首页 > 文章中心 > 农业物联网行业研究

农业物联网行业研究

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇农业物联网行业研究范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

农业物联网行业研究

农业物联网行业研究范文第1篇

关键词:农业信息化;物联网;应用

一、国外文献综述

(一)发达国家农业信息化发展情况1、美、法两国不同的农业信息化服务模式。美国实现集约化的农业信息化生产方式,依托的是高度发达的农业信息服务体系,主要体现在:“政府投入型”为主的投入模式,包括重点投资基础设施而不是农作物和提供低息贷款;“政府主导型”的组织模式,包括政府主导的农业信息化组织结构和完善的法律规章制度体系;现代信息技术的信息传播方式,包括网络媒体、电话服务和图书馆查询。法国作为欧盟最大的农业生产国,与美国相比,虽然起点比较低但是发展速度快,这得益于其成功的农业信息化服务体系:一是“政府型+商业型”的投入模式,这种双方面的资源投入扩大了资金来源,相关企业通过这种方式进行投资获益,也鼓励了他们继续投资;二是“多方合作型”的组织模式,法国服务主体众多,包括各级农业部门、农业事业联盟、农产品加工业协会、农商会等,他们在服务内容、对象、规模上各自有所侧重,形成互补;三是“传统+现代”的信息传播服务模式,除了网络媒体、电话、图书馆之外,主要还有会议、广播、报纸、刊物、传真等形式,呈现出分散、直接、多渠道的特征;四是不断完善的法律法规等制度保障体系。2、美、德先进的农业信息化技术体系。美国在物联网技术和信息化其他技术集成的基础上形成了成熟的精准农业,主要应用的技术有农业数据库系统、遥感技术、地理信息系统。同时,先进的农业信息网络技术使得近20%的农场主选择网上交易,农业电子商务占总电子商务的8%,在所有行业中排行第五。德国在农业信息采集、存储、处理决策和控制方面均运用了物联网技术和其他信息化技术,并注重技术之间的集成,以保环境促发展为目的。

(二)物联网技术应用情况。MichaelChui、MarkusLofflerandRogerRoberts(2010)认为可以通过物联网技术加强对员工行为的感知,以此来改善公司管理。同时,运用物联网的传感器驱动的决策分析,将物联网技术应用于石油和天然气行业,可以降低开发成本。RFID技术应用于零售业可以改善供应链管理、缩短零售周期、提高供应链可见度、提高企业知名度和未来盈利能力。未来在零售行业中RFID技术有望取代条形码技术,因为它不需要操作人员的视线关注并能够提供更多功能,提高了处理速度和效率。而专业技术的缺乏、不确定性和复杂性也是RFID技术带来的风险。

二、国内文献综述

(一)我国农业信息化发展情况。在农业信息化服务体系方面,我国采用的是“政府主导型”投入模式,主要包括:属于无偿放款的拨款方式;使资金得到高效、有偿使用的贷款方式;补贴、补助和贴息方式。组织模式是以国家农业部门为主导,其他涉农部门为辅。信息传播模式在传统方式的基础上,不断投入使用先进的农业信息传播方式,比如“三电合一”“、百万农民上网工程”“、农报110”等。在农业信息化技术体系方面,我国农业信息采集、传输、存储、处理决策方面的技术得到深化,借鉴国外先进经验,探索了一系列适合我国农业信息化发展的项目,使相关技术落地生根;一些集成化技术已应用于精准农业。广东省发展农业信息化在区位、资源、政策、经济上占有得天独厚的优势,已经初步建立了比较健全的省、市(地)、县(市、区)和乡镇四级农业信息网络体系。河北省也已初步建立了全省性、区域性和特色农业网站三大类网站,并在“十二五”期间全力推进全省农业信息化“114工程”,进一步完善农业信息化体系。

(二)物联网技术应用于农业方面的研究。物联网技术的感知、传输技术已成功应用于大田种植、设施园艺以及农产品物流等方面。传感器可以感知采集目标检测区内的空气温湿度、土壤温湿度、二氧化碳浓度、光照强度等,为精准农业、温室种植环境监控提供了有效的解决方案。中国移动依托土壤墒情和作物用水规律研发出智能化滴灌控制系统,解决了新疆石河子垦区农业灌溉用水利用率低的问题。利用二维条码和RFID技术可以建立农产品质量安全追溯系统。中国电信建立智能农业仓储管理与溯源平台,提升了企业食品安全意识和消费者信任感。北京派得伟公司参与了科技部“农业物联网测控系统”重大项目,实现了农业传感感知、传输通讯和分析处理功能。农户可以通过移动客户端查看数据进行相关操作,在此基础上还可以农产品供求信息,通过音视频互动方式与农业专家进行线上交流,为作物病害进行远程诊断。

(三)物联网技术在生活方面的应用情况1、交通领域。利用物联网技术建立公交无线视频监控平台,通过安装GPS定位系统和车载监控系统实现对车辆的实时监控和调度。另外,物联网技术还可以控制车辆行驶状态、在高速公路上不停车使用ETC收费,等等。2、房地产领域。通过互联网等通讯技术将传感器安置于地产开发涉及到的人员和物体、机器及各种终端设备,将小区医院、幼儿园、停车场等公共场所、设施的信息上传、汇总,实现人与物、物与物的互通,达到远程控制和智能化管理。3、医疗领域。未来的小区以及家庭内部将建立起与医疗机构的互通互诊的健康检查系统,使医生通过网络就可以对在社区内的患者进行简单的诊治。浙江大学附属一院何前锋提出了简约数字医疗物联网,认为医疗物联网是以医生、病人、药品、医疗器械为代表的“物”,同基于一定标准的工作流程的“网”之间信息的交互。4、物流领域。物联网技术改变了物流信息的采集方式,改变了从生产、运输、仓储到销售各环节的物品流动监控、动态协调的管理水平,极大地提高了物流效率。通过物联网技术可以建立集物流配载、电子商务、资金质押、信息跟踪、仓储管理、安保警备、海关安检等功能为一体的综合的物流信息服务平台。

