前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇二氧化碳气报告范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
部分碳酸饮料中添加的二氧化碳,来自一项目前备受关注的技术――碳捕集和封存,这项新技术事关人类面临的重大挑战――“全球气候变暖”,该技术对减少温室气体排放具有深远的意义,将为人类减缓气候变暖带来希望。
碳捕集与封存(简称CCS)是指将大型发电厂、钢铁厂、化工厂等排放源产生的二氧化碳收集起来,用各种方法储存以避免其排放到大气中的一种技术。它包括二氧化碳捕集、运输以及封存三个环节,可以使单位发电碳排放减少85%至90%。
捕集二氧化碳可达食用程度
“北京已有比较成熟的碳捕集技术,现在许多碳酸饮料里的二氧化碳都是从北京高碑店热电厂试验示范装置中生产的,纯度非常高,大家可以放心喝。”西安热工研究院北京分院二氧化碳控制与减排研究所黄斌博士表示。
黄斌说,从高碑店热电厂二氧化碳捕集试验装置里捕集出的二氧化碳,精制以后可以达到食用的程度,就是99.9%至99.99%的程度,截至2009年春节,二氧化碳捕集系统运行稳定,销售食品级二氧化碳已超过800万吨。
如何科学利用二氧化碳
要减少一种物质对人类的危害,最好的办法就是科学利用。
目前全球二氧化碳工业利用量大约是每年1至1.5亿吨。美国是世界上最大的二氧化碳生产国和消费国,生产能力每年约1000万吨。中国有二氧化碳生产企业100家左右,生产能力是每年200至250万吨,而一个几十万千瓦的燃煤电厂,一年能捕获二氧化碳100至200万吨,同目前中国企业生产的二氧化碳的总量是差不多的。黄斌说,“目前人类对二氧化碳的消费量是非常有限的,因此人类面临的一个问题是,由于过度地使用化石原料造成了二氧化碳过多,而人类无法消费多出的庞大的那部分,所以造成了一系列气候和生态问题。”
彻底做法是把多余二氧化碳封存
如何处置多出来的二氧化碳,一个“异想天开”的解决方案出台了:把人类排放的二氧化碳气体捕捉并集中起来,深埋于海底或地下,彻底解决因温室气体而引发的全球气候变暖威胁。
“地质封存、深海封存将成为被捕获后的二氧化碳主要去向。”黄斌博士说,二氧化碳被捕获后,必须对其进行安全、长期地封存,才能最终完成控制二氧化碳进入大气的工作。地质封存被普遍认为是未来主流的封存方式,其原理是将捕获到的二氧化碳用管道输送到地下深处长期或永久性“填埋”在地质中。
深海封存是指把二氧化碳注入深海中以进行长时间的存储,大部分二氧化碳在深海中将与大气隔离若干世纪,目前深海封存在全世界还未被真正采用,也未开展试点示范,仍处于研究阶段。
二氧化碳封存面临的科学疑问是,将巨量的二氧化碳储存到地下或深海,是否有可能逃逸出去?对此黄斌解释说,令人乐观的是二氧化碳并不需要被永久封存,封存的时间只要保证自然界中碳循环将大气中的二氧化碳降到工业化之前的水平即可,“只要二氧化碳的封存可以在几千年内防止严重泄漏,届时碳循环就可以解决这个问题,从目前来看,人类的科技发展应该可以做到。”
碳捕集和封存技术将力挽狂澜
中国科学院院士、中科院地学部原主任孙枢指出,碳捕集和封存是一种实现全球温室气体低排放的关键技术。“减排”除了节约能源、利用清洁能源和清洁燃烧技术外,重要的途径是二氧化碳的捕集和埋存。随着工业化进程和经济社会的发展,燃烧化石燃料所导致的空气污染和温室效应,已严重地威胁着人类赖以生存的地球环境,全球气候变暖是各国可持续发展面临的共同挑战,解决方法是寻求成本低且有效的方案来减少二氧化碳的排放。
孙枢院士认为,目前二氧化碳的工业分离、管道运输、地质封存和工业利用等方面已经形成成熟的市场,这使二氧化碳捕集与封存技术有可能力挽狂澜,成为减少温室气体排放的有效措施。
北半球永冻土储有1.5万亿吨碳
一个国际研究小组日前公布研究报告称,北半球永冻土层中冷冻碳的储量可能超过1.5万亿吨,是此前估计的两倍左右。
研究人员表示,这些冷冻碳主要分布在北极以及加拿大、哈萨克斯坦、蒙古国、俄罗斯、美国、格陵兰等国家和地区,储量约为目前大气中碳含量的两倍。一旦气温升高导致永冻土层开始融化,大气中两种温室气体――二氧化碳和甲烷的含量将急剧增多,从而进一步加速全球变暖。
研究人员预计,这些永冻土层中的碳在本世纪全球气候变化过程中将产生重要作用。
【关键词】教室;净化;过滤;空气
0 引言
1)研究问题由来
