首页 > 文章中心 > 污泥处理的意义

污泥处理的意义

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇污泥处理的意义范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

污泥处理的意义

污泥处理的意义范文第1篇

关键词:污泥 环保 处理 效益

一、目前处理工艺存在问题

采油二厂每年用于注水残渣治理投入的资金达到200×104元,而且处理工艺只是简单的回注,不能够起到降水增油的目的,处理工艺经济效益差。

二、开展注水残渣颗粒调驱剂研究的意义

1.通过开展注水残渣研究, 逐步摸索以注水残渣为主要成分的凝胶颗粒加工工艺,为注水残渣处理工艺寻求技术支撑;

2.将注水残渣颗粒用于水井调剖试验,一方面可以解决部分吸水剖面不均井的调剖,另一方面可以提高注水残渣处理的经济效益;

3.通过开展注水残渣研究,降低调剖措施成本;

4.通过注水残渣调剖技术的研究,以满足沙二上2+3油藏调剖调驱开发需要。

三、注水残渣组份分析

通过X射线衍射分析方法确定注水残渣的成分如下。

注水残渣成分表

注水残渣中的碳酸钙、碳酸镁、硫化铁、硫酸钙不会与引发剂发生反应,对聚合没有影响,但是氢氧化钙可能会加快聚合反应。

1.注水残渣粒径分析

80%注水残渣粒径为40μm左右,与钙基膨润土(20-35μm)粒径相当,能够实现注水残渣颗粒在高聚物三维网状结构的填充。

2.注水残渣溶液悬浮性

2.1注水残渣分散性能实验

将注水残渣添加到清水中搅拌,进行分散性试验。实验得出,当注水残渣溶液比重到1.3g/cm3出现搅拌困难,因此我们选用注水残渣比重必须小于1.3g/cm3。

2.2注水残渣溶液分层实验

把分散好的注水残渣溶液,搅拌均匀后,迅速倒入量筒中观察沉降时间。实验结果表明注水残渣溶液比重达到1.20g/cm3后沉降加快,在生产过程中聚合时会发生堆积,甚至有可能造成聚合物包裹不全造成注水残渣脱出。为了满足注水残渣颗粒的生产要求,选择比重小于1.20g/ cm3的注水残渣液。

3. 聚合物单体的优选

陈安等[1]在比重1.1~1.25g/cm3注水残渣溶液中加入不同量的丙烯酰胺(AM)搅拌均匀后,倒入量筒中,观察沉降时间。

由实验结果可知,8~10%单体浓度和比重为1.10~1.20g/cm3的注水残渣溶液已经可以实现较好的聚合。为了更大限度的消耗注水残渣,降低单体用量,我们选择8%单体和比重为1.2 g/cm3注水残渣做实验。

4.交联剂的优选

实验得出,当交联剂浓度在0.05~0.15%之间,注水残渣成胶时间和颗粒强度能够满足要求,为了保证生产效率和注水残渣预凝胶颗粒质量,交联剂浓度定为0.1%。

5.引发剂的优选

实验表明,在温度一定的情况下,引发剂浓度越高,反应速度越快。为了防止引发剂浓度高反应速度快,短时间形成爆聚,或引发剂浓度过低不易成胶,在10~30℃时,引发剂浓度范围定在0.1%~0.2%。

0根据以上实验,确定注水残渣预凝胶颗粒配方为:

8%单体 + 1.20g/cm3注水残渣+.1%交联剂+0.1%~0.2%引发剂。

6.注水残渣预凝胶颗粒性能评价

为了检测注水残渣预凝胶颗粒的性能,开展了注水残渣预凝胶颗粒的物性(膨胀时间、吸水能力、强度、韧性)、适应性(高温老化性、抗盐)、注入性评价。

通过实验评价,注水残渣预凝胶颗粒具有较好的弹性和韧性,且耐温抗盐性能良好,与钙土凝胶颗粒相当。

四、实施情况及效果

2011年~2012年完井12口,累计注入注水残渣调剖剂46212m3,注水残渣预凝胶颗粒415t,注水残渣3475t。措施前后对比,平均注水压力上升9.3MPa,日注水下降34m3。有可对比剖面5口,吸水厚度增加24.4m/11n;其中启动新吸水层33.5m/16n,减少强吸水层9.1m/5n,有效解决了层间矛盾,提高了开发效果。有10口水井对应的18口油井不同程度见到增油效果。措施前后对比,日产液下降2.4t,日产油上升20.5t,含水下降1.1个百分点。截止2012年12月,措施累计增油2576t。

五、经济(社会)效益分析

1.投入

该项目实际投入资金180.7万元。

2.效益

累计增油2576吨,创效:2576吨×0.4788万元/吨=1233.39万元;

