR为主电路增益,KPWR=/d=Uin;KLC为输出滤波器传递函数,KLC=(1+sCRe)/[S2LC+s(ReC+L/Ro)+1]。
在已知环路其他部分的传递函数表达式后,即可设计电压误差放大器了。由于KLC提供了一个零点和两个谐振极点,因此,一般将E/A设计成PI调节器即可,KEA=KP(1+ωz/s)。其中ωz用于消除稳态误差,一般取为KLC零极点的1/10以下;KP用于使剪切频率处的开环增益以-20dB/十倍频穿越0dB线,相角裕量略小于90°。
VMC方法有以下缺点:
1)没有可预测输入电压影响的电压前馈机制,对瞬变的输入电压响应较慢,需要很高的环路增益;
2)对由L和C产生的二阶极点(产生180°的相移)没有构成补偿,动态响应较慢。
VMC的缺点可用下面将要介绍的CMC方法克服。
3 平均电流模式控制(AverageCMC)
平均电流模式控制含有电压外环和电流内环两个环路,如图4所示。电压环提供电感电流的给定,电流环采用误差放大器对送入的电感电流给定(Vcv)和反馈信号(iLRs)之差进行比较、放大,得到的误差放大器输出Vc再和三角波Vs进行比较,最后即得控制占空比的开关信号。图4中Rs为采样电阻。对于一个设计良好的电流误差放大器,Vc不会是一个直流量,当开关导通时,电感电流上升,会导致Vc下降;开关关断,电感电流下降时,会导致Vc上升。电流环的设计原则是,不能使Vc上升斜率超过三角波的上升斜率,两者斜率相等时就是最优。原因是:如果Vc上升斜率超过三角波的上升斜率,会导致Vc峰值超过Vs的峰值,在下个周波时Vc和Vs就可能不会相交,造成次谐波振荡。
采用斜坡匹配的方法进行最优设计后,PWM控制器的增益会随占空比D的变化而变,如图5所示。
当D很大时,较小的Vc会引起D较大的改变,而D较小时,即使Vc变化很大,D的改变也不大,即增益下降。所以有
d=DV'/Vs (17)
不妨设电压环带宽远低于电流环,则在分析电流环时Vcv为常数。当Vc的上升斜率等于三角波斜率时,在开关频率fs处,电流误差放大器的增益GCA为
GCA[d(iLRs)/dt]=GCA(Vo/L)Rs=Vsfs (18)
GCA=Vc'/(iL'Rs)=VsfsL/(UoRs) (19)
高频下,将式(14)分子中的“1”和分母中的低阶项忽略,并化简,得
iL'(s)=[d(s)Uin]/sL (20)
由式(17)及式(20)有
(iL'Rs)/Vc'=[Rsd(s)Uin/(sL)]/[d(s)Vs/D]=(RsUinD)/(sLVs) (21)
将式(19)与式(21)相乘,得整个电流环的开环传递函数为
(RsUinD/sLVs)·(VsfsL)/(UoRs)=fs/s (22)
图7
将s=2πfc代入上式,并令上式等于1时,可得环路的剪切频率fc=fs/(2π)。因此,可将电流环等效为延时时间常数为一个开关周期的纯惯性环节,如图6所示。显然,当电流误差放大器的增益GCA小于最优值时,电流响应的延时将会更长。
GCA中一般要在fs处或更高频处形成一个高频极点,以使fs以后的电流环开环增益以-40dB/dec的斜率下降,这样虽然使相角裕量稍变小,但可以消除电流反馈波形上的高频毛刺的影响,提高电流环的抗干扰能力。低频下一般要加一个零点,使电流环开环增益变大,减小稳态误差。
整个环路的结构如图7所示。其中KEA,KFB定义如前。可见相对VMC而言(参见图3),平均CMC消除了原来由滤波电感引起的极点(新增极点fs很大,对电压环影响很小),将环路校正成了一阶系统,电压环增益可以保持恒定,不随输入电压Vin而变,外环设计变得更加容易。
4 峰值电流模式控制(PeakCMC)
平均CMC由于要采样滤波电感的电流,有时显得不太方便,因此,实践中经常采用一种变通的电流模式控制方法,即峰值CMC,如图8所示。电压外环输出控制量(Vc)和由电感电流上升沿形成的斜坡波形(Vs)通过电压比较器进行比较后,直接得到开关管的关断信号(开通信号由时钟自动给出),因此,电压环的输出控制量是电感电流的峰值给定量,由电感电流峰值控制占空比。
峰值CMC控制的是电感电流的峰值,而不是电感电流(经滤波后即负载电流),而峰值电流和平均电流之间存在误差,因此,峰值CMC性能不如平均CMC。一般满载时电感电流在导通期间的电流增量设计为额定电流的10%左右,因此,最好情况下峰值电感电流和平均值之间的误差也有5%,负载越轻误差越大,特别是进入不连续电流(DCM)工作区后误差将超过100%,系统有时可能会出现振荡现象。在剪切频率fc以下,由图6可知平均CMC的电流环开环增益可升到很高(可以>1000),电流可完全得到控制,但峰值CMC的电流环开环增益只能保持在10以内不变(峰值电流和平均值之间的误差引起),因此,峰值CMC更适用于满载场合。
峰值CMC的缺点还包括对噪音敏感,需要进行斜坡补偿解决次谐波振荡等问题。但由于峰值CMC存在逐周波限流等特有的优点,且容易通过脉冲电流互感器等简单办法复现电感电流峰值,因此,它在Buck电路中仍然得到了广泛应用。