前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数学建模基本模型范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
经济数学模型(economic mathematical model) 就是把经济活动各要素表示成抽象的数学公式,即:经济活动中数量关系的简化的数学表达,简称经济模型,是研究分析经济数量关系的重要工具。是将经济现象或经济问题中各要素之间的关系抽象出来,利用数学原理、数学方法建立起一套能够对经济现象、经济问题进行分析、统计、总结、预测的研究方法。
一、经济数学模型对研究经济学的意义
数学是与经济学息息相关的学科,是研究经济学不可或缺的重要工具。经济学从产生开始就有涉及面广、经济现象复杂、经济数据繁杂等特点,每一项研究、决策都离不开数学的应用。研究经济问题时,不仅要对经济现象进行定性分析,也要对大量经济数据进行相应的定量分析。经济数学模型能起到理清思路、简化抽象问题、加工处理信息、得出理论成果并用于指导经济实践的作用,可以对过去的经济活动进行统计、总结,对正在发生的经济现象进行监控,还能作为经济预测、经济决策的工具。经济数学模型里涉及到的数学理论知识比较广泛,包括线性规划方法、非线性规划方法、极值最值理论、不动点理论、概率统计方法、微分方程等。经济数学模型广泛运用在经济学中的许多学科分支和研究领域,包括数理经济学和计量经济学,也包括系统分析、计量分析、成本收益利润分析、投入产出分析、最优化分析及平衡理论研究等方面,并使用电脑技术对分析统计预测结果进行模拟演示以检验理论成果的可行性。这里不仅用到经济数学模型,也需要利用信息技术。
二、如何建立经济数学模型
建立经济数学模型是通过对现实经济问题进行分析,作出合理的假设,直接从实际问题中抽象出数学问题,并利用数学语言将问题表述出来,利用数学方法和数学理论对经济数学模型进行演绎、推理、求解,再将结果与现实比对检验的过程。建立经济数学模型大概分为三个阶段:现实经济世界数学世界现实经济世界。
构建一个经济数学模型时,应注重了解实际问题的经济背景,通过假设把问题抽象简化出来,分析影响模型的各个因素,并设置变量和参数表示这些因素,利用数学知识建立变量之间的关系式,利用数学方法进行分析。因此经济数学模型的建立通常分为如下六个步骤:准备建模、提出模型假设、构建经济数学模型、对数学模型求解、分析、检验等。
(一)准备建模
在建立经济数学模型之前要深入了解待研的经济问题,了解该问题的相关知识背景,查阅收集整理归纳相关数据。由于是给本科生讲授数学建模方法,所以还要根据本科生的数学知识储备情况选择合适的数学工具。
(二)提出模型假设
假设的过程就是将经济问题用数学问题简化抽象出来的过程,简化的目的是用简单模型反应复杂经济问题。好的模型不仅不会降低真实性,还能提高模型的科学性和实用性。但不能无限制的简化,还要真实准确反应出经济问题。简化抽象程度由经济对象的误差范围和应用相关数学方法的前提决定。这就要求建模人员不仅要具有对资料的较强的整合能力,还要有相当的知识储备和知识运用能力,所建模型要难易程度适当并具有现实意义。经济数学模型分为普通经济模型、计量经济模型、投入产出模型和数学规划模型。要根据具体问题建立适当的模型。
(三)构建经济数学模型
这一步是建模关键。根据前面所做的假设将经济问题中涉及的经济量用变量或相关参数表示,用公式或函数关系或方程等数学语言及相关数学理论描述经济问题,建立起变量之间的关系式,从而建立经济数学模型。比如计量经济模型是以数学、统计、和经济三类学科的理论知识为基础,将经济问题与数学数量关系相关的知识方法相结合建立经济数学模型。投入产出模型是对投入产出数额进行分析,主要研究投入时依据的条件和对应的产出数额。这种模型能反映出部门间的关系、收入产出的关系及相关经济活动。
对经济数学模型求解。模型建立以后就要根据相关经济数据和数学理论进行求解。大部分经济数学模型的求解都不需要高深的数学理论知识,需要的是复杂计算,这个问题可以依靠计算机软件来完成。甚至有些运算利用excel就可以完成。
模型分析。模型分析就是对运算结果做进一步的分析和推断,从而确定结果的相对合理性。运算出模型结果后,将模型结果与经济问题的现实状况进行对比分析,分析研究所得结果的合理性。如果二者是一致的,证明所建模型合乎现实,模型结果具有可信性,可以把开发的模型用到现实中去;如果二者不一致,就需要重新检查模型,寻找问题根本和出错原因,对模型进行改进。