3.投入产出比

投入:产出=180.7:1233.39=1:6.8。

六、结论与认识

1.油田注水残渣改性后可以生产加工成注水残渣预凝胶颗粒,替代凝胶颗粒用于水井调剖调驱,降低了措施成本,提高了注水残渣处理的经济效益。

2.注水残渣调剖项目实施后,措施井注水压力上升,剖面得到改善,对应油井见到了较好的增油效果,经济效益明显。

污泥处理的意义范文第2篇

关键词:虚拟企业 企业虚拟化 “契约关系人”价值最大化 财务委员会

虚拟企业与企业虚拟化定位在于研究范围的限定

很多学者对虚拟企业的性质进行深入研究后,得出了这样的总结:“虚拟企业是一些独立的厂商、顾客甚至竞争对手,以商业机遇中的项目、产品或服务为中心,充分利用各自的核心能力,广泛利用以Internet为核心的信息技术,以合作协议、外包、战略联盟、特许经营或许可甚至成立合资企业的方式所构建的以营利为目的的动态的、网络型的经济组织。”

也有学者把虚拟企业这种组织形式运用于独立企业内部的组织创新研究,这就出现了企业虚拟化的概念。这种创新的影响局限于企业内部,所以,笔者在这里就不做深入研究。

笔者在此提出这一对概念的目的,就在于明确研究的范围是虚拟企业的财务问题,而不是企业虚拟化中的问题。

财务目标“契约关系人”价值最大化

虚拟企业实质上是不同的企业为了某个具体的业务项目贡献出自己的核心能力而组成的临时的业务联盟。因此,虚拟企业和我们传统意义上的企业大相径庭,虚拟企业的财务目标和已为我们所熟悉的企业财务目标从研究角度上就出现了不一致的地方,因此,传统意义上的“股东价值最大化”与“企业价值最大化”难免受到置疑。也就是说“企业价值最大化”中的彼“企业”非此“企业”。因此,“企业价值最大化”在虚拟企业条件下,是在这个业务联盟中每个独立企业自身的目标,而不是虚拟企业整体的财务目标。那么,虚拟企业作为一个临时的业务联盟,它的财务目标到底怎样呢?

有学者这样描述,虚拟企业财务目标“多元化”,主要包括“价值链最优化”、“交易成本最小化”、“资源综合配置效益最大化”和“契约关系人利益最大化”。

笔者认为,财务目标是财务系统期望达到的目标或境界,是财务系统运行过程中的必然趋势,决定着整个财务系统发展的方向和方式,是财务系统运行的出发点和归宿点。对于虚拟企业这个业务联盟而言,由于相互关联的都是独立的企业组织或者个人,(为了分析的一致,笔者把虚拟企业的加入者统称为虚拟企业中的“独立体”)因此,虚拟企业的财务目标实质上是这个业务联盟中各个独立体的财务目标的有效集合,在各自的约束条件下,各个独立体的财务目标在虚拟企业财务目标上达成一致。换言之,财务目标是主观期望实现的目标,其主体是各个独立体,是在组成虚拟企业这个过程中相互博弈的结果,因此,笔者赞同“契约关系人利益最大化”,考虑到财务管理的核心是价值管理,笔者拟用“契约关系人价值最大化”来描述虚拟企业的财务目标。前述“价值链最优化”、“交易成本最小化”和“资源综合配置效益最大化”,笔者认为,这是虚拟企业这种经济组织在运行过程中实现的客观结果,这不属于主观的范畴,事实上,在“经济人”假设下,“契约关系人价值最大化”实现的同时,在客观上就表现为价值链最优、交易成本最小和资源配置效益最大。

因此,笔者认为,虚拟企业的财务目标并不是多元化的,而是一元化的,那就是“契约关系人价值最大化”。当然,对于其中的独立的企业而言,就是企业价值最大化。这两个目标并不矛盾,因为两者的研究角度本来就不同。

财务职能:财务预测财务协调和财务控制

传统企业中,财务管理职能主要包括融资、投资和收益分配管理,这些职能都是由企业内部的财务部门独立进行运作的,其管理模式往往是程式化管理。但是,在虚拟企业条件下,由于虚拟企业本质上是暂时的业务合作与业务联盟,其存在主要是为了增强对市场变化的反应能力,因此,对财务管理的要求主要体现在敏捷和准确上,单个企业作为虚拟企业这个临时的系统中的元素,虚拟企业的财务管理活动实质上是各个独立体财务活动的重新整合。任何经济运作都可以通过资金链进行反映,虚拟企业也不例外,但是,它的资金链具有自己的特殊性。在虚拟企业这个业务联盟中,资金运动是按照契约设计流动的,因此,虚拟企业财务职能主要体现在财务预测、财务协调和财务控制上,至于融资、投资则已经包含在财务协调过程之中,而收益分配则主要是对于具体业务的收益进行分配,这和传统企业财务管理中的企业分配在内容上差异十分明显,虚拟企业的收益分配不会涉及股利政策,也不会存在留存收益这些分配项目,因为,随着一个具体业务项目的完成,虚拟企业也就失去了存在的价值。也就是在组成这个虚拟企业之前所进行的财务谈判和组成虚拟企业后的财务控制,前者包括相关契约人对虚拟企业财务成果的预期,对资金注入的协调,后者包括对资金使用的监控和协调。而收益分配则在制定契约的时候就已经达成了一致,最后进行分配的时候也是遵循协议进行的。