冬季门窗紧闭的环境下教室内二氧化碳的含量是多少呢?可能没有多少人特意关注这个问题,或者因为各种原因不能深入的研究这个问题,笔者为了研究这个问题,并得到有效的解决方案,在网上查阅了有关教室空气如何通风换气的一些知识,继而产生了一个利用二氧化碳传感器,解决空气净化的想法。在老师的帮助与指导下,采用设定上限值、下限值和室内温度等方法,在几个不同的房间内,分别放入二氧化碳传感器实测的浓度的液晶屏,同时观察与测定二氧化碳传感器的效果设定上下限的值,开展了室内空气净化的试验研究。
2)实验目的意义
通过笔者调查发现:采访对象中超过50%的人每天早上的开窗通风时间都到不了15分钟。虽然大多数人对所处的室内空气质量存在着不同程度的不满,但是对于室内通风换气重要性的重视度并没有因此而提高。
二氧化碳与人体健康:
二氧化碳是人体代谢的产物,它本身并不具有毒性,人每天要呼出大约1kg的二氧化碳。大气中二氧化碳的正常含量值约为0.03~0.04%,超过0.1%即为轻微污染。二氧化碳含量超过正常含量值的空气被人体吸入后,二氧化碳在体内滞留使人体血液中二氧化碳含量超过一定浓度,就会造成人体呼吸性酸中毒,中枢麻醉窒息等一系列不良反应。
当二氧化碳浓度为1000000ppm时,可引起人的意识模糊,接触者如不移至正常空气中或给氧复苏,将因缺氧而致死亡。二氧化碳达到窒息浓度时,人不可能有所警觉,往往尚未逃走就已中毒或昏迷。
低浓度的二氧化碳可使呼吸中枢神经系统产生兴奋,使呼吸加深加快,长时间处于低浓度二氧化碳环境中,则会造成人体二氧化碳中毒,主要表现为头晕头痛、耳鸣心悸、胸闷嗜睡、视力模糊、注意力不集中、记忆力减退等。
高浓度的二氧化碳对中枢神经系统有抑制和麻痹作用,突然进入高浓度二氧化碳环境中也会引起人体二氧化碳中毒,主要表现为脑缺氧症状,可引起反射性呼吸骤停而突发死亡。在正常情况下,人体呼出的气体中二氧化碳含量约为4.2%,血液二氧化碳的分压高于肺泡中二氧化碳的分压,因此,血液中的二氧化碳能弥散于肺泡。但是,如果环境中的二氧化碳浓度增加,则肺泡内的浓度也增加,PH发生变化,由此刺激呼吸中枢,最终导致呼吸中枢麻痹,使机体发生缺氧窒息。
因此,室内空气质量需引起足够重视!在人群密集的室内,应注意通风换气。人一生中一半以上的时间是在室内度过的;尤其现代社会条件下一天中的绝大部分时间实在室内度过的,因此,室内空气质量也成为决定人体健康的重要因素之一。研究表明,甚至室内空气质量问题反而更加严重,改善室内空气质量的重要性和迫切性可见一斑。一个人每天需要补充1公斤食品、2公斤饮水,而所需空气则高达10公斤,室内空气质量的好坏直接决定着人的身体健康指数、感受舒适度以及工作学习效率。在封闭的室内环境中氧气的含量是有限的,而通过人的呼吸会逐渐消耗掉空气中的氧气并将之转化成二氧化碳,导致空气中二氧化碳含量上升,而氧气含量越见稀少,从而引起人呼吸不畅,睡眠质量下降等现象。所以科学的通风是非常重要且必要的。在欧美发达国家,通风指数一直是家居舒适度的重要参数指标,甚至一些发达国家已把住宅通风作为强制执行的条款。
3)实验资料和原理
随着国民经济水平的提高,人们对生活质量的要求也随之提高,如何科学的进行室内通风换气已经受到越来越多的关注。长时间处于密闭空调环境下的人常常会感到胸闷、气短,但在一些安装中央空调的房间内人们往往会觉得舒服很多,这是因为这些中央空调配置了“换气”装置,一则,可以将室内“被污染”的空气排出室外;二则,可以将室外的新鲜空气“吸”进室内,这样就起到了给密闭房间通风换气的作用,这就是我们所说的“换气系统”。因为“换气系统”的进风口装有过滤装置,可以有效避免因为通过开窗通风换气而流进室内的烟尘、有害气体等污染物,所以被称作健康的室内通风换气方式。根据调查数据显示,在普通城镇的室外大气的负离子含量为400~500个/m3,但在密闭房间中的负离子含量仅有40~50个/m3。当教室内二氧化碳含量不超过1500PPM,在适宜的温度下合理通风,将室外的新鲜空气引入室内,并借助通风设备在房间健康呼吸。
1 材料与方法
1.1 实验材料
(1)C02传感器;(2)控制系统(含开关);(3)液晶显示器;(4)电线;(5)电路板;(6)电焊条;(7)温度计;(8)记号笔和记录本。
1.2 实验方法
1.2.1 实验设计原理
根据预备实验初步了解,在教室内放入通风换气系统。是通过二氧化碳浓度传感器,安装在换气系统上面,什么是二氧化碳浓度传感器呢?二氧化碳传感器是有机电设备监控(BAS)智能化工程能进行信号的采集,利用采集回来的信号,来自动化的调节空调的风量,启停状态的。
