首页 > 文章中心 > 继电保护的主要作用

继电保护的主要作用

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇继电保护的主要作用范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

继电保护的主要作用

继电保护的主要作用范文第1篇

【关键词】水电站;二次回路;继电保护

在水电站现代化电力系统中,一次设备和二次设备对电力生产的安全有序都起着重要作用。而二次回路即二次设备的电路系统,主要是对一次回路进行信号及测量、监视、操作、继电保护等,重要性尤显突出。二次回路继电保护在保证水电站的电力系统安全可靠运行、减少事故的发生、控制故障的影响方面发挥着重要作用。

1 二次回路在水电站运行中的作用

水电站二次回路较一次回路更为庞大,也更为复杂。二次回路主要由一次回路的信号及测量回路,监视系统,操作电源系统,继电保护和自动设备等组成。二次回路出现故障会使整个电力系统受到影响甚至遭到破坏。

例如,测量回路出现问题,则影响电费的计量,同时影响输电质量的判断;再如,线路保护系统出现接线错误等问题时,若有设备发生故障,不能及时起到跳闸保护的作用,则会使相关设备遭到损坏,可能对电力系统造成重大影响。因此二次回路虽然不是电力系统的主体,却对于水电站各个方面都起着不可忽视的监测、保护及保障作用。

2 继电保护在二次回路中的作用

继电保护是水电站二次回路中的重要组成部分,“保护”一词已明确表示了其重要意义在于对二次回路、一次回路、甚至整个电力系统的保护作用。特别是在水电站电力设备日益现代化的今天,对继电保护提出了更高的要求,可以说水电站时刻需要继电保护来保证其顺利、安全运行。

在二次回路中,继电保护的重要作用体现在对一次系统运行状态的监测和控制上。继电保护系统作为低压弱电系统,主要通过预防事故的发生,或者控制事故的影响范围来保证一次系统的正常运行。是二次回路中相对独立的弱电子系统。

3 水电站二次回路继电保护的应用

3.1 继电保护的基本原理

继电保护系统运行的直接目的在于发出异常或故障警告、切断故障设备或系统。其工作的基本原理是:电力系统在发生故障或运行异常时,系统的各物理量会不同于正常运行时的物理量,继电保护系统在对各物理量进行对比后,判断异常或故障,进而发出异常或故障警告,并通过切断故障设备或故障系统与整个系统之间的联系来限制影响范围,将整个电力系统因此受到的影响或损害降至最低。

3.2 继电保护系统的主要配置

水电站继电保护系统在设计之初就应考虑与计量回路、控制系统、自动装置等的相互配合和协调,根据水电站的电力系统的需要,进行合理配置。系统主要配置如图1所示。

连接继电保护装置的回路主要有以下几种:

(1)从电流互感器和电压互感器的二次侧端子开始,到有关继电保护装置的回路。

(2)从继电保护直流分路熔丝开始,到有关保护装置的回路。

(3)继电保护装置出口端子排到断路器操作箱端子排的跳、合闸回路。

继电保护在选择配置时,应充分结合整个电力系统可能发生的异常或故障,尽量满足整个系统的要求,并且使继电保护装置的效能得以充分发挥,保证二次回路的高水平运行。

3.3 继电保护的整定

传统的继电保护整定计算,是假定电力系统在最大运行状态下线路末端短路时确定整定值,整个速断装置则根据这个整定值来进行保护工作。

然而随着电力系统的装置设备不断更新,系统结构也越来越复杂,并且处于不断变化之中,电力系统出现的异常及故障也随之复杂化、多样化,而传统的整定计算和传统的速断保护装置,对于现代化的电力系统的起到的实际保护作用则较为有限。一方面,传统整定值的计算虽然相对来说比较合理,但毕竟系统的实际运行与整定计算时的状态有差别;另一方面,整定值是在假设系统最大运行状态下计算得出的,而实际运行过程中,系统处于最大运行状态的情况较少,其它运行状态下的保护效果可能不大。