虚拟企业财务职能是传统企业财务职能的重新整合,也放大了财务管理的范围和效力。财务协调使虚拟企业融资范围和融资能力增强,个体之间通过优势互补使得虚拟企业的经营风险降低,从而使虚拟企业的项目风险降低,也就使虚拟企业融资能力增强,这是其一;其二,个体之间可以通过自发性融资消化相当部分的资金需求,这也给进一步融资挖掘了潜力。

但是,这同时对财务控制就提出了更高的要求。因为个体之间是契约关系结合在一起的,没有行政隶属关系,这对财务控制提出了全新的课题,因为财务控制的效果,直接关系到虚拟企业的财务风险的大小。这就涉及到财务组织的设计问题了。

财务组织:财务委员会

前面已经提到,传统企业的财务管理组织是由专门的财务部门实施的,但是,在虚拟企业中,相关的个体相互之间并没有行政隶属关系,仅仅是暂时的契约集合体,同时,虚拟企业的财务管理是非结构化、非程式化管理。因此,固定的、程式化的财务机构都是无法适应虚拟企业理财需要的,必须对财务组织进行创新。

当前,有学者提出虚拟企业没有专门的财务机构这个观念,认为虚拟企业的财务机构也是“虚拟”的,只需要外聘财务专家进行指导就行了。但是,笔者认为,这仅仅是针对与传统企业财务管理的区别而言的。事实上虚拟企业的财务活动,作为个体财务活动的整合,必须有执行者,因此,也必然要求一定的组织形式来确保财务活动的执行和监督。笔者认为,委员会形式是一个较为理想的方式,其成员由各方委派,当然,也可以外聘财务专家参与委员会的工作,专门进行财务协调和财务监督,以实现财务管理的敏捷与精确。财务委员会的工作贯穿于虚拟企业运作的始终,从财务预测、财务协调到财务控制,都是财务委员会工作的内容。

财务委员会是虚拟企业的一个缩影,实质上就是相关个体业务合作在资金运动中的现实反映,各个委员都代表着各个契约相关人的利益,都在为着各自价值最大化而相互合作。从理性的角度来看,设置财务委员会有助于虚拟企业财务目标的实现,有助于加强虚拟企业财务活动的协调和控制,有助于降低虚拟企业的财务风险。

参考资料:

1.解树江,虚拟企业的性质及组织机制[J],经济理论与经济管理,2001(5)

2.胡峰、朱怀意,论虚拟企业管理新模式在我国的适用性[J],河南商业高等专科学校学报,2001(1)

3.谢良安,刍探虚拟企业的财务管理[J],财会月刊,2003(7)

污泥处理的意义范文第3篇

1 前言随着计算机技术和人类社会经济的发展,对于纺织服装业CAD/CAM的应用要求也越来越高,二维服装CAD系统已经不能满足要求,人们迫切希望借助计算机完成一些更加实用的三维功能。若能直接将二维服装CAD系统设计的衣片,在计算机上真实地模拟出穿在人体上的效果,便可以帮助设计师直接在计算机上进行着装效果检查、服装裁剪片缝合检查等工作。这样就可大大提高服装从设计阶段到生产阶段间的效率,具有非常重要的实用价值。要通过计算机实现这一功能,有两个关键的问题必须解决:1)建立合适的织物变形模型;2)选择高效而实用的碰撞检测算法。

研究织物变形仿真的方法通常分为三类:几何的、物理的和混合的(几何和物理方法的混合)。纯几何的造型方法很难反映织物的物理特性,因此基于物理的方法研究,近年来已占据了主导地位。在织物变形物理仿真模型中[1],按比拟织物结构的方式又可分为两大类:1)离散质点型模型:比较典型的有Feynma等建立的质点网格模型、Breen等建立的粒子模型和XProvot等建立的弹簧质点模型;2)连续介质型模型:比较典型的有Terzopoulos等建立的弹性变型模型、Liling等建立的空气动力模型、Aono建立的波传播模型、Collier等建立的有限元模型等。

以上的织物变形物理仿真模型,由于其建模的原理和方法不尽相同,因此,它们适用于不同的应用场合有其各自的优缺点。

我们结合设计虚拟穿衣功能的实际,认为XProvot所建立的弹簧质点模型,模型简单,易于计算机实现,在模拟衣片复杂的动态变形过程时,能够取得比较真实的模拟效果和较快的模拟速度。