(四)物联网发展仍存在的问题1、信息集成技术落后,信息共享渠道不通畅。使用物联网技术产生的大量数据,用目前的存储方法保存会占用很大的硬盘空间,存储成本也比较高。同时,由于部分乡村通讯手段非常落后,很容易形成“信息孤岛”问题,信息难以实现共享、流通困难。相关产业、相似流程的信息不能共享,缺少借鉴、重复作业增加了成本,提高了失败率。2、商业模式待完善,相对成本较高。目前,我国农业物联网商业模式有三种:政府支持的示范性项目、物联网企业做的示范性推广项目、国有大型农业物联网项目。在这三种模式下,不论由谁提供资金,都存在着相对成本高、产业链成员参与不主动的问题。所以,构建稳定共赢、规模化、有利可图的物联网商业模式是推广物联网技术非常重要的部分。相对成本较高:一是人力成本较低;二是采纳物联网技术的成本较高。用整套的物联网技术来代替人工劳动力,投入必然会增加,尤其是在农业生产中,这一点成为阻碍物联网技术推广的重要因素。3、开放性不足,规模化应用少。目前,我国物联网技术应用主要局限在小规模、企业内部,大规模的、企业之间的甚至是跨境的应用并没有非常成功的案例。4、技术标准不一致。物联网技术作为新兴技术,在初期推广的过程中,信息采集、传输、人机互交接口的技术标准不一致,各个标准组织比较分散,缺乏统一协调,导致上下游企业之间不能进行有效的合作。对于厂商而言,缺乏统一的技术标准参照,不能进行大规模生产,进而影响终端产品的稳定性和成本。5、相关法律法规仍有待健全。工信部虽在2011年提出《物联网“十二五”发展规划》,就我国2011~2015年物联网发展的主要任务、保障措施等给出了明确的指示,但针对各省市具体环境、现实背景的更细化的政策文件仍有待完善。各级政府也缺少比较详细的物联网发展规划,使得物联网技术推广大多只是纸上谈兵。

(五)影响物联网发展的因素研究。总结众多专家学者的观点,基于Tornatzky和Fleischer提出的技术组织环境(TOE)分析框架分析物联网发展的影响因素。1、技术本身特性(T)。主要包括技术的复杂性、兼容性、感知效益和成本等。首先,物联网技术的复杂性与接触物联网技术的一线人员本身的素质、能力挂钩。在各行业(尤其是农业)中推广物联网技术,实地操作人员对该技术的理解程度、熟练程度直接影响到推广成效。若技术太过复杂,会增加了人员操作的难度、降低操作人员的信心,导致抵触心理的产生;其次,物联网技术的兼容性决定了推广的规模。兼容性好的技术可以快速、有效地与原有企业、其他上下游企业业务流程契合;最后,感知效益和成本是物联网技术推广的决定性因素。带有明显营利性质的企业最看重的因素:一是应用物联网技术是否减少了人力成本、提高了运行效率;二是增加硬件设施成本以及相关维护成本是否不大于原先的人力成本。2、所处组织特征(O)。就是指企业规模、高层支持、技术知识、供应链企业间相互信任等方面。规模较大的企业,在面对新技术的推广、实验时有足够的资金支持,包括购买硬件设备和聘请专业人员等;承担新技术实验失败风险的能力也比小规模的企业要大些。高层决策人员对物联网技术的关注和支持程度,相关人力、物流、财力的支出程度,也影响着物联网技术是否会被采纳。供应链企业之间较好的利益分配机制和风险分担机制,对采纳物联网技术有正向促进作用;而众企业若想共同推进新技术的采纳,就需要相互之间的信任和协作。3、周围环境因素(E)。主要包括竞争压力和政府支持。竞争压力一方面是由于同业企业采纳物联网技术,激烈的竞争导致企业不得不采纳以跟上行业的整体步伐;另一方面是合作企业要求而应用物联网技术。另外,政府方面在出台一系列政策支持物联网技术发展和推广的基础上,还需拨出专项资金来帮助更多的企业进行物联网改革。政府政策的倾斜往往是具有超越一切其他因素的影响力的。

主要参考文献:

[1]VenkateshV,MorrisMG,DavisGB,etal.Useracceptanceofinformationtechnology:Towardaunifiedview[J].MISquarterly,2003.

[2]KohCE,KimHJ,KimEY.TheimpactofRFIDinretailin-dustry:issuesandcriticalsuccessfactors[J].JournalofShoppingCenterResearch,2006.13.1.

[3]SeymourLF,Lambert-PorterE,WilluweitL.TowardsaframeworkforRFIDadoptionintothecontainersupplychain[J].JournalofInformationScienceandTechnology,2008.5.1.

[4]高娃.基于物联网的农业信息化发展模式研究[D].南京邮电大学,2012.

[5]黄承红.国外农业信息化建设及对广东的启示[J].农业图书情报学刊,2009.12.

[6]李治宇,胡志全.农村信息化与农村经济发展分析[A].中国农业技术经济研究会.农业经济问题(2010年增刊)[C].中国农业技术经济研究会,2010.6.

[7]李晋瑶.物联网在现代农业中的应用研究[D].华中师范大学,2014.

[8]孙逊.物联网技术在休闲农业中的应用研究[D].苏州大学,2014.

[9]于莉.物联网在农业生产生活中的应用与实现[D].山东大学,2014.

[10]赵松岭.河北省鲜活农产品流通模式优化策略研究[D].河北大学,2014.

[11]俞磊.基于物联网技术的智慧医院架构及服务访问研究[D].合肥工业大学,2014.

农业物联网行业研究范文第2篇

10月31日,本报记者获悉,作为农业部确定的全国三个“农业物联网区域试验工程”试验区之一,天津农业物联网平台建设目前已初显成效。

今年5月,天津市启动了农业物联网“12345”工程,即构建1个天津市农业物联网平台;重点建设种植业、畜牧、水产等专业的20个农业物联网应用核心试验基地;建立研究开发、集成示范、应用推广3类农业物联网应用平台;探索产学研用相结合创新、企业运作、家庭农场、区域推进4种农业物联网应用模式;在建立农业物联网技术应用标准、探索农业物联网应用模式、整合信息服务资源、构建技术支撑服务体系、促进产业协同发展5个方面取得成果。