模型检验。将抽象出来的经过比对相对合理的模型结果转换成现实经济问题中,用现实的经济数据再检验数学模型求解的合理性。如果检验结果与实际不符或不如预期的精准,需要对模型重新修改到合理为止。点评模型好坏的标准就是模型与实际的相符程度和实用性。伴随经济状况的变化,模型也要与时俱进持续修改和更新。
三、建立经济数学模型需要注意的问题
数据的收集要具有可靠性,确保准确无误。因此在建立经济数学模型之前,对经济现象的观察调研应当周全深刻,对经济数据的统计整理要真实谨慎可信。
一、数学知识对建模思想的渗透。从本质上来说,数学知识本身,就是建模的结果。因为,数学本身就是来自于现实生活,数学理论本身就是服务于社会实践的,离开了实际背景,数学不会孤立存在的。例如,算筹起源于原始人的狩猎需求,几何起源于对现实生活的直观描述(长度、面积、容积等)。但是,实际上,我们在接触数学知识的时候,往往忽略了它本身的实际意义,单纯的去认知,从而养成了数学是抽象概念的思维模式。为此,在数学课程方面,我们应该努力做到以下几点:
1.牢固树立数学来自于生活,反过来又服务于生活的基本理念。例如,刘辉的割圆术渗透着极限思想,不规则图形中隐含着规则图形,导数可以看做是极限思想的巧妙运用,定积分可以认为是无穷小求和最直接的体现,函数就是变量之间的彼此依存关系,函数表达式就是这种关系的数学模型,而线性代数是线性变量的求解平台,概率论又是预测学的基础模块。
2.建立数学知识点与现实生活及时对接的思维模式。数学学习中,对基本概念,基本定理和基本公式,尽量的对接它们在现实生活中的应用。例如,一次函数与直线,二次函数与抛物曲线,双曲线与发电厂冷却塔的侧面线,椭圆跟天体运动的轨道线,极限跟无限分割,导数跟光滑曲线,等等。
3.抽象概念的应用节点。越是呈现抽象的概念,越要善于寻找它的应用点,尽可能的找到对应实例,使得抽象概念尽可能的具体化。先让我们看下图:
图中不难看出,核心概念邻接着其它概念,然后就是概念的拓展效應。如定积分的概念本身,就含有若干邻接概念:连续,分割,和式,极限等等。给定积分概念做出具体描述,就是概念本身在几何上对接着不规则图形的面积、长度、体积等的计算。在物理学上,往往对接着从加速度到速度,再从速度到距离之间的反求关系。
4.数学模型化思维模式的转变。对待新的数学概念,我们要树立数学模型化思维模式。如,一元变量方程可以视为一元数学模型,二元方程可以视为二元数学模型,多元方程可以视为多元数学模型。许多函数表达式可以看做是特定意义下的目标函数模型,变量对应的约束不等式可以视为约束条件模型,等等。只要我们建立了这种思想就很容易建立数学概念与数学模型的联系。
二、数学建模对数学学科的正向促进。从数学建模的基本规律上来看,它自身是来自于现实生活中急需解决而又不容易解决的问题的实际应用。数学建模自身难度是不小的,除了对数学知识本身有一定要求以外,更多的是依赖思维灵感,或者是解决问题的突发奇想。这就决定了建模本身对数学学科具备了良好的正面带动和促进作用。让我们从一下几方面进行分析。
1.数学建模需要比较扎实的基本功和基本技能。例如,除了数学概念本身的熟练程度以外,还需要具备有关数学应用软件的使用基本技能。例如,matlab,lingo,excel,数据库,spss数据处理软件的使用,等等。当然,数学基本知识点的要求并没有很高,基本够用即可。但是,反过来,如果数学基本知识点不全面,需要时想不到也不会用,会影响建模的完成。
2.数学建模需要具备突发灵感。所谓突发灵感,就是在实际问题应用中,能快速的把实际问题和它所蕴含的数学知识点相对接。在对接中找到模型函数表达式和约束条件,使两者尽可能的相互贴近,不断优化。例如,在建模给出的实际问题中,我们通常要首先分析变量性质,根据变量性质,给出变量所满足的约束条件和目标函数。在某些灵感的引导下不断的优化,不断的模拟,最终获得比较理想的结果。
3.数学建模需要双向思维模式。所谓双向思维模式,就是从实际问题到数学模型,再从数学模型到实际问题,能实现快速转换。有些时候我们的思维模式,往往是单向的,不可逆的,这正是我们传统思维模式的弊端所在。例如,演绎推理和归纳推理的不同模式,很多人会不适应。尽管如此,这种双向模式的效用是革命性的,它会较大的拓展我们的思维空间。