在模拟三维服装穿在人体上的真实效果时,会遇到大量的碰撞现象:衣片同人模之间以及衣片自身间的一种相互渗透和穿越。只有很好地解决了渗透和穿越的问题,才能逼真地完成虚拟穿衣的模拟过程。因此,碰撞检测是整个模拟过程的关键。碰撞检测非常耗时,最简单的碰撞检测算法是对两个碰撞体中的所有基本几何元素(通常为三角形)进行两两相交测试。

现有的碰撞检测算法大致可划分为两大类:空间分解法(spacedecomposition),和层次包围盒法(hierarchicalboundingvolumes)。前者是将整个虚拟空间划分成相等体积的小单元格,只对占据同一单元格或相邻单元格的几何对象进行相交测试。比较典型的方法有八叉树和BSP树。层次包围盒法的核心思想是利用体积略大而几何特性简单的包围盒将复杂几何对象包裹起来,在进行碰撞检测时,首先进行包围盒之间相交测试,只有包围盒相交时,才对其所包裹的对象,做进一步求交计算。在构造碰撞体的包围盒时,若引入树状层次结构,可快速剔除不发生碰撞的元素,减少大量不必要的相交测试,从而提高碰撞检测效率。比较典型的包围盒类型有沿坐标轴的包围盒AABB(axisalignedboundingboxes),包围球(sphere),方向包围盒OBB(orientedboundingbox)等。

在本文中,我们充分利用了AABB层次包围盒法的优势,同时在构建静态人模的AABB树时,又借助层次空间分解法中子空间在空间排列上的有序性和相关性的思想,将缝合衣片的相对位置同人模自身的结构信息相结合,灵活地构造人模AABB树,这样减少了需相交测试的元素,从而提高了碰撞检测的效率。

2 织物的变形模型

2.1 织物变形模型的描述

我们建立的织物变形模型是以XProvot的弹簧质点模型作为基础,将织物设想为一个个质点集合,质点间相互关系归结为质点间的弹簧作用。其中弹簧分为三类:结构弹簧、剪切弹簧和弯曲弹簧,具体构成如图1所示。图1 织物模型离散成规则网格

1)结构弹簧:在质点Pij和Pi+1,j间,以及Pij和Pi,j+1间的弹簧为结构弹簧,结构弹簧是为了保持质点间初始状态时的距离。转贴于

2)剪切弹簧:在质点Pij和Pi+1,j+1间,以及Pi+1,j和Pi,j+1间的弹簧为剪切弹簧。剪切弹簧是为了防止织物在自身平面过渡和不真实的变形,而给织物的一个剪切刚性。3)弯曲弹簧:在质点Pij和Pi+2,j间,以及Pij和Pi,j+2间的弹簧为弯曲弹簧,弯曲弹簧是为了防止织物弯曲。2.2 质点的位移在缝合衣片过程中,衣片上所有质点因受力而产生一定的位移,质点位移我们选用Nowton运动定律来描述:F外力(i,j)+F内力(i,j)=ma(i,j)其中,m是质点P(i,j)的质量。在本文中,我们假定布料是各向均质的,因此,质点的质量可由衣片总质量除以质点总数得到,a(i,j)是该点加速度,F外力(i,j)是该点所受的外力,F内力(i,j)是该点所受的内力。为了简化模型,在我们三维服装CAD系统中,只考虑两种外力:缝合力和重力。可以用以下公式来表示:F外力(i,j)=F缝合力(i,j)+F重力(i,j)

在衣片缝合过程中,为了将不同的衣片缝在一起,我们在衣片对应缝合边上加载缝合力。在模型中,缝合力被定义成对应缝合点之间距离的线性函数。对两个缝合点pi,j和qi,j间的缝合力,可以按如下公式计算:F缝合力(i,j)=Cs Dis(pi,j,qi,j) Npi,j-qi,j式中Cs为缝合力系数,该系数与织物的缝合性能有关,通常,较难变形的布料采用较大的缝合力系数;Dis(pi,j,qi,j)表示两缝合点pi,j和qi,j间的距离;Npi,j-qi,j表示从pi,j点指向qi,j点的单位方向矢量。为了获得较真实的仿真效果,我们在变形模型中考虑了衣片所受的重力。质点所受的重力可按如下公式计算:F重力(i,j)=mi,j g式中mi,j为质点pi,j的质量。在弹簧质点模型中,唯一考虑的弹性内力是弹簧的弹性变形力,由于采用的是理想的弹簧质点系统,可以利用胡克(Hooke)定律来计算弹簧的弹性变形力:F内力(i,j)=-∑(k,l)∈Rk(Pi,jPk,l-Pi,jPk,l0Pi,jPk,lPi,jPk,l)