据介绍,“12345”工程中的“1”,即建设1个市级农业物联网平台,是整个工程的核心,通过这个平台建设,研究开发一系列农业物联网技术解决方案、行业示范模式、技术标准规范、核心产品体系,整合集成种植、养殖以及涉农企业及中科院、农科院等各种应用系统,可以为农业提供服务支撑;建立面向种植、养殖各行业农业生产、加工等各生产过程的专业子平台和行业示范应用子平台,对行业和企业基础数据进行深度挖掘和开发利用,可为政府管理部门决策、科研和农业生产提供服务支撑。

目前,这个平台的搭建工作已基本完成,已初步建成了云数据资源中心,集成了市场价格、感知、知识等17个数据库;集成各类农业应用系统88个;平台在线感知数据采集接入25个基地,涉及设施种植业、畜牧、水产养殖等内容。该平台集成云计算技术,实现农业信息服务资源的共享、存储与快速查询检索,形成产学研用协同可持续发展的云平台。(管宁静)

武汉明年实现就诊卡“一卡通”

近日,武汉市政协召开“智慧医疗”建设专题协商会,会上宣布,2014年除省、部属和军队医院外,全市医院将实现诊疗“一卡通”。

目前,每家医院都使用自己制作的就诊卡,这张卡拿到其他医院便无法使用。市民每到一家医院就要办理新的就诊卡。对此,市政协建议,将目前还未正式大规模推广的居民健康卡作为全市医疗机构统一的就诊卡,并将此卡作为识别患者个人身份的电子标签,依托卫生信息平台,建立电子健康档案库及病历库,实现全市医疗机构之间电子医疗记录的共享查询和调取,避免重复检查和不合理用药。

据悉,目前已实现3家试点医疗机构诊疗“一卡通”,市中西医结合医院与市中心医院诊疗卡已能互认,市普爱医院正在调试之中。年内该市将实现市级区域卫生信息平台一期联网的16家医疗机构诊疗“一卡通”。2014年,实现全市范围内除省、部属和军队医院外的诊疗“一卡通”。(张惠)

中国信息化推进论坛在京举行

10月29日,由工业和信息化部赛迪研究院主办的“中国信息化推进论坛”在京举行。

论坛以“中国信息化推进的三季度形势分析与四季度走势判断”为主题,对我国信息化领域的发展情况进行研讨。

会上还了《赛迪预测――2013年第三季度工业和信息化形式分析与走势判断》的系列报告。

2013年第三季度,我国信息化发展态势良好。展望第四季度,落实国家信息化相关政策的配套措施将密集出台,信息化管理与运营体制发生新的变化。

与此同时,在国家政策的强力支持下,我国工业行业两化融合向更深度拓展,大型企业在完成信息系统综合集成的基础上向产业链协同应用演进,传统制造业开始探索智能制造、个性化定制、按需制造、定制化众包等生产模式,智慧工业园区正成为推进两化深度融合的重要载体,工业云应用不断创新企业信息化服务模式。

另外,电子信息产业研究所副所长、软件和信息服务研究所所长、信息安全研究所所长分别就各自领域做了2013年三季度形势分析与四季度走势判断的主题演讲。(杨光)

中国食品质量安全追溯体系建设推进大会召开

10月23日,“2013中国食品质量安全追溯体系建设推进大会”在京召开。今年消费品工业司在重点食品领域试点开展了以食品质量安全为核心的产品质量安全追溯体系建设工作,先行在婴幼儿配方乳粉、白酒和肉制品等三个行业开展试点,探索食品质量安全追溯体系建设的可行模式和运行机制。据介绍,食品质量安全追溯体系的建设目标,是运用国家公众信息网络已有的资源和基础,采用既能与国际接轨又自主可控的物联网标识技术,实现产品质量安全信息追溯的动态性、完整性和准确性,并与国家其他物联网公共服务平台互通共享。同时,食品质量安全追溯体系架构兼容不同领域行业,适应和包容差异化的企业编码体系和产品信息追溯水平,面向消费者、企业和政府提供跨领域、跨平台的公共服务。(洪蕾)

嵊州工商搭建“电子集市”

近日,浙江嵊州市工商局搭建的“嵊州电子集市”平台正式网上运行。该平台以工商局电子政务外网为基础网络平台,借助多方平台,搭建信息化网络商品交易监管平台。“电子集市”集合了特色产业展示、品牌推介、网络基础监管等功能,将该市特色产业分为领带服饰、电器厨具、机械电机、农业、新兴产业等五大类,并提供直接下单交易的快捷链接功能,实现企业和客户的在线交易,缩短客户的搜索时间。为广大市民查询市场检测数据,为企业信息、参与网络交易等提供了便利。

宁夏建设电子监察监督网络

日前,宁夏全区将建设统一的电子监察平台,对电子政务应用进行电子监察,计划在今年底完成电子监察系统和电子监察中心等基础设施建设。届时将建成行政审批和资源配置2个电子监控系统及政府采购、医药采购、产权交易、土地交易等6个专项监察子系统,并与行政审批平台和公共资源交易平台对接,实现对行政审批和公共资源交易领域流程监察、内容监察、时效监察和视频监察的全方位电子监察。到2014年底,扩展电子监察系统功能,建设行政执法、政务信息公开、社保资金等8个专项监察子系统。

丽江构建智慧旅游信息平台

近日,丽江智慧旅游信息化工程正式启动,作为云南首个智慧旅游信息平台建设工程,该项目为丽江打造旅游智能服务典范迈出了新步伐。在全省率先着手筹备实施“丽江智慧旅游信息查询平台”及“云端多媒体互动旅游图”为主要载体的云南智慧旅游示范工程,将借助“云游四海”智慧旅游信息查询系统建设,成为真正意义上智慧旅游信息化城市。届时,丽江将成为云南省首个实现旅游信息云端运用的旅游城市,结合全方位的深度内容打造,实现旅游要素和游客基于高科技手段的“面对面”沟通。

农业物联网行业研究范文第3篇

1智慧农业

1.1智慧农业特点

基于物联网技术的智慧农业是当今世界农业发展的新潮流,传统农业的模式已远不能适应农业可持续发展的需要,农产品质量问题、农业资源不足、普遍浪费、环境污染、产品种类需求多样化等诸多问题使农业发展陷入恶性循环,而智慧农业为现代农业发展提供了一条光明之路。智慧农业与传统农业相比最大的特点是以高新技术和科学管理换取对资源的最大节约,它是由信息技术支持的根据空间时间,定位、定时、定量地实施一整套现代化农业操作与管理的系统,其基本涵义是根据作物生长的土壤性状、空气温湿度、土壤水分温度、二氧化碳浓度、光照强度等调节对作物的投入,即一方面查清田地内部的土壤性状与生产力,另一方面确定农作物的生产目标,调动土壤生产力,以最少或最节省的投入达到同等收入或更高的收入,并改善环境,高效地利用各类农业资源取得经济效益和环境效益双丰收。