什么是数学模型?何为数学建模?这是我们首先要理解的概念。
“数学模型一般是实际事物的一种数学简化……使用数学语言描述的事物就称为数学模型。”更确切地说,“数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。”①课程标准中说:“方程、方程组、不等式、函数等都是基本的数学模型。”这是就“数与代数”这部分内容中列举的数学模型的外延。
“数学建模”在课程标准中解释得比较详细:“从现实生活或者具体情境中抽象出数学问题,是建立模型的出发点;用符号表示数量关系和变化规律,是建立模型的过程;求出模型的结果并讨论结果的意义,是求解模型的过程。”读了这段话老师们肯定会说:我们在教学学生解决实际问题的过程不就是这样吗?只不过数学问题是现成的,我们已经提供给学生了,关键是引导学生分析题中的数量关系,理清解决问题的思路与步骤,准确列出分步算式、综合算式或方程,再算出结果,检验后写上答语。是的,这是数学建模与解模过程的一部分,但这里的数学模型已经预设了,一般不需要学生“从现实生活或者具体情境中抽象出数学问题”,我们没有了数学建模的出发点,所以这样的教学便称不上是数学建模的教学。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象,如自由落体现象,也包涵抽象的现象,如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。具体地说:建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,“数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并‘解决’实际问题的一种强有力的数学手段。”②由此可见数学建模一般有这样几个过程:1、模型准备;2、模型假设;3、模型建立;4、模型求解;5、模型分析;6、模型检验;7、模型应用。③
那么,教师如何帮助学生体会建模过程,树立模型思想呢?
一、教师主导,学生主体。小学生的生活经验比较少,数学知识、技能水平都比较低。所以,在小学阶段引导学生体会建模过程、树立模型思想势必要在教师的指导帮助下进行。教师要根据学生的年龄特征与认知水平,选择学生感兴趣的、通过合作与努力能够成功建模的生活问题,让学生来体会、研究。
二、夯实“四基”,提升素养。小学阶段是学生打基础的阶段,所以新课程标准提出“通过义务教育阶段的数学学习,使学生获得适应社会生活和进一步发展所必须的数学的基本知识、基本技能、基本思想、基本活动经验。”在组织引导学生开展有效的数学学习活动与训练过程中,使学生掌握扎实的基本知识和技能,渗透基本的数学思想方法,积累基本的活动经验。夯实了这些基础,学生对进一步学习数学才有信心与兴趣,其数学素养的发展与提升才成为可能。
三、课中渗透,感悟模型。在平时的数学课堂教学过程中,教师要有意识地让学生在许多直观或贴近生活的实例中进行有效地综合比较,抽象出它们所具有的共性,再用数学的语言或符号等进行概括,从而让学生体会到学习新知的过程就是数学建模的过程。例如教学分数与除法之间的关系时,通过大量的实例使学生从中抽象出它们的共性是:被除数÷除数=被除数/除数,最终用数学符号概括出:a÷b=a/b(b≠0)的结论。
四、重点训练,体会建模。数学建模的过程是一个综合运用的过程,所以我们重点训练的基础内容很多。如计算,包括估算与口算;分析数量间的关系等等。如果学生相关的能力没有训练到位,将影响学生体会数学建模的过程。纵观小学阶段的数学内容,比较容易组织帮助学生建立的数学模型是简易方程。因此,在学习了这部分内容以后,我们便可以帮助学生体会数学建模,树立模型思想了。可以创设学生熟悉的生活情境,如家中的收支结余问题、找规律填数问题等等。教师要引导帮助学生经历完整的数学建模的过程,要用学生喜欢的方式表达解模过程,可以是列式解答,也可以是小论文。在学生完成学习任务以后,一定要进行激励性评价,让学生感受到建模的成功及数学模型思想的生活价值,从而提高学习数学的信心与兴趣
[参考文献]
【关键词】高中学生数学建模思想