其中,k是弹簧的弹性变形系数,R是P(i,j)邻点的集合,Pi,jPk,l0表示质点P(i,j)与质点P(k,l)之间的原始距离,弹簧的弹性变形系数k可以依据所选用织物的材料性能参数曲线确定。

2.3 织物变形模型的求解我们选择显式欧拉方法来求解织物变形模型。求解公式如下:ai,j(t+t)=1mi,jFi,j(t)Vi,j(t+t)=Vi,j(t)+tai,j(t+t)Pi,j(t+t)=Pi,j(t)+tVi,j(t+t)其中,Fi,j是质点P(i,j)所受所有力的合力,mi,j(t)是质点P(i,j)的质量,ai,j(t)、Vi,j(t)和Pi,j(t)分别是质点P(i,j)在时间t的加速度,速度和位置。t是系统选定的时间步长。

3 基于AABB树层次包围盒的碰撞检测

3.1 建立AABB树一个碰撞体的AABB被定义为包含该碰撞体,且边平行于坐标轴的最小六面体。因此,描述一个AABB,仅需六个标量。在构造AABB包围盒时,需沿着碰撞体局部坐标系统的轴向(X,Y,Z)来构造,所以所有的AABB包围盒具有一致的方向。

AABB树是基于AABB的二叉树,按照由上至下的递归细分方式构造生成的。在每一次递归过程中,要求取最小的AABB,需沿所选择的剖分面将碰撞体分为正负两半,并将所对应的原始几何元素(如三角面)分别归属正、负两边,整个递归过程类似于空间二叉剖分,只是每次剖分的对象是AABB,而不是空间区域。递归细分一直要进行到每一个叶子节点只包容一个原始几何元素为止,所以具有n个原始几何元素的AABB树具有n-1个非叶子节点和n个叶子节点。对于剖分面的选择,在本文中,选择垂直AABB的最长轴,且平分该轴的平面。经试验证明,这种方式,在大多数情况下的算法复杂度仅为O(nlogn),较其它的剖分面选择方法有了极大的提高。至于原始几何元素的归属则应依据几何元素的重心P在最长轴上的投影坐标。若投影坐标大于剖分面的坐标(mid),则在剖分面的正向,否则在负向,如图2所示。

图2 三角面归属负区域,因为其质心投影坐标小于剖分面的基准坐标

3.2 AABB的相交判断AABB间的相交测试比较简单,两个AABB相交当且仅当它们在三个坐标轴上的投影区间均相交。通过投影,我们即将三维求交问题转化为一维求交问题。而对一维求交问题,我们则采用SAT(SeparatingAxesTest)[2]法。因SAT无需求交计算,只需比较两个包围盒分别在三个轴向上投影的重叠情况,即可得出相交测试结果,非常简单。现以在一个轴向上的投影情况为例说明:图3 AABBs在X轴向相交判断。

设A,B为两包围盒,X为投影轴,CA,CB分别为A,B的中心点,PA,PB为点CA,CB在X上的投影。RA,RB分别为包围盒A,B在X上的投影。若RA+RB

PAPB,(如图3所示)则在轴向X上A和B不相交,反之在轴向X上A和B邻接或相53第5期高成英等:虚拟穿衣中织物模型的建立和碰撞检测的处理

交。当包围盒A,B在三条轴向上的投影均相交时,则A,B相交。定义AABB的六个最大最小值分别确定了它在三个坐标轴上的投影区间,因此AABB间的相交测试最多只需六次比较运算,非常简单快速。

3.3 AABB树的更新当衣片移动、旋转后,需要对AABB进行更新,根据定义AABB的6个最大最小值的组合,可以得到AABB的8个顶点,对这8个顶点进行相应的旋转和平移变化,并根据变化后的顶点计算新的AABB。当衣片发生变形时,需要重新计算AABB树中发生变形了的叶结点的AABB,再利用变形叶节点的新AABB来重新计算它们父节点的AABB。这种计算必须严格按照从下到上的方式进行。父节点AABB的具体求法为:令(Xmax1,Xmin1,Ymax1,Ymin1,Zmax1,Zmin1)和(Xmax2,Xmin2,Ymax2,Ymin2,Zmax2,Zmin2)分别是两个变形叶结点的AABB,则父结点的AABB即为(max(Xmax1,Xmax2),min(Xmin1,Xmin2),max(Ymax1,Ymax2),min(Ymin1,Ymin2),max(Zmax1,Zmax2),min(Zmin1,Zmin2),只需6次比较运算就完成一个结点的更新,其效率远远高于重新构造AABB包围盒树。