1.2智慧农业系统架构

物联网智慧农业平台系统由前端数据采集系统、无线传输系统、远程监控系统、数据处理系统和专家系统组成[3]。前端数据采集系统主要负责农业环境中光照、温度、湿度和土壤含水量以及视频等数据的采集和控制。无线传输系统主要将前端传感器采集到的数据,通过无线传感器网络传送到后台服务器上。远程监控系统通过在现场布置摄像头等监控设备,实时采集视频信号,通过电脑或3G手机即可随时随地观察现场情况、查看现场温湿度等参数和进行远程控制调节。数据处理系统负责对采集的数据进行存储和处理,为用户提供分析和决策依据。专家系统根据智慧农业领域一个或多个专家提供的知识和经验,进行推理和判断,帮助进行决策,以解决农业生产活动中遇到的各类复杂问题。

2物联网在智慧农业中的应用

物联网技术是新生事物,是多学科技术的集成。随着世界各国对物联网行业的前景看好和企业的大力投入,物联网产业正飞速的发展,并渗透进每一个行业领域。可以预见的是,越来越多的行业领域以及科技、应用会和物联网产生交叉融合,传统农业向智慧农业方向的转变也已经成为了大势所趋。

2.1物联网定义

物联网是新一代信息技术的重要组成部分,英文名称叫“TheInternetofThings”,顾名思义,物联网就是“物物相连的互联网”。包含两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物体与物体之间,进行信息交换和通信。目前公认的物联网定义是通过智能传感器、射频识别(RFID)、激光扫描仪、全球定位系统(GPS)、遥感等信息传感设备及系统和其他基于物-物通信模式(M2M)的短距无线自组织网络,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种巨大智能网络[5]。物联网被公认为是继计算机、互联网与移动通信网之后的信息产业第三次浪潮。物联网的基本特征可概括为全面感知、可靠传送和智能处理[6]。它是以感知为前提,实现人与人、人与物、物与物全面互联的网络,其原理和实质是在物体上植入各种微型芯片,用这些传感器获取物理世界的各种信息,再通过无线传感器网络、互联网、移动通信网等交互传递,从而实现对世界的感知。

2.2物联网架构

物联网架构可分为以下三层:感知层、传输层和应用层。

2.2.1感知层

采用各种传感器,如土壤温湿度传感器、光照传感器、二氧化碳浓度传感器、风向传感器、风速传感器、雨量传感器等来获取作物的各类信息。其中的一项关键技术是射频自动识别,射频识别(RadioFre-quencyIdentification,RFID)技术是一种利用射频通信实现的非接触式自动识别技术。RFID技术与互联网、通讯等技术相结合,可实现全球范围内物品跟踪与信息共享[7]。感知层是物联网识别物体、采集信息的来源。

2.2.2传输层

传输层由各种网络,包括互联网、无线传感器网络、移动通信网和云计算平台等组成,是整个物联网的中枢,负责传递和处理感知层获取的信息。其中无线传感器网络是农业领域应用较广泛的一种网络。无线传感器网络(WirelessSensorNetwork,WSN),是由监测区域内随机分布的大量种类繁多的微型传感器组成,它们通过无线通信方式迅速自行组网,对网络覆盖区域中被感知对象的动态信息进行采集、计算和处理[8]。由于可以对特定的区域进行大面积监控,单个节点成本低,使得传感器网络非常适合于农业领域的信息采集工作[9]。

2.2.3应用层

应用层是物联网和用户的接口,与行业需求相结合,实现物联网的智能应用。例如在农作物大棚或园区,利用无线传感器网络获取作物实时生长环境中的温湿度、光照强度等信息,收集每个节点的数据并进行存储和管理,实现整个监测区域的信息动态显示,并根据各类信息进行自动灌溉、施肥、喷药、调温控光等操作,对异常信息进行自动报警。