数学建模就是用数学语言、数学符号描述实际现象,用数学知识解决实际问题的过程。它是将纷繁复杂的实际事物进行一种数学简化,抽象为合理的数学结构用它来解释特定现象之间的数学联系。数学本身就是实际应用中产生发展的,要解决实际问题就需要建立数学模型。数学建模对于高中学生的培养,不仅仅是数学定理和公式的简单掌握,更重要的是使学生系统掌握相关的基础理论、基础知识和基本技能,受到良好的科学思维和科学方法的基本训练,在思维方法上得到提升,以联系的观点来进行知识的汲取、归纳、分类和应用。
数学建模是学习数学知识和提高能力的最佳结合点。在用数学知识解决问题的过程中可使学生的积极性、主动性和创造性得到充分的发挥。理解实质,注意变式,要抓住模型的组成结构、性质、特征,摒除本质以外的东西,特别是要抓住几何大量的基本定理、公式模型。加强比较,注重联系,模型之间有区别,条件图形的丝毫改变,都可能涉及模型的改变。有时一个题目往往是多个模型的综合运用,一方面狠抓基础,另一方面多练综合题。归纳总结,提炼模型。模型不只是书本上的,还有是在练习中归纳总结的。对平时练习中的重要结论、规律要注意把这提炼成一个模型。建立数学模型是数学知识与应用的桥梁,学习和研究数学模型对培养学生分析和解决实际问题的能力是非常重要的,是数学教学的主要目的之一,因此,在数学教学中更重视从实际问题中引出新概念、新知识并注意培养学生敏锐的观察力,丰富的想象力,创造性的思维能力及抽象、分析、归纳、综合的能力,使学生逐渐理解和掌握数学建模的方法,以培养学生的学习兴趣、创新意识、实践能力。
数学建模、高中数学、应用数学来源于实际生活,解决现实生活中的问题,涉及到如何把实际问题转化为数学问题。数学就是对于模型的研究。 在高中数学中,应用题与实际生活联系最为密切,是实际问题的一个缩影,解答问题主要表现在建立数学模型。如果在数学应用题教学中能够运用好数学建模这个杠杆,不仅能提高解题速度和解决问题,还培养学生的创新能力和思维能力。 数学建模并非一朝一夕的事,教师针对任何问题都要引导学生用数学思维去观察、分析,然后从繁琐的具体问题中抽象出我们熟悉的数学模型,从而解决问题。
引导学生树立建模思想,利用建模思想解决问题与普通的课堂解题思维有明显的不同,这就需要学生能够转变思考角度,灵活地将数学知识应用到实际问题中去,而这个过程教师的引导是必不可少的。⑴创设生动的问题情境激发学生情感 :要发挥多媒体技术手段的优势,根据具体教学内容、学生的认识水平设计和应用多媒体课件创设生动的问题情境为学生提供主动发现、主动发展的机会,激励学生积极参与建模活动。⑵重视知识产生和发展过程:由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,例如数学概念的建立数学公式的推导,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程。数学知识、方法的转化、应用,不能仅仅讲授数学建模结果而忽略数学建模的建立过程。⑶采用启发式和讨论式教学法:教学时应当采用启发式和讨论式教学法,通过多种途径、多种方式渗透数学建模方法,努力推广学生自主发展的空间,让学生独立思考、让学生动脑、动手、动口,将有效地提高学生运用数学解决实际问题的能力。建立数学模型是一个从实际到抽象、再从抽象到实际的转换过程要让学生接受这样一个复杂的过程,教师就应对建模教学有一个清晰透彻的认识。要突出学生主体地位建模的教学环节是将实际问题抽象简化成数学模型,求得数学模型的解,检验解释数学模型的解,并将其还原成实际问题的解,从而最终解决实际问题。课程特点决定每一个环节的教学都要把突出学生主体地位置于首位,教师要激励学生大胆尝试,鼓励学生不怕挫折失败,鼓励学生动口表述、动手操作、动脑思考鼓励学生要多想、多读、多议、多讲、多练、多听让学生始终处于主动参与主动探索的积极状态。
【关键词】 数学建模 建模方法 应用
【中图分类号】 G424 【文献标识码】 A 【文章编号】 1006-5962(2012)06(b)-0035-01
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。
1 数学模型的基本概述
数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是 数学公式,算法、表格、图示等。数学模型法就是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法。教师在应用题教学中要渗透这种方法和思想,要注重并强调如何从实际问题中发现并抽象出数学问题,如何用数学模型(包括数学概念、公式、方程、不等式函数等)来表达实际问题。