3.4 基于AABB树的碰撞检测算法基于AABB树碰撞检测算法的核心是通过有效地遍历这两棵树,以确定在当前位置下,两个碰撞体的某些部分是否发生碰撞,这是一个双重递归遍历的过程。算法描述如下:step1:分别为人模和衣片构造AABB树。step2:人模的AABB树的根结点遍历衣片的AABB树。如果发现人模AABB树的根结点的包围盒与衣片AABB树内部结点的包围盒不相交,则停止向下遍历;如果遍历能到达衣片AABB树的叶节点,再用该叶节点遍历人模AABB树。如果能到达人模AABB树的叶节点,则进一步进行基本几何元素间的相交测试。step3:检测基本几何元素间是否相交。3.5 自碰撞检测在衣片缝合过程中,除了衣片同人模之间的碰撞外,由于衣片的动态变形,使得衣片与衣片自身间也有碰撞现象,因此必须进行进一步的自相交检测。在系统设计中,我们利用三角形表面曲率来简化计算。当邻近三角形法线的夹角较小时,它们不可能发生碰撞,只有当夹角超过阈值,才有可能碰撞。我们为每个三角形建立它的临近三角形列表,通过判断每个三角形的所有邻近区域的三角形表面曲率,来排除大部分不可能相交的情况,从而简化了计算。

4 虚拟穿衣的具体实现步骤

(1)读入二维服装CAD系统设计的衣片

(2)选择所有需要缝合衣片的对应的缝合边

(3)将二维衣片离散并形成初始的弹簧质点系统a)将衣片离散成规则四边域网格,再将四边域网格的对角线相连,形成规则三角形网格的弹簧质点系统。三角形的顶点形成质点,三角形的边形成相应的弹簧。衣片的三角化,正是为方便地建立衣片的AABB树;b)按质点间的相应关系,加入各种弹力。在离散衣片时,需特别注意的是在(2)中所选择的对应缝合边的长度一定要相等,且当衣片离散化时,在对应缝合边上的原始几何元素(这里为三角形)的个数也应相同。若在(2)中所选择的对应缝合边长度不等,或原始几何元素个数不同时,系统将需做一些预处理:将其中一条缝合边的所有信息删除,将另一条缝合边的相应信息赋给它。转贴于

(4)将衣片交互式地放置在人体模型附近的初始位置在该步骤中,首先,给每一缝合衣片赋一个别名(系统自定义的标准别名:左前片,右前片,左后片,右后片等),根据每一衣片的别名,衣片被自动地放置在人体模型附近的相应初始位置上。

(5)分别为人模和衣片建立AABB树本文中所涉及的两个碰撞体,分别为人模和衣片,其中人模在整个动态模拟过程中为静态的,因此,只需在初始化时构造一次AABB树即可。为了进一步提高碰撞检测的效率,我们在构造人模的AABB树时,应根据(4)中得到的缝合衣片别名,结合人模的几何结构,灵活构造人模的AABB树。例如:假设我们在(4)中,得到衣片分别为:左前片,右前片,左后片,右后片。我们即可知,将要缝合的为一件四片裁剪片的上衣,所以在构造人模的AABB树,我们只取人模上半身数据来构造人模的AABB,具体层次结构如图4所示。在进行人模和衣片间碰撞检测时,根据衣片的别名分别进行局部检测,(例如:左前片,就只需和人模AABB树第三层最左边的结点,左前半身的AABB进行碰撞检测)有效地减少了需要碰撞检测的元素。系统根据所缝合的衣片不同,建立的人模AABB树亦不相同。图4 人模的AABB树层次结构图

(6)动态变形模型的计算根据衣片的缝合信息,我们在衣片的对应缝合边上加载缝合力。在缝合力、重力和衣片上各质点间内部弹力的共同作用下,二维衣片将逐步变形,并逐渐被缝合在一起,整个缝合过程是一个动态的迭代过程。在动态迭代过程中,要同时进行大量的人模—衣片间,及衣片—衣片间的碰撞检测处理,并给出相应碰撞响应(当有碰撞现象发生时,要重新调整碰撞点处的位置,避免发生穿越和渗透)的处理。缝合过程结束后,便可以得到缝合好的三维服装穿在静态人模上的效果。

5 结束语实验证明,本文所采用的织物变形模型———弹簧质点模型,模型简单,能够较真实地反映虚拟环境下的织物特性。所采用的基于AABB的层次包围盒碰撞检测算法,除了AABB层次包围盒自身在碰撞检测上的较高性能外,算法还从以下几方面提高了碰撞的检测效率:

1)将缝合衣片的相对位置同人模自身的结构信息相结合,灵活地构造人模AABB树,减少了人模和衣片之间不可能相交元素碰撞检测的次数;