3.4 继电保护系统的运行

继电保护装置的运行应具有良好的灵敏性、选择性、速动性及稳定性。这就要求设备运行前,首先,应进行一般检查,包括对各装置的焊接点检查,对螺丝是否紧固的检查等等,这些一般性细节检查应全面认真完成,否则细节失误会成为发生保护拒动或者保护误动的隐患;然后,要进行常规的保护整组传动试验;最后,要完成对设备的遥控、遥测、遥调等操作的验收工作。

3.5 继电保护装置设备的检修

检修工作对于继电保护装置设备的正常运行非常重要,常规的检修有利于及时发现问题,提前采取措施,预防保护拒动及保护误动情况的发生。在常规检修工作中应注意以下几个方面:首先,应合理安排检修程序,使检修工作不影响继电保护系统的正常运行;其次,着重对保护装置的整定动作进行认真检查;再次,在检修工作进行时应做好相应的安全隔离措施。

3.6 继电保护系统的接地保护

在继电保护系统中进行接地保护主要包括对输配电线路进行接地保护和对装置设备进行接地保护。首先,对输配电线路进行接地保护时又可分为中性点不接地系统和中性点直接接地系统。中性点不接地系统也称小电流接地系统,这种系统中,当系统发生接地故障时会发出故障信号,一段时间内故障设备仍可继续运行。中性点直接接地系统也称大电流接地系统,在这种系统中,当发生接地故障时,会发生跳闸动作,用以切断故障设备;其次,对于继电保护装置进行单体接地保护,或者对装置设备集中的区域采用接地铜排网进行接地保护,同时与主接地网进行可靠连接。

3.7 继电保护的抗干扰措施

二次回路继电保护设备多为弱电设备,容易因受到电力系统中其它设备的干扰而影响其性能。为提高保护的有效性,应采取积极的抗干扰措施。

主要的抗干扰措施如下:第一,将各种继电保护设备集中在同一等电位面,与接地主网实行一点连接,可以有效屏蔽电位差窜入引起的干扰。第二,在开关场和控制室沿高频电缆连接接地铜线实现接地。第三,保护装置的信号、电压等回路的开关场采用屏蔽电缆,利用铜做屏蔽层。第四,在微机保护越来越广泛应用的情况下,应使电压互感器的二次回路和三次回路相互独立,用以防止由传统接线方法引起的拒动与误动。

4 总结

在水电站电力系统中,二次回路继电保护的重要作用毋庸置疑,通过对应用情况的分析,指导继电保护的应用实践,有助于应用过程中资源得到更科学合理地配置,有助于继电保护所承载的监测作用、控制作用、保护作用得到更有效地发挥。

参考文献:

继电保护的主要作用范文第2篇

【关键词】电力系统;继电保护;发展探索

电力系统可以说是一个极其繁琐的系统,不仅结构复杂,构成的部件设备和相互之间的联系也极为繁杂,例如,变压器、发电机、输配线路、母线、用电设备等,而且,电力系统在运行的过程中,每个区域、每条线路中的电气设备配置也有所不同,各个构件都需要通过电或磁进行相互联系的,而继电保护则是保证电力系统安全运行、稳定运行的关键,因此,在未来的发展中,应重视电力系统继电保护工作水平的提高。

1电力系统继电保护现状研究

继电保护具有对电力系统稳定运行、安全运行的保护作用,一旦电力系统的运行状态不正常,或是出现运行故障的情况下,继电保护都会向运行人员或是主控设备发出相应的信号,而继电保护的断路器也会根据相应的信号做出正确的动作,对电力系统异常状态以及故障运行进行及时的处理,从而保障电力系统运行的可靠性,将事故损失控制在最小。例如,三相短路故障的保护动作,三相短路公式如下:

式中的 代表正序综合阻抗;E代表相电势。

一般情况下,电力系统的继电保护需要有着较强的可靠性、选择性、灵敏性、速动性,这样才能在判断的过程中,不会耽误时间,能够及时处理电力系统的非正常运行。但是,就当今电力系统继电保护的现状来分析,虽然继电保护的应用对提高电力系统的安全性、可靠性有着一定的作用,但是,在实际中发现,继电保护由于受到内部或外部的原因影响,使得继电保护经常发生误动作或不动作的现象,对电力系统的正常运行造成极大的影响。