1.2.2 换气方式的分类
从广义上来划分,换气主要有自然式换气和机械式换气两种方式。通过门、窗的自然开启来进行室内外通风换气的方式称为自然式换气(图1)。在卫生间或水房、厨房等场所安装换气扇使空气流通的换气方式称为机械式换气,机械式换气更有效。
根据建筑物标准法的内容得出结论为:必须采取机械换气方式针对化学物质的发散进行换气。机械式换气分为:通过机械同时进行吸气和排气;强制吸气、自然排气;强制排气、自然吸气方式三种方式。
1)通过机械同时进行吸气和排气是通过吸气以及排气的两侧,或者其中一侧使用机械(送风机)强制进行换气的方法(如图2所示),可以自由平衡室内空气及二氧化碳含量,这种方式多应用于办公大楼或大型商场等场所。而空气交换器+换气扇,全热交换器,带直膨线圈的外部调节机等设备可以有效节约能源,更更符合现代社会发展的要求。
2)强制吸气、自然排气是指只用机械吸气而通过门、窗的自然开启来排气的方式(如图3所示)可以保持室内空气处于正压状态并保持室内空气压力的正常并可以防止灰尘及被污染的空气进入室内,可以保持室内空气的清洁,这种方式多用于对空气清洁度要求较高的房间比如医院手术室等。
3)强制排气、自然吸气是指通过门窗等自然开启来是室外空气流通到室内,并强制使用换气扇等工具进行排气的方式(如图4所示),这种方式下室内空气处于负压状态中。这种方式也是目前被广泛应用的一种换气方式,如家庭、学校、小型办公室和店铺等众多场所都普遍应用。
1.2.3 换气量的计算方法
建筑物施工相关法规和暖通空调规范中明确规定了建筑物内对人体呼出的二氧化碳进行有效换气以及对有毒化学物质所散发出的有害气体进行换气的标准及换气量。二氧化碳的换气方式根据建筑物的构造不同而采用的换气方式不同。如住宅、小型商铺和学校等有能开启的门窗的建筑物多采用自然换气的方式。有毒化学物质散发的有害气体的换气方式不会因为建筑物的构造不同而产生变化,多采取强制安装符合要求的机械换气设备来达到不同的换气次数的方式以保证有效的对室内污染空气进行换气。换气量的计算方法分为按换气次数计算和按人均换气量计算两种。
1)换气次数的计算
房间内空气每小时之内的换气的次数成为换气次数,例如换气次数0.5次每小时是指一小时内这一房间进行半次即每2小时进行1次的空气交换。换气次数的计算方法:换气量除以房间面积等于换气次数,若吸气量与排气量不同时则取其中较大的数值做为换气量(如图5所示)。
2)人均换气量的计算
建筑物标准法中明确规定人均换气量为20到30立方米每小时为正常换气量(因人的运动量而发生变化),因此,人均换气量作为计算室内换气量的基本依据。在此我们探寻一下人均换气量确定的理论根据。
人均换气量(人均必要换气量已室内的二氧化碳为基准)是所处室内二氧化碳的容许浓度减去室外空气的二氧化碳浓度除人均的二氧化碳发生量所得出的值。
3)换气量的计算公式
通常情况下房间的换气量都是以人为对象来进行计算的,因此室内换气量是由房间内人均换气量和房间内人数来决定的。
方法1:按人均占有室内面积N(m2)计算换气量。
V(m3/h)=20(m3/h・人)×■
公式中的A代表室内地板的面积(m2)。
方法2:按室内人均换气量和室内收容人员数量计算换气量。
室内人均换气量乘以室内人数(室内地板面积除以室内人均占有面积)所得出的结果为室内换气量。参考方法一中的计算公式和建筑福标准法中的室内标准换气量(20~30m3/h・人)可以发现此数值对室内换气来说是越大越好的,但同时也会增加空调的负荷,由此可见,室内换气量已使用建筑物标准法规定的数值为最佳(如表1所示)。
方法3:按房间的必要换气次数n(次/h)计算换气量。
按房间的必要换气次数n(次/h)计算换气量应注意以下两点:
(1)一般起居室应确保室内换气次数在每小时0.3次以上,有化学物质散发的房间室内换气次数应确保在每小时0.5次以上;
(2)符合2010年《全国中小学校室内空气质量标准》规定的学校空气质量的标准。
教室换气次数测定方法如表2所示:
1.3 通风换气系统
由抽风机、二氧化碳传感器和配套监控软件等组成的室内空气转换系统称为通风换气系统。其作用原理是通过二氧化碳传感器和配套监控软件监测室内的二氧化碳浓度,进行数据分析,根据软件预设值,当室内二氧化碳浓度高于软件上限值时将自动开启抽风机进行换气,通过补充室外空气降低室内二氧化碳的浓度。
【参考文献】
[1]夏克盛,郭宋,张浩.建筑物内空调系统的换气方式[J].机电信息,2013(06).