2)AABB包围盒的相交判断中,采用SAT方法进行包围盒之间的交叠判断,降低了算法的复杂度,提高算法效率。

3)衣片之间的碰撞判断,利用了每个三角形相邻区域的三角形表面曲率来简化求交判断。

污泥处理的意义范文第4篇

关键词:活性污泥工艺 泡沫 Nocardioform actinomycetes;Microthrix parvicella 形成和控制

0 引言

目前,世界范围内大多数城市污水处理厂采用活性污泥法处理工艺。普遍存在的问题之一就是曝气池表面常常会产生严重的泡沫,大量的泡沫使曝气池表面被覆盖,若从池中溢出会引起外部设备及外部池壁的污染,严重影响了周围的环境,给污水处理厂的运行和管理带来了困难,同时也使出水水质恶化。根据对国内外污水处理厂的调查,大多数都不同程度地受到泡沫问题的影响,特别是采用延时曝气工艺的污水厂更是如此。

1 泡沫的形成

活性污泥工艺中,泡沫的形成一般有以下几种形式,主要包括工艺运行初始时期形成泡沫、反硝化作用起泡、表面活性剂起泡以及生物泡沫等[1]。生物泡沫粘度大,呈黄褐色,具有稳定、持续、较难控制的特点。

1.1 工艺运行初期形成泡沫

曝气池开始运转时,特定表面活性剂对有机物的部分降解作用形成泡沫,并使泡沫迅速增长。这些泡沫一般呈白色且质轻,当活性污泥达到成熟时消失。

1.2 反硝化作用起泡

由于在二沉池或曝气不足的地方会发生反硝化作用,使微小的氮气气泡释放出来,从而使污泥的密度减小,有利于其上浮,产生泡沫现象。这种现象在二次沉淀池中表现明显,且产生的悬浮泡沫通常不稳定。

1.3表面活性剂起泡

污泥处理的意义范文第5篇

近年来,随着我国经济的高速发展及环保意识的增强,大量新建的城市污水处理厂在不断的投入运行,但随之而来污泥处理则成为新的污染问题。因此,对污水处理技术予以充分重视的同时,能否解决好污泥问题也是污水净化成功与否的决定性因素之一,因而有必要加强污泥处理与利用的研究。

污水处理厂的污泥一般是由松散的物质组成,含水率较高(95%~99%),体积庞大,性质很不稳定,极易腐化,不利于运输和处置,应及时进行减容化和稳定化处理,使含有病原微生物、散发出恶臭的腐化物质数量减少并使其分解。稳定化是污泥处理工艺中的关键环节和主要目的。稳定的方法有好氧消化、厌氧消化、污泥堆肥、热解和化学稳定等方法。消化池是利用厌氧发酵的方法来达到污泥稳定化的目的,污泥堆肥是采用好氧的方式达到稳定化的目的,焚烧法是在极端条件下取得无机物的彻底矿化。

在污泥处理技术中污泥厌氧消化投资高,污泥处理部分投资和运行费用约占污水处理厂的20~40%,同时由于其技术复杂性,能够正常运行的很少。针对这种情况,近年来国内在中小型(甚至大型)污水处理厂大多采用国外引进的延时曝气氧化沟、SBR等低负荷工艺。首先,低负荷曝气池的池容和设备是中、高负荷活性污泥工艺的几倍,相应的投资要高几倍;其次,延时曝气对污泥采用好氧稳定,能耗比中、高负荷活性污泥工艺要高40~50%左右。从可持续发展角度讲,大规模的采用延时曝气的低负荷工艺是不适合中国国情的。

1.1 污泥的定义

在污水处理领域,对于污泥和污泥稳定化程度的概念是模糊的,明确污泥的定义和建立污泥稳定化程度评价指标,找出可行的测定污泥稳定化(降解程度)的指标具有重要意义。

污泥一词也不是一个科学的定义,自然界中污泥的产生是与水体中固体物的沉积有关,一般称为淤泥。从这个意义上讲只有沉淀下来的颗粒物才成为污泥。在科学界对污泥的定义也是不同的,比如化学上是根据颗粒尺寸来定义水中有机物形态:溶解性(<0.001μm)、胶体(0.001~1.0μm),超胶体(1~100μm)和可沉物(>100μm)。工程上是通过采用的分离方法来定义无机物的形态,一般讲污泥是大于滤纸或过滤器孔径(如1~4μm)的颗粒物质,这包括化学家定义的部分超胶体和可沉物。

污泥的降解过程经历了固体的液化和水解,虽然液化和水解两词在描述污泥甲烷化之前产生的中间产物是可互用的,但它们不是严格的同义词。水解是有明确定义的化学名词,是指复杂化合物加水分解为小分子的过程(可以用于超胶体、胶体和溶解性物质)。而液化的定义是相当任意的,液化仅涉及到将固体物质转移到液相,因此液化的对象是污泥。从工程上的定义可知,如果污泥在分解或降解过程中尺寸发生变化,当其粒径小于过滤器孔径时,就可认为已经完成了污泥分解或降解过程。