2 电力系统继电保护发展探索

2.1 加强对继电保护的管理

继电保护误动作或不动作的现象对电力系统的正常运行影响非常大,如果在日常缺乏对继电保护管理的话,势必会影响到继电保护的运行效率,从而,对变电系统的正常运行造成严重的影响,在实践中发现,继电保护的管理对继电保护的运行状态有着直接的影响,因此,在未来的发展中,要加强对继电保护的管理,才能有效的提高继电保护的运行效率。首先,要加强对继电保护现场的管理,在继电保护现场要注意几方面的问题,如,电源插件;调试装置;二次回路等问题,在对继电保护的现场管理中同时还要注意对二次回路放电间隙的校验,这样才能有效的提高继电保护的运行效果,从而提高电力系统的运行效率。其次,要做好继电保护的数据管理,继电保护在运行的过程中所产生的数据都需要数据库的存储,在社会经济快速发展之下,信息化技术的发展也极为迅速,在对继电保护数据进行管理的过程中,可以充分利用到信息化技术来实现对继电保护数据的管理,是传统的继电保护数据保护无法比拟的。

2.2 要加强继电保护的推广

在未来的发展中,供电企业在对未来的发展方向进行定位的话,必须要注重电力系统的运行效率,而要提升电力系统的运行效率必须注重电力系统的改进,继电保护是改进电力系统运行的关键,是保障电力系统运行安全性、可靠性的关键,因此,在未来的发展中应加强继电保护的推广。首先,要充分了解电力系统的运行状态,并根据电力系统运行的具体情况切实的运用继电保护,将继电保护的功能充分应用到供电企业的电力系统中,这样才能充分的保证电力系统的运行效率,而且,在未来的发展中,电力系统运行的安全性、可靠性非常的关键,这也是将继电保护应用到电力系统的关键。其次,要将继电保护功能综合到自动化系统,这样可以实现以下功能:能够利用继电保护装置的功能实现对电力系统的检修,一旦发现故障可以对故障位置进行准确的定位,从而帮助维修工作人员尽快补修电力系统故障,提高电力系统运行的可靠性;能够充分发挥出继电保护的功能,确保电力系统的稳定运行,起到对电力系统运行保护的作用;通过综合自动化系统的形成,能够实现对继电保护装置的分析,确保继电保护装置运行的可靠性;继电保护装置能够在检测到电力系统故障的情况下,对电力系统故障维修可以起到辅助的作用,提高故障的恢复速度;继电保护装置通过对电力系统的应用和辅助的功能,可以对电力系统运行过程中的数据进行分析,一旦线路运行参数发生故障的话,可以对线路的运行参数进行修正。

另外,在继电保护得到推广之后,在电力系统运行的过程中,继电保护还能够对电力系统的运行参数进行记录,并且,会对记录的数据进行分析和处理,从中辨别系统运行故障,并且,能够全面的记录继电保护的动作时间以及动作顺序,不仅如此,还能有效的记录电压、电流的波形,这些对电力系统运行的故障分析都有着极大的帮助,可以有效的提高电力系统的运行效率。

2.3 重视对人力资源的培养

在未来的发展中,人才是保证电力系统安全运行、可靠运行的关键,例如,继电保护装置安装维护的技术人员、电力系统的维护人员、故障维护检修的技术人员等,都需要大量的人才支持,尤其是自动化系统控制中心运行的人才更为关键,因此,应重视人力资源的培养。此外,在对人力资源培养的过程中,不仅要注重人才的技能培养,更要注重人员思想品质、职业道德的培养,这样才能为电力企业培养更多综合素质较高的人才,才能在未来的发展中促进电力企业的快速发展。