[2]智能教室建设解决方案[Z].2011.
[3]中国环境质量检测报告[R].2010年、2011年.
关键词:制盐企业;二氧化碳;排放核算
1前言
2017年,我国将启动全国碳排放权交易市场。建立碳排放权交易市场,实施碳排放权交易制度,是我国积极应对全球气候变化,全面推进生态文明建设的重大举措。实施重点单位温室气体二氧化碳排放核算工作,全面摸清掌握温室气体排放情况是建立碳排放权交易市场的关键。制盐(井矿盐)企业生产过程中需要大量的热能蒸发卤水中的水分,具有能源消耗高和碳排放量大的特点;制盐(井矿盐)企业开展温室气体二氧化碳排放核算,积极参与全国碳排放权交易,是企业推进供给侧结构性改革和创新绿色发展模式的有益尝试,也是企业全面推进生态文明建设切实履行社会责任的必然要求。
2二氧化碳排放核算边界确定
企业开展二氧化碳排放核算首先应确定排放核算边界,即与核算主体单位(企业)的生产经营活动相关的所有二氧化碳排放的范围。排放核算边界通常为处于核算主体单位(企业)运营控制权之下的所有生产场所和生产设施,包括主要生产系统、辅助生产系统和附属生产系统。根据生产工艺特点,制盐(井矿盐)企业主要生产系统包括卤水开采与净化、加热蒸发与脱水干燥、成品包装等,辅助生产系统包括供热、供电、供水、化验、机修、仪表、仓储、运输等,附属生产系统包括生产指挥管理系统(厂部机关)以及厂区内为生产服务的部门和单位(如职工食堂、车间浴室、通勤车辆、安保机构等)。
3二氧化碳排放源识别
核算边界确定后,核算主体(企业)应在核算边界范围内根据实际从事的产业活动、生产工艺流程和设施类型对二氧化碳排放源进行识别。工业企业二氧化碳排放源通常包括化石燃料燃烧排放、生产工艺过程排放、净购入电力和热力隐含的排放等三大环节。企业二氧化碳排放总量等于化石燃料燃烧排放量、生产工艺过程排放量、净购入电力和热力隐含的排放量之和。化石燃料燃烧排放是指化石燃料以能源利用为目的,在各种类型的固定或移动燃烧设备中氧化燃烧所产生的二氧化碳排放。制盐(井矿盐)企业涉及化石燃料燃烧排放二氧化碳的装置或设备主要有工业锅炉、运输汽车、推土机、仓储叉车等,使用的化石燃料主要有煤炭、汽油、柴油、天然气等。生产工艺过程排放是指在生产工艺过程中除燃料燃烧之外的物理或化学变化造成的二氧化碳排放,包括以化石燃料和其它碳氢化合物用作原材料产生的二氧化碳排放以及碳酸盐使用过程(如石灰石、白云石等用作原材料、助熔剂或脱硫剂等)分解产生的二氧化碳排放。以石灰石用作脱硫剂的锅炉烟气脱硫工艺是制盐(井矿盐)企业生产工艺过程主要排放源。净购入电力和热力隐含的排放是指核算主体(企业)消费的净购入电力和热力(蒸汽、热水)所对应的电力和热力生产环节产生的二氧化碳排放,该部分排放实际发生在生产这些电力和热力的企业,但是由核算主体(企业)的消费活动所引发,故应计入核算主体(企业)的排放总量中。为充分(梯级)利用能量、提高能源利用效率,制盐(井矿盐)企业通常配置建设了热电联产自备电站,在企业消费的总购入电力电量中应减除企业自备电站发电产生的输出(外供)电力电量,从而确定核算隐含二氧化碳排放的净购入电力电量。
4二氧化碳排放量核算
4.1核算方法选择。工业企业二氧化碳排放量核算方法有排放因子法、物料平衡法和实测法等。排放因子法是按照二氧化碳排放源活动水平数据与排放因子的乘积计算二氧化碳排放量;物料平衡法是根据质量守恒定律,用输入物料中的含碳量减去输出物料中的含碳量进行平衡计算二氧化碳排放量;实测法是通过安装监测仪器、设备,并采用相关技术方法测量排放源排放到大气中的二氧化碳排放量。在二氧化碳排放核算实践中,应根据排放源的可识别程度、相关数据的可获得情况及核算结果的准确度要求等因素,对不同排放源分别选用相应的核算方法。