2.3物联网在智慧农业中的应用案例

对土壤水分及其变化的监测是生态、农业和水土保持等研究中的一项基础工作[10]。蔡镔等[11]针对棉花茎杆直径变化的测量参数,结合Zigbee无线传感器网络技术设计了棉花精准灌溉监控系统。该系统由无线监控网络和远程数据中心2个部分组成,给出了系统总体架构,设计开发了无线传感器网络节点,并给出了软件流程。该系统使人们随时获得棉花作物精确的需水信息,并实现精准灌溉。由于采用了无线数据传输方式,该系统解决了有线通信方式存在的难以扩展、难以升级等问题,具有低功耗、低成本、扩展灵活等优点。赵玉成等[12]针对我国农业生产活动的特点,提出在农田土壤肥力监测领域应用无线传感器网络的方案和思路,实现把无线传感器网络技术与土壤肥力监测相结合,达到提高土壤肥力的目标。将无线传感器网络应用于土壤肥力监测,可实时、动态地测定土壤中养分和肥料的含量,从而有效地指导施肥,使肥料得到更高效的利用。在农业生产活动中,农田土壤肥力信息的监测、采集与处理是不可或缺的重要环节,将无线传感器网络技术应用在土壤肥力监测,分布在农田土壤中的大量传感器节点通过无线通讯网络与汇聚节点进行信息交换,能很大程度地提高土壤肥力监测的实时性、可靠性,且实施成本较低廉,性价比高,维护简单,节点的扩展也非常容易,提高了农田作业中土壤肥力信息采集、监测的自动化程度。滕红丽等[13]提出了一种基于ZigBee无线传感网络的作物环境监测系统的设计,该系统在ZigBee协议和CC2530芯片基础上,通过对系统软硬件设计,实现了作物环境的温度、湿度、光照度、CO2浓度等参数的实时监测,为作物产量提高提供了有效保证。在农业温室环境下,温室环境测控系统可对温室内外环境进行自动检测、显示;可按不同作物的要求进行多因子综合调节与控制;还能对温室内各环境因子的数据长期存储,满足科研和生产的需要,为智能农业专家系统的开发积累丰富的资料数据。将无线传感器网络技术应用在温室环境测控系统,极大地提高了系统的实时性、可靠性,且系统开发成本较低廉,性价比高,维护简单,节点的扩展也非常容易,提高了温室环境下农作物种植环境信息采集、监测和控制的自动化程度[14]。朱伟兴等[15]基于物联网技术开发了保育舍环境可视化调控系统,采用Zigbee无线技术将舍内各保育床及周围设备组成无线网络系统,系统依据分布于各保育床内的传感器获得的环境参数,精确调节各保育床内的小气候环境。通过WIFI无线技术将服务器与IN-TERNET无缝连接,使用户端延伸并扩展到猪舍及室内设备,实现环境与设备之间,环境与人之间进行信息交换。该系统性能稳定,信息无线采集、环境自动调控及远程可视化调控均达到实际需求,适合保育猪舍环境智能化精准管理,可应用于自动化、智能化的牲畜养殖中。王文山等[16]以物联网技术为基础,研究了果园环境信息监测系统总体结构,将系统分为数据采集模块、数据传输模块和数据管理模块三部分,研究了数据传输模块,实现了无线组网和数据的远距离传输,在山东栖霞果园的实际应用效果良好。顿文涛等[17]针对国内的食品安全问题,对构建食品安全物联网体系进行了研究,设计了一种食品安全物联网管理体系,主要由四个方面组成,分别为食品生产、食品流通、食品监管及食品追溯。利用物联网技术收集食品产业链数据、构建食品安全物联网体系,对食品从源头到餐桌的各个环节进行追踪监管,能有效加强食品安全。在农业资源利用方面,随着物联网技术的不断发展,北美一些发达国家通过卫星监测来收集国家土地利用信息,然后再对所采集的信息进行一系列的分析处理,最终实现了大范围内的农业统筹规划管理。近年来,我国运用GIS、传感器和GPS定位相结合的技术,通过WSN与无线通信实现了对农业资源的规划管理。为了更加准确地获取农田状态信息,在作物施肥、病虫害监测和防治、土壤养分监测等农田信息采集、管理,以及农业环境变化和农业污染监测等方面都使用了GPS定位技术[18]。

3结束语

农业物联网行业研究范文第4篇

关键词:物联网;高职院校;课程体系;专业方向

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2013)32-7368-03

物联网(The Internet of things)的概念是1999年提出的,是将所有物品通过射频识别(RFID)、全球定位系统、红外感应器和激光扫描器等信息传感设备与互联网连接起来[1],进行通讯和信息交换,实现智能识别、定位、跟踪和管控的一种新兴信息技术。它有两层意思:第一,互联网仍是物联网的核心和基础,是互联网的延伸和扩展;第二,引入了人与物之间的交流,实现相互之间的信息交换和通信。作为新一代信息技术,物联网是继计算机、移动互联网之后又一次信息产业发展的浪潮。2009年11月,总理发表了《让科技引领中国可持续发展》的讲话,指示要突破物联网、传感网关键技术,物联网产业随机被列入国家五大新兴产业之一。2012年2月,我国工信部了《物联网“十二五”发展规划》。

截止2010年3月,已有近700所高校向教育部提交了设立物联网相关专业的申请。其中37所院校获准开设物联网相关专业,并从2011年起开始招生。从目前的发展趋势来看,物联网涉及到国民经济的各行各业和社会生活的各个领域,它不仅是技术问题,还包括社会和企业管理等多方面,因此,该领域需要大量既懂技术又会管理的人才。作为培养高级技术应用型人才的高职院校,应适应时代和科技发展,探索物联网相关课程的教学设置,重点培养物联网应用的相关人才。

1 高职物联网专业人才培养目标

通过调查、专家座谈和查阅资料等多种途径,对物联网技术应用领域的市场需求、岗位设置、工作任务性质及职能要求等进行调研,确定了高职物联网技术应用专业人才的就业岗位,明确了人才培养目标。物联网技术应用专业主要面向物联网感知设备应用、物联网通讯设备应用、物联网开发和集成、物联网管理和服务等就业岗位[2],培养物联网建设技术人员、物联网产品应用技术人员、物联网应用软件开发技术人员、物联网应用系统集成、管理和维护人员等。因此,面向技术应用的高职物联网专业人才培养的目标是:具有扎实的专业基础知识、良好的团队合作精神、较强的分析和解决实际问题能力,并且掌握物联网相关知识,具备物联网建设、应用、管理和维护等能力的高级技能型人才。

2 高职物联网专业人才的知识和能力要求

物联网的产业链主要涉及对物的感知、对数据的传输和处理三个环节。每个环节需要不同的技能和知识,对学生的能力要求也都不同。其中,对物的感知主要是通过传感器等设备来获取对物的感知信息,涉及到物联网中的硬件系统[3],需要硬件电路设计和制造人员以及电子设备技术人员。获取物的感知信息后,通过网络进行数据传输,这个环节主要涉及通讯和计算机网络技术,需要计算机网络通信人员。最后的数据处理环节对数据进行整合、分析,进而实现应用,主要涉及系统分析,需要系统设计、应用和管理人员。因此,高职物联网专业人才的培养工作,应根据物联网产业链的不同环节对人才的不同需求而有针对性的进行。

3 高职物联网专业课程体系建设

课程体系的建设关系到人才培养目标的实现,是专业建设和发展的关键环节。高职院校在构建课程体系时要对物联网技术应用人才的岗位进行调研与分析,以市场需求为导向,从物联网技术架构出发,考虑应用方向与应用领域,与典型企业合作,根据企业实际的物联网工程项目的实施来构建相应的课程体系。

高职物联网课程体系建设由三大课程模块组成,即公共基础课程、专业基础课程和专业核心课程,三大课程模块是相互依存的有机整体。下面以物联网的三层技术架构,即感知层、网络层和应用层为主线,以各种公共课程为基础,结合当前高职院校实际,分析高职物联网课程设置,如图1所示。