3 结语

综上所述,电力系统继电保护装置是保障电力系统安全运行的关键所在,但是,在从本文的分析中以及在电力系统的实践中也发现,很多问题的存在对电力系统继电保护的正常运行造成一定的影响,作者结合自身多年的工作经验,以及对电力系统继电保护装置的了解和掌握,主要从加强对继电保护的管理、要加强继电保护的推广、重视对人力资源的培养等方面来适应电力系统继电保护的未来发展趋势。

参考文献:

[1]任美青.浅谈电网继电保护发展趋势及综合自动化系统[J]. 科技情报开发与经济. 2011(32)

[2]白润波,郝文斌.继电保护热点研究问题简述[J]. 沈阳工程学院学报(自然科学版). 2012(03)

继电保护的主要作用范文第3篇

关键词:广域;继电保护;分层系统结构;通信网络;拓扑结构;设计;分析

中图分类号:TP31 文献标识码:A

随着现代信息技术的发展提升以及智能化电网建设的不断加快,在现代化电网建设中,先进计算机信息应用技术以及网络通信技术、电力电子技术等,不仅在电网建设中的应用实现更为广泛,并且对于电网建设与发展的促进作用也越来越明显。电网建设与电力系统工作运行过程中,传统的后备保护方式不仅保护整定比较复杂,并且保护动作延时较长,电网运行过程中,一旦电网结构或者运行工况发生预设以外的变化时,电网的后备保护功能与作用很难得到保障,因而会对于整个电网的工作运行以及稳定性产生不利影响,基于网络通信以及广域测量技术的广域继电保护就是针对这种传统后备保护模式的问题,提出的一种电网运行保护新思路和新模式。广域继电保护模式在进行电网运行保护中,根据该保护模式的保护算法与分层系统结构情况,进行高效以及双向、实时、自愈、安全、可靠的通信网络构建,是广域继电保护模式实现的基础。本文将结合广域继电保护模式的分层系统结构特征,从广域继电保护模式中IED与变电站网络的接入实现,以及广域继电保护IED与电力通信网络的接入实现两个方面,对于基于MSTP平台的广域继电保护分层系统结构的网络拓扑设计进行分析论述。

1 广域继电保护的分层系统结构特征分析

广域继电保护作为电网运行保护的一种新模式以及电力系统的新增业务,其分层系统结构主要将整个保护网络分为三个结构层次,即接入层、汇聚层以及核心层。广域继电保护分层系统结构的通信网络设计中,关键是对于与数字化变电站网络以及电力通信网络的接入进行设计实现,以在满足广域继电保护功能的同时,不对于变电站以及电力通信网络中现有的业务功能产生影响。在该广域继电保护分层系统结构中,主要采用的是变电站信息集中和区域集中决策相协调的分层系统结构模式。在该分层系统结构中,变电站以及调度中心内部网络结构,在该结构中IED1到IEDn均表示智能电子设备,其中,子站中的广域继电保护IED被定义为TCU,主站中的广域继电保护的IED被定义为DCU,而调度中心的广域继电保护IED则被定义为MU,而目前所谓的广域继电保护主要是指实现同一电压等级下的线路保护;在广域继电保护分层系统结构中,通常情况下,从广域通信网络的结构层面上来看,同一电压等级的整个电网广域继电保护分层系统结构主要包含三个层次结构,即接入层以及汇聚层、核心层,在进行广域继电保护通信网络构建过程中,将整个广域电网看作是若干个有限区域共同组成,然后在每个区域选择其中的一个变电站作为主站,将所有区域的主站设置为汇聚层,对于子站TCU上传的信息内容进行汇聚,同时以主站为中心进行区域划分实现,将区域内部除主站外的其他变电站归结设置为子站,这样一来整个广域电网内的子站就构成了接入层,而广域电网的调度中心MU则是整个分层系统结构的核心层。