其中化石燃料燃烧排放源通常采用排放因子法计算二氧化碳排放量;生产工艺过程排放源中以化石燃料和其它碳氢化合物用作原材料产生的二氧化碳排放通常采用物料平衡法计算排放量,碳酸盐使用过程产生的二氧化碳排放通常采用排放因子法计算排放量;净购入电力和热力隐含的排放源通常采用排放因子法计算二氧化碳排放量。4.2燃料燃烧排放。制盐(井矿盐)企业工业生产燃烧设备使用的化石燃料有煤炭、汽油、柴油、天然气等,按照燃料种类分别计算其燃烧产生的二氧化碳排放量,然后进行加总即为企业燃料燃烧排放源产生的二氧化碳排放量。根据排放因子法,每种燃料燃烧产生的二氧化碳排放量等于其活动水平数据与排放因子的乘积,活动水平数据为燃料燃烧量,排放因子包括燃料含碳量、碳氧化率和二氧化碳与碳的分子量转化系数(44/22)。用排放因子法核算二氧化碳排放量,相关活动水平数据和排放因子的选择与获取是关键,企业应优先选用直接计量实测获得的原始数据作为活动水平数据和排放因子。化石燃料燃烧量应根据企业能源消费原始记录台账或统计报表确定,等于从外界流入核算边界范围内(核算单元)且明确送往各类燃烧设备作为燃料燃烧的化石燃料部分,不包括生产过程产生的副产品或可燃废气被回收并被本核算单元作为燃料燃烧的部分。化石燃料含碳量的测定应根据燃料种类遵循相关国家或行业标准,其中对煤炭应在每批次燃料入厂时或每月至少进行一次检测,并根据燃料入厂量或月消费量加权平均作为该煤种的含碳量;没有条件实测燃料含碳量,但可检测燃料低位发热量的可按其低位发热量与单位热值含碳量的乘积估算燃料含碳量;化石燃料的低位发热量与单位热值含碳量也可选取相应行业缺省值。化石燃料碳氧化率通常选取相应行业缺省值。4.3生产工艺过程排放。制盐(井矿盐)企业生产工艺过程主要是对原料卤水进行加热蒸发使其浓缩结晶,进而脱水干燥及成品包装等,没有以化石燃料和其它碳氢化合物用作原材料的工艺过程。辅助生产系统中碳酸盐使用过程(主要为以石灰石用作脱硫剂的锅炉烟气脱硫工艺)产生的二氧化碳排放是制盐(井矿盐)企业生产工艺过程的主要排放源。碳酸盐使用过程产生的二氧化碳排放通常采用排放因子法计算排放量,活动水平数据为碳酸盐(石灰石)消费量,排放因子包括碳酸盐(石灰石)的二氧化碳排放系数和碳酸盐(石灰石)以质量分数表示的纯度。碳酸盐(石灰石)消费量应根据企业台账或统计报表来确定;排放因子可委托有资质的专业机构定期检测计算,无条件实测的可采用供应商提供的商品性状数据或参考相应行业缺省值。4.4净购入电力和热力隐含的排放。企业净购入电力和热力隐含的二氧化碳排放量分别采用排放因子法计算并进行加总而得。活动水平数据为企业净购入的电力或热力消费量,排放因子为区域电网年平均供电二氧化碳排放系数或热力供应二氧化碳排放系数。企业净购入的电力消费量以企业和电网公司结算的电表读数或企业能源消费台账或统计报表为依据;企业净购入的热力消费量以热力购售结算凭证或企业能源消费台账或统计报表为依据。区域电网年平均供电二氧化碳排放系数应根据企业生产场地所属电网选取主管部门最新的数据;热力供应二氧化碳排放系数应选取主管部门最新的官方数据,若无官方数据则选取行业推荐值0.11吨tCO2/GJ。
5注意事项
5.1卤水净化卤水净化是制盐(井矿盐)企业重要原料生产工序,其中对使用石灰———二氧化碳法或烧碱———二氧化碳法实施卤水净化(属碳化工艺)的应当对二氧化碳排放进行相应核算。由于卤水净化属碳化工艺,消耗的二氧化碳最终被吸收生成碳酸盐而未排放到大气中。若卤水净化中消耗的二氧化碳是核算主体(企业)燃料燃烧或生产工艺过程产生但又被回收利用的,则其消耗量应从企业的二氧化碳排放总量中扣除。若卤水净化中消耗的二氧化碳是企业直接外购的二氧化碳产品,其消耗量也不应计入企业的二氧化碳排放总量。