1.2 污泥稳定化定义

污泥稳定化的含义针对污泥中有机质而言,事实上是与污泥中有机物的矿化过程相关的。所谓有机物的矿化过程(污泥的稳定化)是在一定条件下,通过物理化学或生化反应,使污泥中的有机物发生分解或降解为矿化程度较高的无机化合物,如H2O/CO2或CH4/CO2的过程。根据定义污泥的稳定化不仅与有机物含量有关,其还与是否在一定条件下有机物的分解或降解反应有关,这里所谓一定条件是指时间和环境条件。例如,在采用厌氧UASB工艺处理污水中形成的颗粒污泥,其有机质的含量有时高达90%以上,但是其在环境中是稳定的,在相当长的一段时间内不再发生(明显发生)降解反应,也可以认为它是稳定的。

评价污泥的稳定化程度有好氧和厌氧的多种测定方法,但是目前缺乏标准性和规范性。一般可以用污泥中有机物的减少程度或产物的生成量来衡量,在污泥厌氧消化工艺中,人们一般是采用甲烷的产量来评价污泥稳定化程度;也有采用污泥的减量来评价污泥的稳定性。但是,由于在生物反应过程中有机物的降解是与微生物的增殖同时发生,所以不能仅仅以污泥的减量来直接评价污泥稳定化过程。同时,也不宜采用污泥中有机物的比值(如MLVSS/MLSS)来直接衡量污泥的稳定化程度。

2 污泥稳定性的测试方法

2.1污泥碱解试验研究

在强碱的条件下,各种有机物均可快速发生水解。采用碱解污泥的方法,可以在较短的时间内考察污泥中化合物分解的情况。通过碱解试验可了解污泥最大可水解的量,这间接代表厌氧条件下污泥水解最大可能程度。这一方法是物化方法,间接地反映了污泥可生物降解的量。测试是在恒温的装置(图1a),采用氢氧化钠试剂在厌氧条件下搅拌反应24小时,测定液化的COD的变化程度,被用来做为评价污泥可以达到的最大液化程度。

2.2 污泥厌氧稳定化试验

通过测定污泥在厌氧条件下产气来判定污泥的稳定化程度,这是污泥厌氧消化的基础。试验方法是将污泥放入30℃的培养瓶内,在100 d的试验期间有机物得到最大程度的降解,通过测量甲烷产量评价有机物的降解量。试验装置是在锥形瓶中放入一定量的污泥,要求其污泥浓度大约为5 gVSS/L,将锥形瓶放置于30℃的恒温水浴箱中,每日人工摇动混合1~2次。污泥降解产生的气体,进入分液漏斗,漏斗中为浓度1.5% NaOH溶液吸收气体中的CO2,测量量筒中液体体积即为污泥产生的甲烷(CH4)气体体积(图1b)。

2.3 污泥液化和酸化试验

污泥厌氧降解试验达到稳定所需时间长(需100 d),其实用意义不大。因此须开发一种较快的评价污泥稳定性的方法。由于在水解(酸化)阶段污泥形态发生变化,而甲烷化阶段是由小分子(已不是污泥)转化为沼气的过程,也就是说污泥的降解或稳定化仅仅发生在水解阶段,所以可采用污泥液化率评价污泥稳定性。由于污泥液化时间短,可以忽略甲烷的产生,反应器是敞开并带有搅拌装置进行。

2.4 试验结果

试验是用5升温控反应器(图1c),所采用的污泥取自方庄污水处理厂初沉池排放的污泥。取24、48和72小时混合样(保持在4℃冰箱内的)。SS的测定采用滤纸(孔径4.4 mm)过滤,过滤液的VFA采用气相色谱法分析。COD的分析采用微量COD方法,其他全部按标准方法测定。CODt为原污水或污泥-COD、CODd为离心样品COD。

2.4.1 碱解试验结果

由于污泥碱解稳定化程度与用碱量、污泥浓度和环境温度有一定的关系,采用正交试验的方法对最佳碱解条件进行探索。试验的设计和结果见表1。

从表1的数据分析污泥浓度与加碱量的关系,可知存在一个加碱量的下限,如果加碱量低于这个下限,碱解效果就极差。比较1号和9号试验,它们的加碱量均为0.08g/g,但碱解效果却相差很远,这说明加碱量下限在0.08g/g附近。NaOH剂量大于0.08g/g时,经过24h.反应后pH值仍在8~9之间,说明加碱量是过量的。但当NaOH剂量不足时(4号试验),最终pH值呈中性,说明碱已耗尽,同时碱解率也不足,7号试验得到的效果更差。污泥碱解24小时后,其溶解出的CODd占总CODt的范围比例与加碱量、污泥浓度有一定关系。如表所示,每克污泥加碱量范围在大于0.10gNaOH时,碱解效果较好,一般的碱解率大于35%。