在广域继电保护的分层系统结构中,子站中的广域继电保护主要由信息采集单元和跳闸执行单元两个结构部分组成,其中,信息采集单元的主要功能作用包括,进行启动元件的判断以及被保护线路模拟量与开关量的测量等,并且在进行被保护线路模拟量测量中,进行模拟量测量预处理后,进行相量值的计算,并将计算所得的相量值与开关量通过远程通信网络传送到主站中;而在子站广域继电保护的跳闸执行单元结构部分,其主要功能为接受主站的控制命令,并在与本地的传统在后备保护进行综合决策后,进行相应断路器的跳合闸操作控制,同时上传指令到广域电网主站与调度中心结构部分。而在广域继电保护分层系统结构中,主站中的广域继电保护主要由信息采集单元与综合决策单元两个部分组成,其中信息采集单元在承担主站中的TCU任务,进行本区域内TCU上传信息的收集同时,进行调度中心下指令的接受;而主站中的广域继电保护综合决策单元,则具有定时根据子站上传信息进行广域继电保护运算,并且在区域内出现故障问题后,进行故障问题处理决策的制定与下发,以实现对于相关故障问题的切除控制。最后,广域继电保护的调度中心结构部分,主要是进行各区域广域继电保护系统运行情况以及全网实时拓扑结构、故障记录查询等的实施协调与监控。

2 广域继电保护IED接入变电站网络与电力通信网

2.1 广域继电保护IED接入变电站网络

对于广域继电保护IED接入变电站网络,需要结合数字化变电站网络的通信设计方案,在确定数字化变电站网络的通信方案后,进行广域继电保护IED接入变电站网络的设置实现。通常情况下,在数字化变电站通信中,应用较多的通信网络方案主要有独立过程网络与全站统一网络两种网络通信方案。其中,独立过程网络是一种比较容易实现的数字化变电站网络通信方案,而全站统一网络具有信息高度共享的特征优势,是数字化变电站通信网络的最终方案形态。以220kV的两电压等级数字化变电站为例,在广域继电保护TCU/DCU接入数字化变电站的全站统一网络拓扑结构中,数字化变电站的低压侧主要采用的是集中备用的双星形冗余网络拓扑结构,而在数字化变电站的高压侧,对于每一套单一间隔设备通过间隔交换机和本间隔内的合并单元以及断路器智能终端等过程层设备进行相互连接实现从而形成一个通信子网,数字化变电站的低压侧单一间隔设备则通过间隔交换机与集中备用交换机,与本间隔内的过程层设备进行相互连接实现。此外,对于上述网络拓扑结构中,跨间隔设备在高压侧是通过公共交换机与本间隔内过程层设备相连实现,低压侧保护则是通过另一公共交换机与连接实现。

2.2 广域继电保护IED接入电力通信网

广域继电保护IED与电力通信网的接入实现,则是在以MSTP作为传输平台的情况下,通过将广域继电保护的网络通信业务接入到电力通信网的方式,实现广域继电保护IED接入电力通信网,即为广域继电保护业务与变电站其他业务通过MSTP平台设备接入到电力通信网的传输模型结构。

3 广域继电保护分层系统结构的网络拓扑设计

根据上文所述可知,在进行广域继电保护分层系统结构的网络拓扑设计实现过程中,主要是以MSTP设备的接入或者说是以MSTP作为平台设计实现的。

首先,在进行广域继电保护分层系统结构的HVPLS网络拓扑结构设计过程中,接入MSTP平台设备的以太网接口业务主要包括,广域继电保护数据网、调度数据网、综合数据网等,各种业务通过不同以太网接口的接入,并以各自独立的虚拟网桥,实现相互连接。在广域继电保护模式中,分层系统结构的广域继电保护是一种集中式业务形式,保护区域内子站广域继电保护信息均向主站汇集,并最终汇集到核心层结构中,以组网方式实现点到多点、多点到点的网络通信传输结构形式。此外,在进行广域继电保护分层系统结构中信息传输方式以及过程的设计中,由于MSTP以太网业务处理单板具有汇聚功能,能够通过以太网进行多个接口的数据连接实现,因此,在进行广域继电保护分层系统结构信息传输方式与过程设计中,主要是以这种子站、调度中心以及主站等结构相互连接的方式设计实现,以满足广域网运行过程中,运行传输业务对于传输通道的带宽需求,同时对于降低广域网通信传输过程中的故障率也有着积极的作用。。

结语

总之,高效、稳定的网络通信是广域继电保护实现的基础,进行广域继电保护分层系统结构的网络拓扑设计,有利于促进广域继电保护在电网运行与建设中的推广应用,对于电网的安全稳定运行实现有着积极作用和意义。

参考文献

[1]丛伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法研究[J].中国电机工程学报,2006(21).