5.2自备热电站制盐(井矿盐)企业通常都配套建设有热电联产自备电站,自备电站所发电量外销上网,企业所需生产用电再从网上购入。由于自备电站所发的电力在其生产过程中通过化石燃料燃烧已将对应的二氧化碳核算在企业排放总量中,故该部分电力外销上网后应从企业消费的总购入电力电量中减除(形成净购入电力电量),以对冲相应的二氧化碳排放量。存在蒸汽、热水等热力输出(外供)的制盐(井矿盐)企业,应从从企业二氧化碳排放总量中扣除输出热力对应的二氧化碳排放量。5.3盐化工(氯碱)生产为延伸产业链,发展循环经济,近年来大型制盐企业皆投资建设了氯碱化工装置,实施盐化协同发展战略。盐化工企业电石法聚氯乙稀的生产工艺过程存在以含碳产品电石用作原材料产生的二氧化碳排放,对该生产工艺过程应采用物料平衡法加以核算二氧化碳排放量,以全面反映企业工业生产二氧化碳排放情况。
6结束语
低碳发展、绿色发展是企业必须面对的时代课题,也是企业实现转型升级推进供给侧结构性改革的重要途径。制盐(井矿盐)企业应当深入开展温室气体二氧化碳排放核算工作,积极参与碳排放市场交易,切实降低二氧化碳排放,勇于担当节能减排社会责任,为建设人类共同的美好家园作出应有贡献。
作者:李奇先 单位:云南省盐业有限公司
一、复习引入,自然过渡
首先以已有的氧气实验室制法为基础,加上巧妙的提问,很自然地引入新课。这样的设计有利于提高学生的知识迁移能力、分析、比较等多种能力,充分体验探究的过程,感受探究的乐趣。
1.复习旧知,完成表格
完成氧气实验室制法复习表格主要从反应原理、反应物状态、反应条件、气体的密度、气体的溶解性以及发生装置和收集装置的选择为主要内容,并提供要选择的有关装置图(为了增加新课的教学时间,该教学环节可以安排课前预习)。
2.归纳总结,转入新授
通过对实验室制取气体的复习,你获得了哪些认识?
(1)①如果反应物的状态是 ,反应条件 ,选用发生装置(填序号,同上) ;具体仪器: 。
②如果反应物的状态是 ,反应条件 ,选用发生装置(填序号,同上) ;具体仪器: 。
所以,选择发生装置的选择依据: 。
(2)收集装置的选择依据:主要是气体的物理性质等,包括气体的密度和溶解性。
①排水法:适用于收集 ;②向上排空气法:适用于收集 ;③向下排空气法:适用于收集 。
通过对上述问题的分析,学生很自然地就得出设计气体制取装置的一般思路,即根据反应物状态和反应的条件来选择发生装置,根据生成气体的密度和溶解性来选择收集装置。
二、实验探究,收效显著
1.实验室制取二氧化碳的理想原料的探究
在“二氧化碳的实验室制法”实验中,教师不是直接告诉学生实验室制备二氧化碳的理想原料是大理石和稀盐酸,而是给出①Na2CO3粉末和稀HCl;②石灰石和稀盐酸;③石灰石和稀硫酸几组药品,让学生分组进行实验,完成有关实验报告(要求填写实验现象),并且引导学生从已有知识和新的信息中多方向、多角度思考问题,从能否产生二氧化碳和反应的快慢两方面作比较,找出理想的原料。学生通过积极的讨论,归纳,从而得出结论:制备二氧化碳的药品宜用大理石和稀盐酸。
这样的设计让学生自己动手做实验参与探究,不仅能锻炼学生的动手操作能力,而且能培养学生仔细观察的习惯,看到的现象也更加清晰,有利于学生加深印象,增强记忆,提高识记的效果。
2.实验室制取二氧化碳装置的探究
二氧化碳制取装置设计教学时,可以采用教师引导、学生实验、教师演示、媒体辅助等多种教学手段有机整合。具体流程如下:
(1)自主设计装置:利用实验桌上提供的某些仪器,根据二氧化碳制取的反应原理以及二氧化碳的性质,小组合作设计一套合理的制取二氧化碳的实验装置并进行组装。比一比哪一组学生设计的装置既多又快又好,这样的设计有利于调动学生的学习积极性,培养学生分析问题、解决问题以及动手实验的能力。