2 数学建模的重要意义
电子计算机推动了数学建模的发展;电子计算机推动了数学建模的发展;数学建模在工程技术领域应用广泛。应用数学去解决各类实际问题时,建立数学模型是重要关键。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。数学建模越来越受到数学界和工程界的普遍重视,已成为现代科技工作者重要的必备能力。
3 数学建模的主要方法和步骤:
3.1 数学建模的步骤可以分为几个方面
(1)模型准备。首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。(2)模型假设。根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。(3)模型构成。根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。(4)模型求解。可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。(5)模型分析。对模型解答进行数学上的分析,特别是误差分析,数据稳定性分析。
3.2 数学建模采用的主要方法包括
a.机理分析法。根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模型。(1)比例分析法:建立变量之间函数关系的最基本最常用的方法。(2)代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。(3)逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题解决对策中得到广泛应用。(4)常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。(5)偏微分方程:解决因变量与两个以上自变量之间的变化规律。
b.数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
可以包括四个方法:(1)回归分析法(2)时序分析法(3)回归分析法(4)时序分析法
c.其他方法:例如计算机仿真(模拟)、因子试验法和人工现实法
4 数学建模应用
数学建模应用就是将数学建模的方法从目前纯竞赛和纯科研的领域引向商业化领域,解决社会生产中的实际问题,接受市场的考验。可以涉足企业管理、市场分类、经济计量学、金融证券、数据挖掘与分析预测、物流管理、供应链、信息系统、交通运输、软件制作、数学建模培训等领域,提供数学建模及数学模型解决方案及咨询服务,是对咨询服务业和数学建模融合的一种全新的尝试。例如北京交通大学在校学生组建了国内第一支数学建模应用团队,积极地展开数学建模应用推广和应用。
5 努力倡导数学建模活动的要求
5.1 积极开展数学建模活动,鼓励大家积极参与
为了提高学生的数学建模能力,学校可以开展数学建模活动,可以是竞赛制的和非竞赛制的,应当对成绩比较优秀的学生给予一定的奖励,从而提高学生的积极性。建模活动要有规章制度,要比较正规化,否则可能会达不到预期效果,而且建模过程竞赛要保证公平、公开,保证学生不受干扰影响。
5.2 巩固数学基础,激发学生学习兴趣
首先数学建模需要扎实学生的数学基础,同时学生要具备较好的理论联系实际的能力以及抽象能力,还有就是要激发学生的学习兴趣,兴趣是学习的最好老师,假设教学课堂中过于枯燥无味,学生容易产生厌倦情绪,不利于学习。数学建模过程本质是比较有趣的过程,是对实际生活进行简化的一个过程,生动和有实际价值的。鼓励学生相互交流,促使学生用建模的思维方法去思考和解决生活中的实际问题,表现优秀的同学可以适度给予奖励评价。
总之,数学建模能力的培养应贯穿于学生的整个学习过程,积极地激发学生的潜能。数学应用与数学建模目的是要通过教师培养学生的意识,教会学生方法,让学生自己去探索?研究?创新,从而提高学生解决问题的能力。 随着学生参加数模竞赛的积极性广泛提高,赛题也越来越向实用性发展。可以说正是数学建模竞赛带动了数模一步一步走向生产和实践中的应用。所以,数学建模广泛应用必成为了社会的发展趋势。
参考文献
[1] 郑平正.浅谈数学建模在实际问题中的应用[J].考试(教研版).2007(01).