[2]李振兴,尹项根,张哲,等.分区域广域继电保护的系统结构与故障识别[J].中国电机工程学报,2011(28).

[3]尹项根,李振兴,刘颖彤,等.广域继电保护及其故障元件判别问题的探讨[J].电力系统保护与控制,2012(05).

[4]李振兴,尹项根,张哲,等.基于多信息融合的广域继电保护新算法[J].电力系统自动化,2011(09).

[5]李振兴,尹项根,张哲,等.广域继电保护故障区域的自适应识别方法[J].电力系统自动化,2011(16).

[6]吕颖,张伯明,吴文传.基于增广状态估计的广域继电保护算法[J].电力系统自动化,2008(12).

继电保护的主要作用范文第4篇

关键词:电力系统;继电保护;运用

中图分类号:TM77 文献标识号:A 文章编号:2306-1499(2013)07-(页码)-页数

1.继电保护技术的运用特性

1.1继电保护技术的智能化

在20世纪90年代之后,智能化已经开始存在,并且已经有一定的发展,神经网络、遗传算法、进化规划、模糊逻辑等智能技术已经在现在的电力系统被更广泛地应用着,现在在整个电力系统继电保护领域中这些智能化的研究已经成为了主要研究的对象。在电力系统的继电保护中,会存在一些专家系统、人工神经网络等智能化系统,这种智能化系统的纳入对于继电保护的发展有着很重要的意义。分布式存储信息、并行处理、自组织、自学习等都是人工神经网络中一部分特点,对于这样的发展和应用速度是相当快的,当前人工智能、信息处理、自动控制和非线性优化等都是比较重点的一些问题。与人工智能技术相结合,将其中出现的一些不确定因素进行分析,找出影响智能诊断系统的因素,在诊断的时候要更为准确,这在未来智能诊断发展中起着不可替代的作用。

1.2继电保护网络信息化

电力系统的发展要求越来越多,在继电保护领域中通信技术也在其中不断地发展,就使继电保护的作用已经不只是将故障找出来和缩小故障发生的范围,还需要在安全的层面上做足考虑。伴随着现在不断发展的计算机网络和数据通信工具,对于保护系统的观念已经在继电保护技术人员中兴起,也就是可以通过装置网络化,在分析这些数据和信息的基础上,协调每一个故障数据,各个保护单元和重合闸装置,这将会使系统的运

2.继电保护技术的配置和运用

2.1继电保护装置的作用继电保护装置在供电系统中具有极其重要的作用,在电力系统发生故障时,必须要通过保护装置将故障及时排除,以防发生更大的故障。当电力设备处于具有危害性的不正常的工作状态时,保护装置必须及时发出警报信号报知给工作人员,以便其及时消除不正常的工作状态,防止电力设备和元器件发生损害,从而导致电力事故的发生。

2 .2继电保护装置的基本原理

电力系统发生短路故障以后,电流会骤增,电压会骤降,电路测量阻抗会减小,电流和电压之间的相位角会发生变化,这些参数的变化能构成原理不同的继电保护,比如电流增大会构成过电流、电流阻断保护;电压降低会构成低电压保护。

2 .3继电保护装置的运用

工厂和企业的高压供电系统和变电站都会运用到继电保护装置。在高压供电系统分母线继电保护的应用中,分段母线不并列运行时装设的是电流速断保护和过电流保护,但是在断路器合闸的瞬间才会投入,合闸后就会自动解除。配电所的负荷等级如果较低,就可以不装设保护装置。变电站常见的继电保护装置有线路保护、母联保护、电容器保护、主变保护等。