(2)小组作品展示:学生代表到前面介绍装置的设计意图及使用方法,展示过程中尽可能将不一样的装置全部展示到前面。这样的设计创设了真实的问题情境,有利于鼓励小组合作探究,激励学生进行不断创新的热情。通过表达交流,提高了学生语言表达能力和比较归纳能力。当许多装置展示在学生眼前时,让成功的学生体验到创新发现的乐趣,使思维较慢的学生大开眼界,并激起思维的火花,提高思维的发散性。
(3)比较归纳总结:在交流展示的同时把学生设计的装置进行比较,找出不同装置在设计上的异同之处,反思自己设计装置的优点和不足,并从中找出一套最佳的制取二氧化碳的实验装置。教师采取设计装置,再展示交流、评价改进、补充完善的探究模式,有利于帮助学生形成良好的学习习惯,使学生体验实验探究的乐趣和成功的喜悦。并感受到只要根据气体的反应原理、制备气体的多少以及气体的性质,如,气体的密度和溶解性,来选择合适的反应容器、添加液体的仪器,就能设计出多种多样的气体制取装置,从中感受到实验装置不是单一的,而是多种多样的。
1992年,世界各国签署了《联合国气候变化框架公约》,意在将大气二氧化碳浓度稳定在某一水平上以防止人类活动严重干扰气候系统。之后,数次全球范围内的气候大会,都显示出国际社会对温室气体排放导致全球气候变化的普遍认同,气候变化问题已超越地缘政治成为关系人类命运的重要议题。
在节能减排刻不容缓的形势下,为了达到“巴厘路线图”的“三可”量化减排目标(可测量、可报告、可核查)和相应的计量方法,各国政府都迫切希望科学家们能拿出切实可行的测量方法和技术,为全球碳循环的研究提供可信的数据支持。
为了在全球和区域尺度获取碳循环研究所需的二氧化碳通量信息,星载二氧化碳探测技术成为“嗅碳”的首要突破点,然而极大的技术难度使目前全球仅有两颗卫星在轨工作。一是日本于2009年成功发射了温室气体观测卫星“呼吸”号,另一个是美国2014年发射的OCO-2卫星。2015年12月22日,美国NASA公布了首张全球二氧化碳分布图,其中中低纬度部分地区的大气二氧化碳浓度突破了400ppm(即百万分之四百)。
探测大气污染
2009年,家遥感中心组织专家组开始中国碳卫星的前期战略研究工作;2011年在863计划的支持下“全球二氧化碳监测科学实验卫星与应用示范”重大项目(中国碳卫星)正式立项。项目目标是研制并发射一颗“以高光谱二氧化碳探测仪、多谱段云与气溶胶探测仪为主要载荷的高空间分辨率和高光谱分辨率全球二氧化碳监测科学试验卫星”,建立高光谱卫星地面数据处理与验证系统,形成对全球、中国及其它重点地区大气二氧化碳浓度监测能力,监测精度达到1-4ppm。
碳卫星实现大气温室气体探测是基于大气吸收池原理,二氧化碳、氧气等气体在近红外至短波红外波段有较多的气体吸收,形成特征大气吸收光谱,对吸收光谱的强弱进行严格定量测量,综合气压、温度等辅助信息并排除大气悬浮微粒等干扰因素,应用反演算法即可计算出卫星在观测路径上二氧化碳的柱浓度。
通过对全球柱浓度的序列分析,并借助数据同化系统的一系列模型,可推演出全球二氧化碳的通量变化(单位时间通过单位面积的二氧化碳总量),这正是碳循环研究的核心数据基础。
要获取高精度的大气吸收光谱,就要依靠碳卫星的主载荷――高光谱与高空间分辨率二氧化碳探测仪。探测仪采用大面积衍射光栅对吸收光谱进行细分,能够探测2.06?m、1.6?m、0.76?m三个大气吸收光谱通道,最高分辨率达到0.04nm,如此高的分辨率在国内光谱仪器的研制上尚属首次。
科学家将这项操作类比检查人的指纹,普通仪器只看得到纹理,而二氧化碳探测仪可以把指纹放大一百倍,精细的测量每条指纹的宽度和深度。