1) 感知层:是物联网识别物体、获取信息的来源。由各种感知设备构成,包括二维码标签、温湿度传感器、RFID标签和读写器、GPS、摄像头等传感器设备。在该层课程设置方面,应与硬件技术相关的学科作为专业基础课,如:电子线路基础、计算机操作系统等,与传感器技术、信息获取等软件技术相关的学科作为专业核心课,如:传感器技术、RFID技术及应用、嵌入式应用系统开发等。

2) 网络层:是整个物联网的中枢部分,负责传递和处理感知层获取的信息[4]。由各种网络组成,包括互联网、云计算平台、网络管理系统、广电网等。高职物联网专业在该层的课程设置要以计算机网络和通信等基础知识作为专业基础课程,如:通信原理、计算机网络基础等,以网络应用与管理等技术作为专业核心课程,如:无线网络技术、物联网组网技术、网络设备配置与管理等。

3) 应用层:是用户和物联网进行交互的接口,与行业需求紧密结合,实现物联网技术的智能应用。与之对应的课程设置应以各种面向对象的编程语言和工具为专业基础课程,如:C语言程序基础、数据库原理与应用等,以面向智能应用的相关技术作为专业核心课程,如:智能家居应用技术、制造业ERP技术应用、物联网系统集成与管理等。

4 高职物联网专业方向设置

物联网涉及领域广泛,包括大量学科和技术,如:计算机科学与工程、电子信息与通讯、自动控制、遥感与遥测、精密仪器、电子与电气工程、电子商务等。根据高职院校专业招生情况,现将高职物联网专业方向设置如下:

4.1 物联网自动控制

培养目标:面向机械电子行业,培养具有扎实的机械及电子理论知识、较强的实践能力、良好的团队协作能力,熟练掌握传感器技术、单片机技术、电子电工技术、嵌入式系统开发技术等,具备在物联网相关机械和电子类企业工作的高素质技能人才。

专业基础课程:电子线路基础、计算机操作系统、单片机原理等。

专业核心课程:射频识别技术及应用、传感器技术、单片机技术及应用、嵌入式系统开发技术、无线传感网络、微波与天线技术等。

4.2 物联网网络信息系统

培养目标:面向计算机网络和信息系统行业,培养具有扎实的计算机网络和信息管理系统理论知识,较强的实际动手能力、可持续发展的创新精神,熟练掌握物联网信息系统的设计、开发、使用、维护和系统集成等知识,并且能完成物联网信息系统集成及相关技术与产品的应用推广[5],能在各种物联网开发、应用领域工作的应用技能型人才和管理人才。

专业基础课程:计算机网络基础、软件工程、通信原理、数据结构、管理信息系统、数据库原理及应用、物联网网络安全技术等。

专业核心课程:C语言程序基础及设计、Java程序设计、数据库开发及应用、管理信息系统应用等。

4.3 智能车联网

培养目标:面向未来智能汽车行业,培养具有扎实的专业理论知识、良好团队协作能力、较强的实践能力,掌握智能车联网基础知识和原理,具备车联网组建、管理、应用和维护,车联网设备营销与技术支持等能力的高素质技能型人才[6]。

专业基础课程:车载技术、网络通信技术、蓝牙技术、无线网络技术、交通导航与信息服务、智能交通管理等。

专业核心课程:RFID技术与高频技术、传感器网络与检测技术、GPS定位技术、网络设备配置与调试、短距离无线通信技术、移动互联网通信技术等。

4.4 智能农业管理

培养目标:面向未来智能农业生产和管理行业,培养具有扎实的智能农业管理理论知识、良好的团队合作能力、较强的分析和解决问题能力,掌握智能农业管理相关知识和原理,具备农业管理信息采集及处理、农业生产经营管理、智能粮库管理、农业生态智能监测等能力的高素质应用型人才。

专业基础课程:农业设施智能化管理、生态环境监测与治理、灌溉技术应用、地理地质信息应用技术、智能粮库管理技术等。

专业核心课程: RFID技术与高频技术、传感器网络与检测技术、无线网络技术、网络设备配置调试与管理、短距离无线通信技术、数据库原理及应用、大数据处理和存储技术等。

4.5 智能医疗服务

培养目标:面向未来智能医疗系统行业,培养具有扎实的智能医疗服务基础知识、优良的医德医风、良好的协作能力和心理素质,掌握智能医疗设备和信息系统的使用和维护、智能医疗档案管理等能力的新型高素质技能人才。

专业基础课程:基础医学、预防医学、管理学、卫生统计学、流行病学等。

专业核心课程:RFID技术与高频技术、无线网络技术、传感器网络与检测技术、智能医疗档案管理系统等。

5 结束语

本文在分析物联网发展形势的基础上,首先明确了高职物联网专业人才培养的目标,从物联网产业链的三个环节出发,分析了高职物联网专业人才的知识和能力要求。结合当前高职院校实际,以物联网的三层技术架构为主线,研究了高职物联网专业课程体系建设,最后设置了五个专业方向和相关课程。

参考文献:

[1] 李春杰,李丹,陆璐.信息技术专题研究[M].吉林:吉林大学出版社,2012.

[2] 周观民,王东霞.高职物联网应用技术专业建设探索[J].济源职业技术学院学报,2012(6).

[3] 杨从亚.高职物联网专业建设探索[J].职业技术教育,2010(10).

[4] 朱平,顾卫杰.基于技术框架的高职物联网专业课程体系的构建[J].教育与职业,2012(5).

农业物联网行业研究范文第5篇

一、顶层设计专项行动计划

到2015年,充分发挥物联网发展部际联席会议制度作用,健全完善物联网统筹协调工作机制,初步实现部门、行业、区域、军地之间的物联网发展相互协调,以及物联网应用推广、技术研发、标准制定、产业链构建、基础设施建设、信息安全保障、频谱资源分配等相互协调发展的局面,基本形成各环节协调发展、协同推进、相互支撑的发展效应。

二、标准制定专项行动计划

重点突破关键技术标准。优先支持应用急需行业标准。继续推进公安、环保、交通、农业和林业等5个重点应用领域的标准化工作,新成立5个物联网应用标准工作组,结合实际需求,统筹国标、行标规划,研制40项急需的应用标准。后续重点推进各领域的应用标准化工作,完善物联网应用标准体系,基本覆盖各重要应用领域。