(1)线路保护 ,通常采用二段式或者三段式的电流保护。其中一段是电流速断保护,二段是限时电流速断保护,三段是过电流保护。(2)母联保护 ,限时电流保护装置联同过电流保护装置一起装设。(3)电容器保护,包括过流保护、过压保护、零序电压保护和失压保护。

(4)主 变 保 护 ,包 括 主 保 护 (重 瓦 斯 保护、差动保护),后备保护(复合电压过负荷保护、过流保护)继电保护技术在目前已经得到飞速的发展,各种各样的微机保护装置正逐渐被投入使用,微机保护装置是有各种不同,但是其基本原理和目的都是一样的。

3.继电保护装置的维护

3.1继电保护装置的抗干扰

继电保护的抗干扰包括硬件抗干扰和软件抗干扰两种:(1)硬件抗干扰 ,即结合屏蔽和隔离来消除干扰。屏蔽主要有电磁屏蔽、铁质保护柜屏蔽等。隔离既可以让保护装置与现场保持信号的联系,又让它们不直接地发生电联系。(2)软件抗干扰 ,在直流和交流电入口接入RC滤波器,在芯片的电源和零序之间加上抗干扰的电容等。

对外部的二次回路的设计必须采取抗干扰的措施,如降低干扰对象和干扰源之间的电感和耦合电容;降低附近电气值;降低对信号的屏蔽层的阻抗值等。如果干扰导致了输入的采样值出错,必须在干扰脉冲过去了以后,重新输入采样值。

3.2继电保护装置的故障与和维护

3.2.1继电保护装置故障的发生原因

(1)电源问题。如果电源输出的功率不足,就会造成输出的电压下降,导致比较电路基准值发生变化,充电电路的时间变短。(2)集成度高,布线紧密。插件接线焊口的周围在长期运行以后,在静电作用下会聚集大量的静电尘埃,造成两个焊点之间形成导电通道,导致继电保护故障的发生。

3..2.2继电保护装置的维护

继电保护装置是电力系统中安全生产的后盾,对于继电保护装置的日常维护是非常重要的,继电保护装置要时刻处于工作状态,不要在设备发生故障时,继电保护装置不能起到保护的作用,所以对于继电保护装置的日常维护应该引起企业领导的重视。

对于继电保护装置应该安排专职人员进行,企业应该建立健全相关的岗位责任制,将日常对保护装置发现的各项数据及时的记录,如果在检查的过程中发现设备有异常情况出现的时候,要及时的向有关的领导反应,及时的进行排查,为设备的正常运转提供可靠的保证。进行维护的时候,维护人员一定要有非常细致的耐心,不错过微小的细节,需要有非常强烈的责任心,才能将这项工作做好。

对于保护装置的操作规定,要做到专人专职,与保护装置无关人员一律不得接触设备,不得随意的对设备进行任何操作,如果因为特殊情况需要对设备有所操作的时候,也要向有关的领导进行请示。一定要严守规章制度,没有规矩不能成方圆,继电保护装置的正常运行关系着整个企业的设备的安全管理情况,所以一定要加强重视。

对继电保护装置要进行定期的清扫工作,防止因为灰尘或者杂物等的进入引起机器出现故障问题,减少不必要的损失。对机器进行清扫的人员也要有专业精神,要同时有两个人进行,避免在对机器进行清扫的过程中,人为的原因,与机器发生触电行为,造成人员的安危和机器的短路,一定要精心细心,不得有丝毫的马虎。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。

继电保护的主要作用范文第5篇

【关键词】继电保护;任务;现状;发展

1 电力系统继电保护技术的任务和要求

(1)当电力系统发生故障时,有选择性的将故障元件从系统中快速自动切除,使其损坏程度减到最轻,以避免故障元件继续遭到破坏。保证系统其它非故障部分能继续运行。

(2)反应电力系统的不正常工作状态,一般发生报警信号。提醒值班人员进行处理,无人值班情况下,继电保护装置可视设备承受能力作用于减负荷或延时跳闸。

对继电保护的基本要求是:

(1)动作的选择性:当出现故障时。继电保护动作时应该首先将故障的设备切除,让出现拒动的现象时,才允许相邻设备保护、线路保护等动作。电网之间的继电保护要遵循逐级配合的原则,保证当继电保护装置切断系统中的故障部分后,其他非故障的设备仍然可以可靠的进行供电;

(2)动作的速动性:指的是继电保护装置在允许时间内以最快的速度切除故障元件,针对短路故障时尤其重要。从而缩小故障导致的范围,降低设备和线路的损坏情况,提高自动投切设备的效果;

(3)动作的灵敏性:指的是继电保护装置在保护范围内,保护装置应该具备的灵敏系数,即应当故障时的能力,。

(4)动作的可靠性:可靠性是对对电力系统继电保护的基本要求。任何电力设备都不允许在没有继电保护的状态下运行,同时继电保护在保护范围内需要动作时应可靠动作,不应该动作时应可靠的不动作。

2 电力系统继电保护的现状

我国继电保护起步于50年代,此时的技术人员主要是对国外先进的继电保护技术进行引进和吸收,从而来培养自己的专业队伍。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代。从60年代中到80年代中的晶体管式继电保护蓬勃发展的时代,到了80年代末期时集成电路保护已形成完整系列,形成了90年代中期的集成电路式继电保护时代。

随着社会现代化步伐的加快,发电机组的容量不断增大,各种大型的设备和人民的生活对电力系统的需求越来越大。不同原理、不同机型的微机线路和主设备保护为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。现在的继电保护处于微机式继电保护时代。目前,我国建设的变电站等电力设施都已经实现了综合自动化,无人值守的变电站已经得到了广泛的应用。

3 电力系统继电保护的发展趋势

3.1 网络化 现在,继电保护的目的不只是要切除故障设备和降低故障的影响区域,更主要的是确保整个系统的安全可靠的运行。这就需要每个保护单元都能共享整个系统的运行和故障信息, 每个保护单元与重合闸装置在分析系统数据的基础上可以进行有效的协调。这样,继电保护装置对故障性质、故障位置的判断和故障距离的检测会更加的准确。实现这种系统保护的条件就是对信息的有效传输,这就要求用计算机网络将各主要电气设备的保护装置进行连接。因此,计算机网络作为信息和数据通信工具已成为继电保护未来发展的一个重点。

3.2 智能化 近年来,人工智能技术如神经网络、遗传算法、模糊控制等在在继电保护领域应用的研究已经起步。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。

随着各种技术和智能软件的不断完善。可以预见人工智能技术在继电保护领域一定会得到广泛的应用,以解决对电力系统更高的需要。将智能技术和故障诊断技术进行结合在一起,分析和处理不确定因素对电力系统的影响,是今后电力系统继电保护的新的发展空间。 3.3 综合自动化 微机继电保护装置可以在线获取电力系统的运行和故障信息和数据,并将得到的信息传输到监控中心进行显示和分析,从而为工作人员提供实时的现场数据。继电保护系统在完成继电保护功能的同时,还完成了保护、控制、测量、数据通信等方面的综合自动化。 综合自动化系统的发展打破了常规保护装置不能与监控中心进行实时监控的不足,给电力系统自动化赋予了更新的含义和内容,代表了电力系统自动化技术发展的一种潮流。

4 总结 随着我国电力系统的不断完善和发展,计算机技术、网络技术、通信技术和微电子技术等方面的进步,继电保护技术有着新的发展机遇。其发展内容将突破原有的原理和应用范围,由数字时代跨入信息化时代,发展到微机智能综合自动化水平。这同时对我们的工作来说也是巨大的挑战,一定要把握机会,为我国继电保护的发展开阔更广泛的空间。

参考文献:

[1]王维俭著.电力系统继电保护基本原理[M].清华大学出版社, 1991.

[2]刘岳松. 电力系统继电保护的现状与发展趋势[J]. 黑龙江科技信息. 2008(07).

[3]宁磊,陈涛. 电力继电保护现状及展望[J]. 科技信息. 2010(20).