要实现这些核心指标可不是一件容易的事情,科学家们既需要对观测和定标进行巧妙的设计,还需要能做出极高的衍射效率和面型精度大面积全息光栅。据中科院长春光机所研究员郑玉权介绍,为突破探测仪上的关键技术,科研人员从最基础的、制造全息光栅所需的高精度曝光系统研究出发,一点点攻克技术难点,最终在SiC基底上制造出高精度衍射光栅,并在航空较飞试验中进行了验证。
二氧化碳探测仪与其他很多星载光学载荷不同,为了提高两个红外通道的信噪比、保证光谱探测精度,其在轨工作时要保持在-5℃的温度水平。就是这一简单的条件变化,让科研人员付出巨大的努力,在进行所有的组件、整机装调工作时都必须在-5℃条件下,于是,在载荷初样、正样研制最紧张的阶段,研究人员连续数月在低温室里工作,经常是户外30℃以上的高温,而低温室内却要穿着厚厚的羽绒服、冻着手坚持装调。
碳卫星的定标难题
碳卫星重约620公斤,由三部分组成:模块化卫星平台、高光谱与高空间分辨率二氧化碳探测仪、多谱段云与气溶胶探测仪。
为满足碳卫星在5种观测模式和十余种指向模式间自如切换的要求,这也是我国迄今为止观测模式最复杂的民用卫星,它通过多种观测模式的组合,让碳排放无处遁形。
当然,碳卫星还面临着定标难题。二氧化碳探测仪定标系统负责人蔺超介绍,定标技术是光谱仪器最终实现精度的关键技术,为保证最终的光谱数据的精准,必须在实验室和在轨工作时对仪器的光谱性能和辐射性能进行精准标定。科研人员不但为二氧化碳探测仪量身特制了真空定标系统,还利用可调谐激光器和波长及搭建自动化定标系统,大幅提高了实验室定标的效率,使仪器的定标周期较OCO-2大幅缩短。
为了让二氧化碳浓度探测更加精准,科研人员还给碳卫星装上了另一台载荷――多谱段云与气溶胶探测仪可以测量云、大气颗粒物等辅助信息,为精确反演CO2浓度剔除干扰因素。
当然,云与气溶胶探测仪作用还不仅于此。据科技部遥感中心总工程师李加洪介绍,它还可以获取全球尺度气溶胶数据,这不仅可以帮助气象学家提高天气预报的准确性,还可以为研究PM2.5等大气污染成因提供重要数据支撑。
卫星在天上大展拳脚,但是仅靠它单打独斗是远远不能完成使命的,若要实现最终任务目标,需要多个大系统协调配合。在科技部、中国科学院的共同组织下,碳卫星按照航天工程模式,组成了卫星、运载、发射场、测控、应用五大系统。
碳卫星发射运行后,科学数据将依托风云系列地面接收站资源完成数据下传。这些数据并不是直接可用的二氧化碳浓度分布,需要经过气象学家进行高精度的全球二氧化碳分布反演计算,才能最终成为全球二氧化碳观测数据产品并共享。
碳卫星肩负着巨大的使命进入太空探索,除了进行相关科学试验,更好地掌握二氧化碳的全球分布规律、机理,还有巨大的应用价值。“后期卫星传送的信息进行处理、加工、分享、服务时都会按照应用的需求,与其他国家共享,同时有效指导我国的节能减排。”李加洪说。
“小卫星”的大责任
碳卫星最终实现全球观测,还需要卫星平台实现灵活的观测模式。二氧化碳探测仪与卫星平台配合,通过主平面天底和耀斑两种主要观测模式,才能对全球陆地和海面路径上二氧化碳的吸收光谱进行精确测量。为保证在轨获取光谱数据的精度,载荷需要进行对日、对月定标,这也需要卫星平台频繁调整姿态、翩翩起舞。中国碳卫星绝对是地球之上的灵魂舞者。
“很少有卫星冒险在天上不停地翻跟头,一般都要求卫星动作越少越好。这对卫星平台设计是很大的挑战。”碳卫星首席应用科学家卢乃锰说,“如果有一颗挂在地球之上的卫星,每天都在绕着地球跑圈,经过几个月,就能把全球每个角落的二氧化碳情况都看到。”
气候问题是全人类共同面对的问题,解决气候问题、监测碳排放也是需要世界各国努力合作的问题。李加洪曾谈到“做全球二氧化碳监测仅仅一两颗卫星是不够的,我国(碳卫星)是第三颗,欧洲也将碳卫星列入计划。我们希望通过这颗卫星和其他几个国家合作形成碳卫星‘虚拟星座’,联合观测大气二氧化碳,为全球气候变化提供更加丰富的监测数据”。