三、技术研发专项行动计划

按照“需求牵引、重点跨越、支撑发展、引领未来”的原则,瞄准物联网技术前沿,把握未来发展方向,围绕应用和产业急需,着力突破物联网核心芯片、软件、仪器仪表等基础共性技术,加快传感器网络、智能终端、大数据处理、智能分析、服务集成等关键技术研发和产业化,探索形成创新商业模式,整合创新资源,加强国际合作,培育和打造技术创新链与产业生态链,支撑我国物联网产业健康快速发展。

四、应用推广专项行动计划

(一)推动工业生产与经营管理智能化应用。面向两化融合以及传统产业转型升级需求,以流程工业和装备工业为重点,在煤炭、石化、冶金、汽车、大型装备工业中各选择4—5个重点企业开展面向生产过程、供应链管理和节能减排的物联网应用示范,推动传统产业的生产制造与经营管理向智能化、精细化、网络化转变,提升生产和经营效率。

(二)推动农业生产和农产品流通管理精细化应用。面向农业生产和农产品流通管理精细化需求,选择2—3个国家级现代农业示范区或相关重点区域,组织实施国家精准农业物联网应用示范工程,重点开展大田作物、养殖业和设施农业以及农资服务物联网应用示范,推动农业现代化,带动农资及农技服务模式创新,并区域扩展;加快实施国家粮食储运监管物联网应用示范工程,逐步扩大应用试点规模,适时开展推广应用,提高我国粮食与经济作物储运管理水平。

(三)推动物流管理智能化和标准化应用。面向商贸流通、物流配送智能化、标准化管理需求,加快实施国家航空运输物联网应用示范工程、集装箱海铁联运物联网应用示范工程和集装箱电子标签国际航线应用示范工程,并深化拓展试点应用领域,组织实施国家远洋运输管理物联网应用示范工程、国家快递物流可信服务物联网应用示范工程,开展进出境(集装箱)检验检疫监管和进出境产品地理标志原产地保护物联网应用示范,提升我国物流领域的智能化管理水平;选择若干大型制造企业,开展企业物流作业管理物联网应用示范,提高企业物流作业水平;选择若干人口规模大、密度高、商贸流通业发展水平较高的城市以及地区,在城市共同配送方面开展物联网示范应用,推动技术应用和产品标准的统一,加强跨区域、跨行业、跨部门物流信息的交换与共享,推动利用物联网技术进行统计信息的采集和分析挖掘,提升物流运作效率,降低物流成本。

(四)推动污染源监控和生态环境监测应用。面向生态文明建设和环境保护需求,在四川、山东等地实施国家环保物联网应用示范工程,选择若干排放危险废物、放射源废物的企业和医院,开展污染源自动监控应用示范,实现污染源自动监控系统的建设、管理和维护;选择2—3个河、湖分布数量较多且水质安全隐患较大的省份,支持地方开展水质量监测应用示范,为实现水质改善提供技术手段;选择若干直辖市和省会城市,支持地方开展空气质量监测应用示范,对火电、钢铁、有色、石化、建材、化工等行业企业进行重点防控和多种污染物协同控制;选择若干城市污水处理厂和火电厂开展污染源治污设施工况监控系统应用示范,提高污染治理监管水平。开展进境废物原料监控物联网应用示范,提高进境废物原料监管水平;在吉林、江西等国家重点生态功能区和旅游景区,实施国家林业物联网应用示范工程,开展3—4个生态环境监测评估、林业资源和生态旅游安全监管和服务物联网应用示范,提高我国生态保护和服务水平。

(五)推广安全生产网络化监测和动态监管应用。面向加强安全生产保障能力、遏制重特大安全事故的需求,突出煤矿安全监管重点,开展煤矿安全设备监管国家物联网应用示范工程;加快实施国家矿井安全生产监管物联网应用示范工程,逐步扩大应用规模,利用物联网技术构建覆盖井下人员、设备、环境等的事故预防预警和应急处置系统,实现矿井安全生产信息的网络化采集,实现对矿井透水、瓦斯、粉尘等事故灾害的预防预警和自动处置,探索完善矿井安全生产物联网技术标准、装备产品和解决方案,提升矿山企业安全防护水平;加快实施国家特种设备监管物联网应用示范工程,实现特种设备安全的信息追溯、动态监管、实时追踪与应急救援,并由电梯、气瓶两类特种设备逐步扩展到其他特种设备;在全国民用爆炸物品生产企业推广生产环境实时监控和智能处置应用,建立民爆行业生产经营动态监控信息平台,深化行业生产经营信息自动采集和视频监控,提供应急联动服务,提升企业和全行业事故预防预警和应急处置能力。

(六)推动交通管理和服务智能化应用。面向交通领域智能化管理和调度需求,选择2—3个大中城市和2—3个内河流域,实施城市智能交通和智能航运服务国家物联网应用示范工程,开展车辆识别、航运服务、交通管理应用示范,提升指挥调度、交通控制和信息服务能力,推动利用物联网技术进行交通统计信息的采集;推广客运交通物联网应用和智能公交系统建设,提升公共交通的协同运行效率和服务能力;开展4—5个具有自主知识产权的车联网新技术应用示范,包括导航定位、紧急救援、防碰撞、非法车辆查缉、打击涉车犯罪等,促进相关领域的技术创新和产业链发展,提升交通安全和社会服务水平;开展电动自行车智能管理物联网应用示范及推广。

(七)推动能源管理智能化和精细化应用。面向资源节约型、环境友好型社会建设需求,加快实施国家智能电网管理物联网应用示范工程,并拓展应用领域,在发电、输变电、配电、用电等领域实施10个智能电网试点,提高我国电力运行效率和智能化水平;在加快实施国家油气供应物联网应用示范工程基础上,继续向其他油田拓展,实现油气生产、炼化、储运、销售全业务链集中管控和精细化管理,降低油气供应成本,增强能源综合保障能力;推广公共建筑节能物联网应用,提高建筑内水、电、气、热等资源的智能监测和控制水平,提升能源利用效率。

(八)推动水利信息采集和信息处理应用。面向防洪抗旱、水资源管理、生态环境保护、饮水安全保障、水土流失治理、水库安全管理突发性事件处理等需求,组织实施国家水利工程安全运行物联网应用示范工程,开展区域专业化水库设施安全维护,推广水利信息采集和信息处理物联网应用示范,建设布局合理、功能齐全、高度共享的水利信息综合采集和信息处理业务体系,满足水利业务应用需要,提高用水安全。

(九)推动公共安全防范和动态监管应用。面向公共安全需求,加快实施国家重点食品质量安全追溯物联网应用示范工程,深化婴幼儿乳粉及酒类应用,建立健全肉类、蔬菜、中药材等重要商品追溯体系,逐步扩大监管食品品种和应用范围;选择部分直辖市和重点城市,实施国家公共安全物联网应用示范工程,开展重要活动及场所保卫、机动车整体管控、流动人口管理和城市核心区立体防控及突发公共事件预警信息等重点应用示范,提升社会治安水平;实施消防安全管理物联网应用示范工程,实现消防设施的实时监控和火灾隐患的排查预警;选择重点企业和危化品集中地区,组织实施国家危化品管控物联网应用示范工程,开展危化品存储和道路运输监管应用示范;开展灾害性气象信息采集和实时处理应用示范,提高灾害性天气预报的准确性和及时性;在中西部灾害多发地区,开展重大自然灾害预警和应急联动应用示范,提高防灾减灾能力。

(十)推动医院管理和社区医疗健康服务应用。面向医院智慧化管理、社区远程医疗及重点人群健康管理服务的需求,选择10个左右信息化基础好的三级医院,重点开展面向医务人员、患者和医疗物品的医院管理国家物联网应用示范工程,并逐步向全国推广,提升医院管理水平;选择部分养老机构,组织实施国家智能养老物联网应用示范工程,对集中养老人员提供智能化服务,依托养老机构对周边社会老人开展社会化服务,并逐步向其他养老机构推广;在4—5个城市社区,开展社区健康管理物联网应用示范,实现社区中心及时掌握重点人群的健康状况,并开展相应医疗和健康服务。

(十一)推动城市基础设施管理精细化应用。面向城市基础设施和管网的精确诊断和一体化管控需求,选择5个城市,实施城市基础设施管理物联网应用示范,实现对地下管网、立交桥、井盖设施、无线基站、城市内涝、供排水设施、地下空间安全等状态信息的实时采集、在线监控、集中管理和信息共享,提高城市运行和管理水平。

(十二)推动智能家居应用。面向公众对家居安全性、舒适性、功能多样性需求,在大中城市选择20个左右重点社区,开展1万户以上家庭安防、老人及儿童看护、远程家电控制以及水、电、气智能计量等智能家居示范应用,解决制约规模化推广存在的产业链协作不足、成本过高、标准不统一等问题,带动智能家居技术和产品突破,发挥物联网技术优势,提高人民生活质量。

(十三)依托无锡国家传感网创新示范区开展应用示范。依托无锡国家传感网创新示范区,有计划、分步骤地开展物联网应用示范。按照《无锡国家传感网创新示范区发展规划纲要(2012—2020 年)》明确的重点任务,积极组织实施《无锡国家传感网创新示范区建设三年(2013—2015)行动计划》,着力推进智能制造、智能农业、智能电网、智能物流、智能交通、智能安防、智能环保、智能医疗、智能家居、应急救援、智能教育、智能水利、智能旅游等十三个应用示范工程。各行业主管部门优先在无锡示范区部署相关行业物联网应用试点,发挥先行先试作用,为全国物联网发展积累经验。

(十四)推动电信运营等企业开展物联网应用服务。建立鼓励多元资本公平进入的市场准入机制,支持电信运营、信息服务、系统集成等企业积极开展物联网应用示范工程的运营和推广,充分利用现有公共通信和网络基础设施开展物联网应用服务,重视信息资源的智能分析和综合利用,促进信息系统间的互联互通、资源共享和业务协同,加强对物联网建设项目的投资效益分析和风险评估。

五、产业支撑专项行动计划

协调推进物联网核心产业发展。强化产业培育与应用示范的结合。面向经济社会发展的重大战略需求,以工业、农业、商贸流通、节能环保、安全生产、交通、能源、水利、公共安全、社会保障、医疗卫生、城市管理、国防建设等重点行业和重点领域的示范应用为引领,结合地方基础和优势,充分考虑技术、人才、产业、区位、经济发展、国际合作等因素,鼓励和支持设备制造、软件开发、服务集成等企业以及相关科研单位积极参与应用示范工程建设,促进物联网产业与应用示范的紧密结合。

六、商业模式专项行动计划

建立商业模式创新体系。营造商业模式交流环境。推广成熟商业模式。支持基础电信运营商、增值电信业务提供商、系统集成商等参与物联网应用示范工程,通过多种主体之间的竞争与合作,提升物联网专业服务水平。加速物联网在传统产业中的融合应用,推动物联网与移动互联网、云计算、大数据等新兴业态的融合发展,探索发展新的物联网专业服务。拓展物联网增值服务。

七、安全保障专项行动计划

推进物联网关键安全技术研发与产业化。加强物联网安全标准实施工作。建设物联网信息安全技术检测评估平台。建立健全物联网系统全生命周期的安全保障体系。开展物联网应用安全风险管理建设试点。从物联网信息安全监管、可信身份认证和安全控制、网络安全防护、隐私保护等方面,开展支撑物联网信息安全保障体系建设的试点工作。

八、政府扶持措施专项行动计划

加大财政资金投入力度。落实相关税收优惠政策。加强国家科技计划投入。加大重大科技专项支持力度。在国家科技计划中提高对物联网基础理论和技术研发的资金支持比例。国家973 计划重点加大对大数据处理、智能分析、信息安全等物联网基础性理论和技术的支持。国家863 计划重点加强对低成本、低功耗、高精度、高可靠、智能化、小型化传感器技术、多传感器融合技术和仪器仪表技术研发的支持。国家科技支撑计划重点加强面向农业、制造业、公共安全、智能电网、智能家居、智慧城市等领域的重大公益技术、产业共性技术研发和应用示范的支持。

九、法律法规保障专项行动计划

梳理分析物联网相关立法,研究修改法律、法规、规范性文件中影响物联网发展的条款。研究制定物联网环境下个人信息保护办法,组织开展数据安全保护和数据资源共享立法研究。提出相关法律法规修改建议,为物联网发展提供路权和资源保障。积极开展物联网相关技术的知识产权分析评议,加快推进物联网相关专利布局。